1 Lecture 3

Goal: Aspects of 3-dimensional gauge theory on a point.

Recall: Γ, finite group, we have the identification

$$\text{Rep}_C \Gamma = C\Gamma - \text{mod}$$
$$\text{Rep}_k \Gamma = k\Gamma - \text{mod}$$

This gives a useful way of thinking about representations as modules over
an associative algebra. For infinite groups, one way to specify classes of represen-
tations it is often convenient to specify group algebra. E.g., $\mathbb{C}\mathcal{C}(G), L^1(G)$.

G, complex affine group (reductive: $GL_n\mathbb{C}, E_8(\mathbb{C})$).

Want to look at group actions on categories. In particular, dg categories or
infinity categories. If G is algebraic we want the action to be somehow algebraic.

$$a_g : \mathcal{C} \rightarrow \mathcal{C}, \ g \in G$$

Want to say a_g depend algebraically on g.

To get around this we think about group algebras.

$$\Gamma \rightarrow \text{Vect}\Gamma, * \ \Gamma \times \Gamma \rightarrow \Gamma$$

So we have a monoidal category.

Γ-action on $\mathcal{C} := \text{Vect}\Gamma$-module category.

Two natural candidates for a group algebra. These are the group algebras
for G valued in quasi-coherent sheaves or \mathcal{D}-modules.

$$G \rightarrow Q(G) \ \text{quasi-coherent sheaves on } G$$
\[G \rightarrow \mathcal{D}(G) \quad \mathcal{D} \text{ – modules on } G \]

These are both monoidal dg categories.

\[M : G \times G \rightarrow G \]
\[M(F \odot G) =: F \times G \]

We want to define topological field theories where to the point we can assign (four different possibilities):

- \(\bullet \mapsto \) Vect\(\Gamma \)-modules (3-dimensional TFT)
- \(Q(G) \)-categories \(\{QG \text{-modules}\} QG \otimes \mathcal{C} \rightarrow \mathcal{C} \) (2-dimensional TFT)
- \(\text{“smooth } G \text{-categories” } \{\mathcal{D} \text{-modules}\} \) (1-dimensional TFT)

There is a modified version to give 2-dimensional TFT’s.

For finite group \(\Gamma \):

We have an action of \(G \) on a variety \(X \), an action of \(Q(G) \) on \(Q(X) \), and \(\mathcal{D}(G) \) on \(\mathcal{D}(X) \).

This is where examples come from.

What kind of structures do these categories of \(G \)-categories have?

For \(H \subset G \), \(Q(G/H) \in Z^0_G(\cdot) \) is a natural example. So we look at the endomorphisms of the induced representation. This should be a Hecke algebra, i.e., functions on a double coset.

\[\text{End}Q(G/H) = Q(H \backslash G / H) = \cdot / H \times /_G \cdot / H \]

E.g., (for \(H = G \)),

\[\text{EndVect} = \cdot / G = Q(BG) = \text{Rep}_C G, \otimes \]

1.1 Morita theory

\(X \), finite set.

\(\text{Fun}(X \times X) \) algebra = \(\text{EndFun}(X) \) is Morita equivalent to \(\mathcal{C} = \text{Fun}(\cdot) \)

I.e., \(\text{Fun}(X \times X) - \text{mod} \cong \mathcal{C} - \text{mod} \)

For \(X \rightarrow Y \) surjective,

\[\text{Fun}(X \times_Y X) - \text{mod} \cong \text{Fun}(Y) - \text{mod} = \text{Vect}(Y) \]
\[Q(H \backslash G / H) = Q(\cdot / H \times /_G \cdot / H) \]
Theorem 1. (BZ-Francis-Nadler)

\[\forall H, Q(H\backslash G/H) - \text{mod} \cong Q(G) - \text{mod} \cong (\text{Rep}G) - \text{mod} \]

Primary Example:

Let \(G \) be a reductive group, e.g., \(GL_n(\mathbb{C}) \), containing \(K = B \) Borel.
\(G/B \) = flag variety = complete flags in \(\mathbb{C}^n \).

Beilinson-Bernstein says there is an isomorphism between:

- actions of \(DG \) on \(D(G/B) \)
- \(DG \)-actions on \(g - \text{mod}_0 \)

We have a left action by \(D(G) \) on \(D(G/B) \) and a right action by \(D(B \backslash B) = \mathcal{H} \) the finite Hecke category (roughly “Category O”)

\[B \backslash (G/B) \leftrightarrow \text{Schubert cells} \leftrightarrow W \text{ Weyl group} \]

\[K(\mathcal{H}) = ZW \]

“Bases” of \(\mathcal{H} \) labelled by \(w \in W \).

\[\exists T_w \text{ standard } i_{w*}C_w \]

\(\mathcal{H} \rightarrow \text{version of } ZBG [B_{n-1} \text{ for } GL_n] \)

\[T_{s_i} \times T_{s_j} \times T_{s_i} = T_{s_j} \times T_{s_i} \times T_{s_j} \]

\[T_{s_i}^2 \neq Id \]

So if we give an action of \(\mathcal{H} \) on some category \(C \) gives an action of the braid group on \(C \). This is how many actions of braid group arise in Khovanov homology.

Studying modules for \(D(G) \) is not good.

We want

\[\cdot \mapsto \mathcal{H} - \text{modules} \Rightarrow \text{Theorem (BZ-Nadler) 2d extended TFT’s} \]

We have the Harish Chandra modules \(D(K\backslash G/B) \) and we can take actions of \(\mathcal{H} \) on these.

\(Z(S^1) \) [TFT of dim \(\geq 2 \)]

FIGURES

For \(A \in Z(pt) \), we get two maps

\[Z(S^1) \rightarrow \text{End}A \]

\(Z(S^1) = \text{“Hochschild cohomology/center”} \)

\[\text{End}A \rightarrow Z(S^1) \]

\(Z(S^1) = \text{“Hochschild homology/dimension of } Z(pt)\text{”} \)

Center = end of \(Id_{Z(A)} = \text{hom}_{A-A^{op}}(A,A) \)
$Z(\cdot) = A\text{-mod}$

Dimension = FIGURES TO BE INCLUDED

$$Z(\cdot) = A - \text{mod} \Rightarrow \text{Dim} = A \otimes_{A \otimes A} A$$

$$\text{Vect} \Gamma - \text{mod} = Z(\cdot)$$

$$\text{Center}(\text{Vect} \Gamma) = Z(S^1)$$

Here the center is the Drinfel’d center.

Theorem 2. (BZ-Nadler-Francis) QG has dimension and center equal to $Q(G_{\text{ad}}/G) = Z(S^1)$

Also for a Reimann surface Σ,

$$Z^Q_G(\Sigma) = R\Gamma(\mathcal{M}_G(\Sigma), \mathcal{O})$$

Next time:

Character theory

\[\cdot \mapsto \mathcal{H} - \text{mod} \]

$S^1 \mapsto$ Luzstig’s character sheaves

\[\begin{array}{c}
G/B \\
G_{\text{ad}}/G & \rightarrow & B \setminus G/B
\end{array} \]