1 Lecture 2: Overview of higher category theory

Definition 1. A category \(\mathcal{C} \) consists of

- a collection of objects \(X, Y, Z, \ldots \)
- for pairs of objects \(X, Y \in \mathcal{C} \), a set \(\text{hom}_\mathcal{C}(X,Y) \)
- composition maps
 \[
 \text{hom}_\mathcal{C}(X,Y) \times \text{hom}_\mathcal{C}(Y,Z) \to \text{hom}_\mathcal{C}(X,Z)
 \]
- associativity, units, etc.

Yesterday we saw the category of cobordisms. Here the objects and morphisms look a lot alike. This is a good candidate for what we will call a 2-category.

Bad definition:
A strict 2-category \(\mathcal{C} \) consists of

- a collection of objects \(X, Y, Z, \ldots \)
- for pairs of objects \(X, Y \in \mathcal{C} \), a category \(\text{hom}_\mathcal{C}(X,Y) \)
- composition functors
 \[
 \text{hom}_\mathcal{C}(X,Y) \times \text{hom}_\mathcal{C}(Y,Z) \to \text{hom}_\mathcal{C}(X,Z)
 \]
- associativity, units, etc.

Let \(X \) be a space, \(\pi_1(X,x) \) is a group whose elements are homotopy classes of loops. If we did not want to choose a basepoint, we could form a category: \(\pi_{\leq 1}X \) where the objects are points \(x \in X \) and morphisms are paths in \(X \) mod homotopy.
Here we also have 2-morphisms from \(p: x \to y \) to \(q: x \to y \) which are homotopies from \(p \) to \(q \) mod homotopy. This gives the 2-category \(\pi_{\leq 2}X \).

Now we look at composition of paths. Composition works because we can reparametrize. But when we are composing three paths reparametrization gets us into trouble regarding associativity. This is not a problem for the fundamental group or the fundamental groupoid since we only consider paths up to homotopy. So the fundamental 2-groupoid is a weak 2-category, which we will just call a 2-category.

We can get around the associativity problem, but uses an ad hoc tric which does not generalize to higher dimensions.

Bad definition:
A **strict \(n \)-category** consists of

- a collection of objects \(X, Y, Z, \ldots \)
- for pairs of objects \(X, Y \in C \), a strict \((n - 1) \)-category \(\text{hom}_C(X, Y) \)
- composition functors
 \[\text{hom}_C(X, Y) \times \text{hom}_C(Y, Z) \to \text{hom}_C(X, Z) \]
- strict associativity, units, etc.

Example:
Let \(X \) be a space, \(\pi_{\leq n}X \) is a possible example of an \(n \)-category where

- the objects are points \(x \in X \);
- morphisms are paths in \(X \);
- 2-morphisms homotopies between paths;
- 3-morphisms are homotopies of homotopies;
- ...
- \(n \)-morphisms are higher homotopies mod homotopy

So a new sketch of a definition will drop strictness everywhere:

An **\(n \)-category** consists of

- a collection of objects \(X, Y, Z, \ldots \)
- for pairs of objects \(X, Y \in C \), an \((n - 1) \)-category \(\text{hom}_C(X, Y) \)
• composition functors

\[\text{hom}_C(X,Y) \times \text{hom}_C(Y,Z) \to \text{hom}_C(X,Z) \]

• associativity up to coherent isomorphism, units, etc.

For any space \(X \), \(\pi_{\leq n} X \) is an \(n \)-groupoid.

Thesis:
Every \(n \)-groupoid should arise in this way.

Better:
There should be a theory of \(\infty \)-groupoids

More precisely:
For any space \(X \), \(\pi_{\leq \infty} X \) is an \(\infty \)-groupoid.

Thesis:
Every \(\infty \)-groupoid should arise in this way, for a space \(X \) which is unique up to weak homotopy equivalence.

\[X \mapsto \pi_{\leq \infty} X \]

spaces mod homotopy go to \(\infty \)-groupoids mod equivalence.

One should regard this thesis as a criterion that a definition must pass.

Definition 2. An \(\infty \)-**groupoid** is a topological space (or maybe a simplicial set).

Definition 3. An \(n \)-**groupoid** is a space \(X \) such that its homotopy groups are trivial \(\pi_k X \cong * \) for \(k > n \).

So it is easier to define \(\infty \)-groupoids than \(n \)-groupoids.

Sketch of definition
An \((\infty,n)\)-category is a higher category in which all \(k \)-morphism are invertible for \(k > n \).

Example: \((n = 0) \)
\((\infty,0)\)-category \(\cong \) \(\infty \)-groupoid \(\cong \) topological space

Idea:
An \((\infty,n)\)-category is

• a collection of objects \(X,Y,Z,\ldots \)

• for pairs of objects \(X,Y \in \mathcal{C} \), an \((\infty,n-1)\)-category \(\text{hom}_\mathcal{C}(X,Y) \)
• composition law
• associativity, units, etc....

Example: (n=1)

An \((\infty,1)\)-category is a topological category (or a simplicial category, an \(S\)-category).

Our definition is correct but often inconvenient. We want to think about strategies for making sense of associativity weakly.

In a Segal category, we have

\[
\begin{array}{ccc}
\text{hom}(X,Y,Z) & \sim & \hom(X,Y) \times \hom(Y,Z) \\
\uparrow & & \uparrow \\
\hom(X,Y) & & \hom(X,Z)
\end{array}
\]

So instead of a composition law, we have something that induces a composition law up to coherent homotopy.

\(\widetilde{\text{Cob}}(n)\) is an ordinary category.

\(n\text{Bord}\) is an \(n\)-category (a fancy version of \(\text{Cob}(n)\)).

\(\widetilde{\text{Cob}}(n)\) is an \((\infty,1)\)-category (a fancy version of \(\text{Cob}(n)\)).

Definition 4. \(\widetilde{\text{Cob}}(n)\) has

• objects which are \((n-1)\)-manifolds
• morphisms are bordisms of \((n-1)\)-manifolds
• 2-morphisms are diffeomorphisms of bordisms rel \(\partial\)
• 3-morphisms are isotopies of diffeomorphisms

This is an example of an \((\infty,1)\)-category.

We want \(\text{hom}(M,N)\), a classifying space for bordisms from \(M\) to \(N\).

This space exists and is uniquely determined up to homotopy.

By universality we get a map called composition which is determined up to homotopy, so we can only check associativity up to homotopy.
Describe: $\widehat{\text{Cob}(m)}$ as a Segal category.

We want a simplicial space X with X_0 discrete.

$X_0 = \text{set of closed (m-1)-manifolds}$

$$X_n = \prod_{\text{objects } M_0, M_1, \ldots, M_n} \text{hom}(M_0, M_1, \ldots, M_n)$$

where

$$\text{hom}(M_0, M_1, \ldots, M_n) = \{(t_0 \leq t_1 \leq \cdots \leq t_n) \in \mathbb{R} - \text{dimensional proper submanifolds } B \subset [t_0, t_n] \times \mathbb{R}^\infty \text{ such that } B \text{ is transverse to } B \cap (t_i \times \mathbb{R}^\infty) \cong M_i\}$$

Similarly, we can describe more elaborate bordism categories using a more elaborate version of the theory of Segal categories/Segal spaces. Using these ideas, one can define an object $\widehat{n\text{Bord}}$.

Here the objects are 0-manifolds, morphisms are bordisms, \ldots, n-morphisms are n-manifolds with corners, and $(n + 1)$-morphisms are diffeomorphisms.