
The Strangest Numbers in String Theory

A forgotten number system invented in the mid-19th century may provide the simplest 
explanation for why our universe could have 10 dimensions

By John C. Baez and John Huerta

As children we all learn about numbers. We start with counting, followed by 
addition and subtraction, multiplication and division. But mathematicians 
know that the number system we study in school is but one of many 
possibilities. And indeed, other kinds of numbers are important for 
understanding geometry and physics. Among the strangest alternatives is 
the octonions. Largely neglected since their discovery in 1843, in the last few 
decades they have assumed a curious importance in string theory. And 
indeed, if string theory is a correct representation of the universe, they may 
explain why the universe has the number of dimensions it does. 

The Imaginary Made Real

The octonions wouldn’t be the first piece of pure mathematics that was later 
used to enhance our understanding of the cosmos. They wouldn’t even form 
the first alternative number system that was later shown to have practical 
uses. To understand why, we first have to look at the simplest case of 
numbers—the number system we learn about in school—which 
mathematicians call the real numbers. The set of all real numbers forms a 
line, so we say that the collection of real numbers is one-dimensional. We 
could also turn this idea on its head: the line is one-dimensional because 
specifying a point on it requires one real number.

Before the 1500s, the real numbers were the only game in town. Then during 
the Renaissance, ambitious mathematicians attempted to solve ever more 
complex forms of equations, even holding competitions to see who could solve 
the most difficult problems. The square root of -1 was introduced as a kind of 
secret weapon by the Italian mathematician, physician, gambler and 
astrologer Gerolamo Cardano. Where others might cavil, he boldly let 
himself use this mysterious number as part of longer calculations where the 
answers were ordinary real numbers. He wasn’t sure why this trick worked; 
all he knew is that it gave him the right answers. He published his ideas in 



1545, thus beginning a controversy that lasted for centuries: does the square 
root of -1 really exist, or is it only a trick? Nearly 100 years later, no less a 
thinker than Rene Descartes rendered his verdict when he gave it the 
derogatory name “imaginary,” or i.

Nevertheless, mathematicians followed in Cardano’s footsteps and began 
working with complex numbers—numbers of the form a+bi, where a and b 
are ordinary real numbers. Around 1805, Jean-Robert Argand popularized 
the idea that complex numbers describe points on the plane. How does a+bi 
describe a point on the plane? Simple: the number a tells us how far left or 
right the point is, while b tells us how far up or down it is. 

In this way, we can think of any complex number as a point in the plane, but 
Argand went a step further: he showed how to think of the operations one 
can do with complex numbers—addition, subtraction, multiplication and 
division—as geometric manipulations on the plane.

As a warm-up for understanding how these operations can be thought of as 
geometric manipulations, first think about the real numbers. Adding or 
subtracting any real number slides the real line to the left or right. 
Multiplying or dividing by any positive number stretches or squashes the 
line. For example, multiplying by 2 stretches the line by a factor of 2, while 
dividing by 2 squashes it down, moving all the points twice as close as they 
were. Multiplying by -1 flips the line over.

The same story works for complex numbers, with just a few extra twists. 
Adding any complex number a+bi to a point in the plane slides that point 
left (or right) by an amount a, and up (or down) by an amount b. Multiplying 
by a complex number stretches or squashes but also rotates the complex 
plane. In particular, multiplying by i rotates the plane a quarter turn. Thus, 
if we multiply 1 by i by i, we rotate the plane a full half turn from the 
starting point to arrive at -1. Division is the opposite of multiplication, so to 
divide we just shrink instead of stretching, or vice versa, and then rotate in 
the opposite direction. 

Almost everything we can do with real numbers can also be done with 
complex numbers. In fact, most things work better, as Cardano knew, since 
we can solve more equations with complex numbers than with real numbers. 
But if a two-dimensional number system gives the user added calculating 
power, what about even higher dimensional systems? Unfortunately, a 



simple extension turns out to be impossible. An Irish mathematician would 
uncover the secret to higher-dimensional number systems decades later. And 
only now, two centuries on, are we beginning to understand how powerful 
they can be.

Hamilton’s Alchemy 

In 1835, at the age of 30, the Irish mathematician and physicist William 
Rowan Hamilton discovered how to treat complex numbers as pairs of real 
numbers. At the time mathematicians commonly wrote complex numbers in 
the form a+bi that Argand popularized, but Hamilton noted that we are also 
free, if we like, to think of the number a+bi as just a peculiar way of writing 
a list of two real numbers—for instance (a, b). 

This notation makes it very easy to add and subtract complex numbers—just 
add or subtract each number in the second (complex) list to the 
corresponding number in the first (real) list. Hamilton also came up with 
slightly more involved rules for how to multiply and divide complex numbers 
so that they maintained the nice geometrical meaning discovered by Argand. 

After Hamilton invented this algebraic system for complex numbers that 
had a geometric meaning, he tried for many years to invent a bigger algebra 
of triplets that would play a similar role in three-dimensional geometry, an 
effort that seemed to give him no end of frustrations. He once wrote to his 
son, “Every morning … on my coming down to breakfast, your (then) little 
brother William Edwin, and yourself, used to ask me: ‘Well, Papa, can you 
multiply triplets?’ Whereto I was always obliged to reply, with a sad shake of 
the head: ‘No, I can only add and subtract them.’ ” Though he could not have 
known it at the time, the task he had given himself was mathematically 
impossible. 

Hamilton was searching for a three-dimensional number system in which he 
could add, subtract, multiply and divide. Division is the hard part: a number 
system where we can divide is called a division algebra. In 1958, three 
mathematicians proved an amazing fact that had been suspected for 
decades: any division algebra must have dimension 1 (which is just the real 
numbers), 2 (the complex numbers), 4 or 8. To succeed, Hamilton had to 
change the rules of the game. 

Hamilton himself figured out a solution on the 16th of October, 1843. He was 



walking with his wife along the Royal Canal to a meeting of the Royal Irish 
Academy in Dublin when he had a sudden revelation. Rotations in three 
dimensions couldn’t be described with just three numbers. He needed a 
fourth number, thereby generating a four-dimensional set called quaternions 
that take the form a+bi+cj+dk. Here, the numbers i, j and k are three unique 
square roots of -1. Hamilton later wrote: “I then and there felt the galvanic 
circuit of thought close; and the sparks which fell from it were the 
fundamental equations between i, j, and k; exactly such as I have used them 
ever since.” And in a famous act of mathematical vandalism, he carved these 
equations into the stone of the Brougham Bridge. They are now buried 
under other layers of graffiti, but a plaque has been placed there to 
commemorate the discovery.

It may seem odd that we need points in a four-dimensional space to describe 
changes in three-dimensional space, but it’s true. Three of the numbers come 
from describing rotations, which we can see most readily if we imagine 
trying to fly an airplane. To orient the plane however we want, we need to 
control the pitch, or angle with the horizontal. We also may need to adjust 
the yaw, by turning left or right, like a car. And finally, we may need to 
adjust the roll: the angle of the plane’s wings. The fourth number we need is 
used to describe stretching or shrinking. 

Hamilton spent the rest of his life obsessed with the quaternions, and found 
many practical uses for them. Today, in many of these applications the 
quaternions have been replaced by their simpler cousins: vectors, which can 
be thought of as quaternions of the special form ai+bj+ck (the first number is 
just zero). Yet quaternions still have their niche: they provide an efficient 
way to represent three-dimensional rotations on a computer, and show up 
wherever this is needed, from the attitude-control system of a spacecraft to 
the graphics engine of a video game. 

Imaginaries Without End

Despite these applications, we might wonder what, exactly, are j and k if 
we’ve already defined the square root of -1 as i. Do these additional square 
roots of -1 really exist? Can we just keep inventing new square roots of -1 to 
our heart’s content?

These questions were asked by Hamilton’s college friend, the lawyer John 
Graves, whose amateur interest in algebra got Hamilton thinking about 



complex numbers and triplets in the first place. The very day after his 
fateful walk in the fall of 1843, Hamilton sent Graves a letter describing his 
breakthrough. Graves replied nine days later, complimenting Hamilton on 
the boldness of the idea, but adding, “There is still something in the system 
which gravels me. I have not yet any clear views as to the extent to which we 
are at liberty arbitrarily to create imaginaries, and to endow them with 
supernatural properties.” And he asked: “If with your alchemy you can make 
three pounds of gold, why should you stop there?”

Like Cardano before him, Graves set his concerns aside for long enough to 
conjure some gold of his own. On December 26th, he wrote to Hamilton 
describing a new 8-dimensional number system that he called the octaves 
and which are now called octonions. Graves was unable to get Hamilton 
interested in his ideas, however. Hamilton promised to speak about Graves’ 
octaves at the Irish Royal Society, which is one way mathematical results 
were published at the time. But Hamilton kept putting it off, and in 1845 the 
young genius Arthur Cayley rediscovered the octonions and beat Graves to 
publication. For this reason, the octonions are also sometimes known as 
Cayley numbers.

Why didn’t Hamilton like the octonions? For one thing, he was obsessed with 
research on his own discovery, the quaternions. But he also had a purely 
mathematical reason: the octonions break some cherished laws of 
arithmetic.

The quaternions were already a bit strange. When you multiply real 
numbers, it doesn’t matter which order you do it—2 times 3 equals 3 times 
2, for example. We say that multiplication commutes. The same holds for 
complex numbers. But quaternions are noncommutative. The order of 
multiplication matters. 

Order is important because quaternions describe rotations in three 
dimensions, and for such rotations the order makes a difference to the 
outcome.. You can check this yourself. Take a magazine, turn it a little bit 
clockwise, then flip it over. Note that it looks like it was rotated a little bit 
counter clockwise. Now do these two operations in reverse order: flip first, 
and then rotate a little bit clockwise. The magazine looks like it’s been 
rotated clockwise. Since the result depends on the order, rotations do not 
commute. 



The octonions are much stranger. Not only are they noncommutative, they 
are also break another familiar law of arithmetic: the associative law (xy)z = 
x(yz). We have all seen a nonassociative operation in our study of 
mathematics: subtraction. For example, (3-2)-1 is different from 3-(2-1). But 
we are used to multiplication being associative, and most mathematicians 
still feel this way, even though they have gotten used to noncommutative 
operations. Rotations are associative, for example, even though they don’t 
commute. 

But perhaps most important, it wasn’t clear in Hamilton’s time just what 
the octonions would be good for. They are closely related to the geometry of 7 
and 8 dimensions, and we can describe rotations in those dimensions using 
the multiplication of octonions. But for over a century that was a purely 
intellectual exercise.  It would take the development of modern particle 
physics—and string theory in particular—to see how the octonions might be 
useful in the real world.

Symmetry and Strings

In the 1970s and ’80s theoretical physicists developed a strikingly beautiful 
idea called supersymmetry. (Later, researchers would learn that string 
theory requires supersymmetry.)  It states that at the most fundamental 
levels, the universe exhibits a symmetry between matter and the forces of 
nature. Every matter particle (such as an electron) has a partner particle 
that carries a force. And every force particle (such as a photon, the carrier of 
the electromagnetic force) has a twin matter particle.

Supersymmetry also encompasses the idea that the laws of physics would 
remain unchanged if we exchanged all the matter and force particles. 
Imagine viewing the universe in a strange mirror that, rather than 
interchanging left and right, traded every force particle for a matter particle, 
and vice versa. If supersymmetry is true, if it really describes our universe, 
this mirror universe would act the same as ours. Even though physicists 
have not yet found any concrete experimental evidence in support of 
supersymmetry, the theory is so seductively beautiful, and has led to so 
much enchanting mathematics, that many physicists hope and expect that it 
is real. 

One thing we know to be true, however, is quantum mechanics. And 
according to quantum mechanics, particles are also waves. In the standard 



three-dimensional version of quantum mechanics that physicists use every 
day,  one type of number (called spinors) describe the wave motion of matter 
particles.  Another type of number (called vectors) to describe the wave 
motion of force particles. If we want to understand particle interactions we 
have to multiply these two together, which can only be done in a very careful 
and peculiar way. While the system we use right now might work, it isn’t 
very elegant at all.

As an alternative, imagine a strange universe with no time, only space. If 
this universe has dimension 1, 2, 4, or 8, both matter and force particles 
would be waves described by a single type of number—namely, a number in 
a division algebra, the only type of system that allows for addition, 
subtraction, multiplication and division. In other words, in these dimensions 
the vectors and spinors coincide: they are each just real numbers, complex 
numbers, quaternions or octonions, respectively. Supersymmetry emerges 
naturally, providing a unified description of matter and forces. Simple 
multiplication describes interactions, and all particles—no matter the type—
use the same number system. 

Yet our plaything universe can’t be real, because we need to take time into 
account. In string theory this consideration has a curious effect. At any 
moment in time a string is a 1-dimensional thing, like a curve or line. But 
this string traces out a two-dimensional surface as time passes. This 
changes the dimensions in which supersymmetry naturally arises, by adding 
two—one for the string, and one for time. Instead of supersymmetry in 
dimensions 1, 2, 4 or 8, we get supersymmetry in dimensions 3, 4, 6, or 10.

Coincidentally, string theorists have for years been saying that only 10-
dimensional versions of the theory are self-consistent. The rest suffer from 
glitches called anomalies, where computing the same thing in two different 
ways gives different answers. In anything other than 10 dimensions, string 
theory breaks down. But 10-dimensional string theory is, as we have just 
seen, the version of the theory that uses octonions. So, if string theory is 
right, the octonions are not a useless curiosity: on the contrary, they provide 
the deep reason why the universe must have 10 dimensions: in 10 
dimensions, matter and force particles are embodied in the same type of 
numbers—the octonions.

But this is not the end of the story. Recently physicists have started to go 
beyond strings to consider membranes. For example, a two-dimensional 



membrane or 2-brane looks like a soap bubble at any moment in time. As 
time passes, it traces out a three-dimensional volume in spacetime.

Whereas in string theory we had to add two dimensions to our standard 
collection 1, 2, 4 and 8, now we must add three. Thus when we’re dealing 
with membranes we would expect supersymmetry to naturally emerge in 
dimensions 4, 5, 7 and 11. And as in string theory we have a surprise in 
store: researchers tell us that M-theory (the “M” typically stands for 
“membrane”) requires 11 dimensions—implying that it should naturally 
make use of octonions. Alas, nobody understands M-theory well enough to 
even write down its basic equations—that M can also stand for “mysterious.” 
It is hard to tell precisely what shape it might take in the future.

At this point we should emphasize that string theory and M-theory have as 
of yet made no experimentally testable predictions. They are beautiful 
dreams—but so far only dreams. The universe we live in does not look 10- or 
11-dimensional, and we have not seen any symmetry between matter and 
force particles. David Gross, one of the world’s leading experts on string 
theory, currently puts the odds of seeing some evidence for supersymmetry 
at the Large Hadron Collider at 50 percent. Skeptics say they are much less. 
Only time will tell.

Because of this uncertainty, we are still a long way from knowing if the 
strange octonions are of fundamental importance in understanding the 
world we see around us or are merely a piece of beautiful mathematics. Of 
course mathematical beauty is a worthy end in itself, but it would be even 
more delightful if the octonions turned out to be built into the fabric of 
nature. And as the story of the complex numbers and countless other pieces 
of mathematics demonstrate, it would hardly be the first time that purely 
mathematical inventions later provided precisely the tools that physicists 
need.
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