STREAM FUNCTIONS FOR DIVERGENCE-FREE VECTOR FIELDS Constructive Version with Digressions

JAMES P. KELLIHER ${ }^{1}$

Abstract. In 1990, Von Wahl and, independently, Borchers and Sohr showed that a divergence-free vector field u in a 3D bounded domain that is tangential to the boundary can be written as the curl of a vector field vanishing on the boundary of the domain. We extend this result to higher dimension and to Lipschitz boundaries in a form suitable for integration in flat space, showing that u can be written as the divergence of an antisymmetric matrix field. We also demonstrate how obtaining a kernel for such a matrix field is dual to obtaining a Biot-Savart kernel for the domain.
Compiled on Monday 8 February 2021 at 11:02

1. Overview 1
2. Background material 5
3. Dual spaces and Simon's trap 9
4. Proof of main result 11
5. Higher regularity 14
6. Of div and curl 15
7. 3D vector potentials 16
8. A Biot-Savart kernel? 18
9. A further decomposition of H in 3D 19
10. An alternate characterization of H and ΔV 20
11. Application: A simple proof of Poincaré's Lemma 22
12. A constructive approach 23
Appendix A. Differential forms point of view 26
Appendix B. A characterization H_{0} in 2D and 3D 30
Acknowledgments 31
References 31

Constructive Version with Digressions

This version includes Sections 3, 6, and 9 to 11, along with a few words in Section 1. These are digressions, not intended for publication (at least, not in their present form). This version includes a constructive, more geometric (and much longer) approach to obtaining the stream function in Section 12. It also includes Appendices A and B.

> Blue italicized text in smaller fonts contains parenthetical comments or details of proofs not intended for publication.

1. Overview

Let u be a divergence-free vector field on a bounded Lipschitz domain $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$, that is tangential to the boundary. For a simply connected domain, it is well known that in two dimensions, $u=\nabla^{\perp} \psi:=\left(-\partial_{2} \psi, \partial_{1} \psi\right)$ for a stream function, ψ, vanishing on the boundary. It is also well known that in three dimensions, we can write $u=\operatorname{curl} \psi$, where now the vector potential ψ is a divergence-free vector field tangential to the boundary. Perhaps somewhat less well-known is that ψ can also be chosen (non-uniquely) to vanish on the boundary, though
sacrificing the divergence-free condition. This 3D form of the vector potential was developed in $[9,31]$, where it is studied in Sobolev, Hölder spaces, for $C^{1,1}, C^{\infty}$ boundaries, respectively.

In higher dimension, we can no longer use a vector field as the potential; instead, we will use an antisymmetric matrix field A vanishing on the boundary, for which $u=\operatorname{div} A$, the divergence applied to A row-by-row. This was the manner it was utilized in [22], without, however, the key antisymmetric condition.

Our main result is Theorem 1.1.
Theorem 1.1. Let H be the space of divergence-free vector fields on Ω that are tangential to the boundary and that have L^{2} coefficients. Let H_{c} be the closed subspace of curl-free vector fields (see (4.1)) in H, let H_{0} be its orthogonal complement in H, and let

$$
X_{0}:=\left\{A \in H_{0}^{1}(\Omega)^{d \times d}: A \text { antisymmetric }\right\} .
$$

Then $H_{0}=\operatorname{div} X_{0}$, and there exists a bounded linear map $S: H_{0} \rightarrow X_{0}$ with $\operatorname{div} S u=u$.
Specializing to $d=2,3$, we can write

$$
H_{0}= \begin{cases}\nabla^{\perp} H_{0}^{1}(\Omega), & d=2 \\ \operatorname{curr}_{3} H_{0}^{1}(\Omega)^{3}, & d=3 .\end{cases}
$$

Because the term matrix potential is commonly used in the literature for other purposes, we will adopt the 2D terminology for all dimensions, calling A the stream function for u.

Closely connected to stream functions is the Hodge decomposition of L^{2}-vector fields on Ω. Indeed, one form of the Hodge decomposition in 3D is

$$
H=H_{c} \oplus \operatorname{curl}\left(H \cap H^{1}(\Omega)^{3}\right)
$$

That is, each element of $H_{0}:=H_{c}^{\perp}$ is the image of a classical, divergence-free vector potential tangential to the boundary. Moreover, for any $u \in H_{0}$, the boundary value problem

$$
\begin{cases}\operatorname{curl} \psi=u & \text { in } \Omega \tag{1.1}\\ \psi=0 & \text { on } \partial \Omega\end{cases}
$$

is (non-uniquely) solvable, and gives the 3D form of the stream function in Theorem 1.1.
In fact, solving the analog of (1.1) in any dimension in the more general setting of an oriented manifold with boundary was worked out by Schwarz in [26]. He shows that for such a manifold with $C^{1,1}$ boundary, given a 1 -form α having L^{2}-regularity and vanishing normal component, the boundary value problem

$$
\begin{cases}\delta \beta=\alpha & \text { on } M \\ \left.\beta\right|_{\partial M}=0 & \text { on } \partial M\end{cases}
$$

(δ is the codifferential) is solvable for a 2 -form having H^{1}-regularity if and only if

$$
\int_{M} \alpha \wedge * \lambda=0 \text { for all } \lambda \in \mathcal{H}_{N}^{1}(\Omega)
$$

Here, $\mathcal{H}_{N}^{1}(\Omega)$ is the space of harmonic fields having vanishing normal component, the analog of H_{c}, and the integral condition on α defines the analog of H_{0}. (Appendix A has a more detailed account.)

Schwarz's result is not restricted to 1 -forms, but holds for k-forms and also allows non-zero boundary values. It is restricted, however, to $C^{1,1}$ boundaries. For manifolds embedded in \mathbb{R}^{d}, this restriction is loosened in [25], which applies to boundaries even less regular than Lipschitz. The authors show that, given an $(\ell-1)$-form α for any $0 \leq l \leq d-1$, there exists an ℓ-form β having prescribed boundary value for which $\delta \beta=\alpha$. They assume, however, that the $(\ell-1)$-st Betti number vanishes. Since we need such a result for $\ell=2$, this means
that the first Betti number must vanish, which means that Ω must be simply connected, an assumption we wish to avoid.

We present our derivation of a stream function here, therefore, because it applies to nonsimply connected domains having only a Lipschitz continuous boundary. Moreover, we obtain the stream function non-constructively, using simple functional analytic arguments, avoiding entirely the language of differential forms, making it more accessible and self-contained for our intended primary audience of analysts working in flat space.

Central to our approach is the fact that the divergence operator maps vector fields in $H_{0}^{1}(\Omega)^{d}$ onto $L_{0}^{2}(\Omega)$, the space of L^{2} functions with mean zero. For arbitrary domains, this is a result of Bogovskii $[7,8]$ (see Lemma 2.11, below). Bogovskii produces an integral kernel for solving the problem div $u=f$ in a star-shaped domain. This kernel and adaptations of it have been used in other approaches to Theorem 1.1 in 3D, such as [6] for star-shaped domains, but we use Bogovskii's result as a "black box," for with it, we can easily obtain Theorem 1.1 except for the key antisymmetric condition on the stream function.

Nevertheless, the partially constructive 3D approach taken in [9] can be adapted, using aspects of the geometric approach taken in [27], to obtain the same result. We present this approach in Section 12. It relies, however, upon two lemmas that hold true for manifolds in \mathbb{R}^{d} with smooth boundary, but whose proofs for Lipschitz boundaries do not, as far as the author can determine, appear in the literature. Hence, this approach is incomplete.

We also present in Appendix A an overview of the results as presented in [27] as regards the Hodge decomposition and what we are calling stream functions in the language of differential forms, making the connection with the "flat space" approach we have taken.

We assume that Ω is a bounded, connected, open subset of $\mathbb{R}^{d}, d \geq 2$, with Lipschitz boundary, $\partial \Omega$. We define the L^{2}-based Sobolev spaces, $H^{k}(\Omega)$ and $H_{0}^{k}(\Omega)$, for nonnegative k in the usual way (the boundary is regular enough that all standard definitions are equivalent). Identifying L^{2} with its own dual, we also define the dual spaces, $H^{-k}(\Omega):=H_{0}^{k}(\Omega)^{\prime}$.

Defined this way, H^{-1} is what we will call an abstract dual space; that is, it is simply the space of all continuous linear functionals on a given Banach space (H_{0}^{1}, in this case). The usual realization of H^{-1} as what we will call a concrete dual space - by which me mean a specific, presumably useful space that is isometrically isomorphic to the abstract dual spaceis as a subspace of distributions. This realization requires, however, making the identification of L^{2} with its own (abstract) dual space $\left(L^{2}\right)^{\prime}$, and leads to the continuous embeddings,

$$
\begin{equation*}
\mathcal{D}(\Omega) \subsetneq H_{0}^{1}(\Omega) \subsetneq L^{2}(\Omega)=L^{2}(\Omega)^{\prime} \subsetneq H^{-1}(\Omega) \subsetneq \mathcal{D}(\Omega)^{\prime} . \tag{1.2}
\end{equation*}
$$

We then define weak derivatives of functions in L^{2} in the usual way. So, for instance, given f in $L^{2}, \partial_{i} f$ is that element of H^{-1} for which

$$
\left(\partial_{i} f, \varphi\right)=-\left(f, \partial_{i} \varphi\right) \text { for all } \varphi \in \mathcal{D}(\Omega):=C_{0}^{\infty}(\Omega)
$$

Defined this way, it is classical that any element of H^{-1} is a sum of an L^{2} function and the divergence of a vector field in L^{2}. Another concrete manifestation of this definition of H^{-1} is given in Proposition 2.10, and there are many others.

We will work with the classical function spaces, H and V, of incompressible fluid mechanics:

$$
\begin{align*}
H & :=\left\{u \in L^{2}(\Omega)^{d}: \operatorname{div} u=0, u \cdot \boldsymbol{n}=0\right\}, \tag{1.3}\\
V & :=\left\{u \in H_{0}^{1}(\Omega)^{d}: \operatorname{div} u=0\right\} .
\end{align*}
$$

The divergence here is defined in terms of weak derivatives, and $u \cdot \boldsymbol{n}$ is defined as an element of $H^{-\frac{1}{2}}(\partial \Omega)$ in terms of a trace (see Lemma 2.2), \boldsymbol{n} being the outward unit normal vector. Both H and V are Hilbert spaces with norms and inner products as subspaces of L^{2} and H_{0}^{1}.

By virtue of the Poincaré inequality, we can use

$$
\begin{array}{ll}
(f, g)_{H_{0}^{1}}:=(\nabla f, \nabla g)_{L^{2}}, & \|f\|_{H_{0}^{1}}:=\|\nabla f\|_{L^{2}} \\
(u, v)_{V}:=(\nabla u, \nabla v)_{L^{2}}, & \|u\|_{V}:=\|\nabla u\|_{L^{2}}
\end{array}
$$

Because $\partial \Omega$ is Lipschitz, we know that $H_{0}^{1}(\Omega)$ is both the closure in the H^{1} norm of $C_{0}^{\infty}(\Omega)$ and the subspace of all elements of $H^{1}(\Omega)$ whose trace on the boundary vanishes. It follows in the classical way that we can equivalently characterize H as

$$
\begin{equation*}
H=\text { closure of } V \text { in the } L^{2} \text { norm. } \tag{1.4}
\end{equation*}
$$

(Or we could use the closure of $\mathcal{V}=C_{0}^{\infty}(\Omega) \cap V$ in the L^{2} norm.)
Now, H is, by its very definition, a subspace of $L^{2}(\Omega)^{d}$ and V is a subspace of $H_{0}^{1}(\Omega)^{d}$. Hence, any number of derivatives of functions lying in them will yield functions lying in some negative Sobolev space. That is, they are distribution spaces ${ }^{1}: H, V \subseteq \mathcal{D}^{\prime}(\Omega)$.

With these very cursory definitions out of the way, we give in Section 2 some further necessary background material drawn mostly from $[16,18]$. Before moving on to our main result, however, we make a detour in Section 3 to explore a cautionary tale of J. Simon's [28] about how the dual space V^{\prime} is not a distribution space. The tools we presented in Section 2 to construct our stream function turn out to be well suited to describe, in a very concrete manner, the nature of these difficulties. In Section 4, we prove our main result, Theorem 1.1, extending it to the space V in Section 5. In Section 6, we prove that the adjoint of div as an operator on antisymmetric $d \times d$ matrices in H_{0}^{1} is $-(1 / 2)$ curl. In Section 7 we show how the classical 3D vector potentials can be obtained from the stream function of Theorem 1.1.

In Section 8 we demonstrate that the Biot-Savart law, which recovers a vector field in H_{0} from its vorticity (curl), is, in a precise way, dual to the problem of obtaining a stream function from a velocity field in H_{0}. We show that if there is an integral kernel associated with one of these problems it is also the kernel associated with the other problem.

In 3 D , there is a further, useful, though somewhat non-standard, decomposition of H, that follows as a corollary of Theorem 1.1, and which we describe in Section 9. In Section 10, we give an alternate characterization of the space H and, for simply connected domains, a parallel characterization of ΔV as a subspace of $H^{-1}(\Omega)^{d}$. As an application of our main result, in Section 11 we use the stream function developed in Theorem 5.2 to prove Poincaré's lemma as a simple consequence of de Rham's lemma. In Section 12 we present a more constructive, geometric proof of Theorem 1.1.

In Appendix A we present the Hodge-Morrey decomposition of L^{2} differential forms corresponding to the space H by using the results of [27], and give a few results regarding differential forms that we need in the proof of Theorem 1.1. Finally, in Appendix B, we present, for comparison, an outline of the more classical characterization of the space H_{0}.

$$
\text { Throughout, we follow the convention that }\|\cdot\|:=\|\cdot\|_{L^{2}(\Omega)} \text { or }\|\cdot\|_{H}
$$

We write (u, v) for the inner product in L^{2} or H. We write v^{i} for the i-th coordinate of a vector $v ; A_{j}^{i}$ for the element in the i-th row, j-th column of a matrix $A ; A^{i}$ for the i-th row of $A ; A_{j}$ for the j-th column of A. We follow the convention that repeated indices are implicitly summed, even when both indices are superscripts or both are subscripts.

[^0]
2. BACKGROUND MATERIAL

Here, we present a number of tools we will use in what follows. The results themselves are classical, but their form and proofs are based primarily upon Galdi's invaluable introductory chapters in [16] along with material from the equally invaluable [18]. Table 1 converts some of Galdi's notation to the notation we are using, which may be useful for the reader who wishes to examine our explicit references to Galdi's text.

Table 1. Some notation in Galdi's [16]

Galdi	Our notation
$\mathcal{D}(\Omega)$	$\mathcal{V}=V \cap C_{0}^{\infty}(\Omega):$ divergence-free test functions
H_{2}	the space H defined in (1.3)
H^{1} or H_{2}^{1}	$H \cap H^{1}(\Omega)$, with H as defined in in (1.3)
D^{m}	$\dot{H}^{m}(\Omega)$, the homogeneous Sobolev space
D_{0}^{m}	$\dot{H}_{0}^{m}(\Omega)$, the homogeneous Sobolev space
	(for us, Ω is bounded, so $\left.\dot{H}_{0}^{m}(\Omega)=H_{0}^{m}(\Omega)\right)$

Definition 2.1. As in [30], we define the space

$$
E(\Omega):=\left\{u \in L^{2}(\Omega)^{d}: \operatorname{div} u \in L^{2}(\Omega)\right\}
$$

endowed with the norm, $\|u\|+\|\operatorname{div} u\|$. We also define the space,

$$
\widetilde{E}(\Omega):=\left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u \in L^{2}(\Omega)\right\}
$$

endowed with the norm, $\|u\|+\|\operatorname{curl} u\|$. We use $\widetilde{E}(\Omega)$ only in $3 D$.
We frequently integrate by parts using Lemma 2.2 (see Theorem 2.5 and (2.17) of [18]):
Lemma 2.2. There exists a normal trace operator from $E(\Omega)$ to $H^{-1 / 2}(\partial \Omega)$ that continuously extends $\left.u \mapsto u \cdot \boldsymbol{n}\right|_{\partial \Omega}$ from $C(\bar{\Omega})$ to $E(\Omega)$. We will simply write $u \cdot \boldsymbol{n}$ rather than naming this trace operator. For all $u \in E(\Omega), \varphi \in H^{1}(\Omega)$,

$$
(u, \nabla \varphi)=-(\operatorname{div} u, \varphi)+\int_{\partial \Omega}(u \cdot \boldsymbol{n}) \varphi
$$

where we have written $(u \cdot \boldsymbol{n}, \varphi)_{H^{-1 / 2}(\partial \Omega), H^{1 / 2}(\partial \Omega)}$ in the form of a boundary integral.
In 3D, we also have the following (see Theorem 2.11 of [18]):
Lemma 2.3. In $3 D$, there exists a tangential trace operator from $\widetilde{E}(\Omega)$ to $H^{-1 / 2}(\partial \Omega)$ that continuously extends $u \mapsto u \times\left.\boldsymbol{n}\right|_{\partial \Omega}$ from $C(\bar{\Omega})$ to $\widetilde{E}(\Omega)$. We will simply write $u \times \boldsymbol{n}$ rather than naming this operator. For all $u \in \widetilde{E}(\Omega), \varphi \in H^{1}(\Omega)$,

$$
(\operatorname{curl} u, \varphi)=(u, \operatorname{curl} \varphi)+\int_{\partial \Omega}(u \times \boldsymbol{n}) \cdot \varphi
$$

Poincaré's inequality holds not just for V, but for the larger space $H \cap H^{1}(\Omega)^{d}$:
Lemma 2.4. There exists a constant $C=C(\Omega)$ such that for all $u \in H \cap H^{1}(\Omega)^{d}$,

$$
\|u\| \leq C\|\nabla u\|
$$

Proof. For any $u \in H$,

$$
\int_{\Omega} u^{j}=\int_{\Omega} u \cdot \nabla x^{j}=-\int_{\Omega} \operatorname{div} u x^{j}+\int_{\partial \Omega}(u \cdot \boldsymbol{n}) x^{j}=0
$$

Hence, u has mean value zero, so Poincaré's inequality holds in the form stated.

The well-posedness of solutions to the (stationary) Stokes problem is a classical, deep result, that lies at the heart of much of what we do. We will rely heavily upon the following version of it:

Proposition 2.5. For any $f \in H^{-1}(\Omega)^{d}$, the (stationary) Stokes problem,

$$
\begin{cases}-\Delta v+\nabla q=f & \text { in } \Omega \tag{2.1}\\ \operatorname{div} v=0 & \text { in } \Omega \\ v=0 & \text { on } \Omega\end{cases}
$$

has a unique (up to an additive constant for q) weak solution, $(v, q) \in H^{1}(\Omega)^{d} \times L^{2}(\mathbb{R})$. (See Definition 2.12 for a precise definition of a weak solution.) Moreover,

$$
\|v\|_{H^{1}}+\|q\| \leq C\|f\|_{H^{-1}}
$$

Proof. See, for instance, Proposition 4.2 of [3] or Theorem IV.1.1 of [16].
The well-posedness of the Stokes problem quickly yields a proof of the version of de Rham's lemma in Proposition 2.6. (This makes de Rham's lemma appear quite simple, yet de Rham's lemma is generally used in the proof of the well-posedness of the Stokes problem, as it is in the proof in [16] that we referenced. This perceived simplicity, then, is merely a consequence of the presentation, and hardly a self-contained proof.)

Proposition 2.6 (de Rham's Lemma). A vector field $f \in H^{-1}(\Omega)$ is the gradient of an L^{2} function if and only if

$$
(f, v)=0 \text { for all } v \in V
$$

Proof. The forward direction is immediate. For the converse, given $f \in H^{-1}(\Omega)^{d}$, let $(v, q) \in$ $V \times L^{2}(\Omega)$ be the solution to (2.1) given by Proposition 2.5. Since $v \in V$, we then have

$$
0=(f, v)=(-\Delta v, v)+(\nabla q, v)=\|\nabla v\|^{2} .
$$

Hence, $v=0$, so $f=\nabla q$.
Proposition 2.6 does not say that if f vanishes in V^{\prime} then it is a gradient, for f must be an element in H^{-1}. Interpreting it that way is the origin of Simon's trap, which we explore in the next section.

Key tools for us will be the decomposition of vector fields in $H_{0}^{1}(\Omega)$ given in Proposition 2.7 and the surjectivity of the divergence operator in Lemma 2.11. These results employ the space

$$
L_{0}^{2}(\Omega):=\left\{f \in L^{2}(\Omega): \int_{\Omega} f=0\right\} .
$$

Proposition 2.7. The orthogonal decomposition, $H_{0}^{1}(\Omega)^{d}=V \oplus V^{\perp}$, holds with

$$
\begin{equation*}
V^{\perp}=\left\{z \in H_{0}^{1}(\Omega)^{d}: \Delta z=\nabla q \text { for some } q \in L^{2}(\mathbb{R})\right\} \tag{2.2}
\end{equation*}
$$

and $\left\|P_{V} \perp \varphi\right\| \leq C\|\operatorname{div} \varphi\|$. Moreover, the orthogonal projection $P_{V}: H_{0}^{1}(\Omega)^{d} \rightarrow V$ given by $\varphi=P_{V} \varphi+z$, where $(z, q) \in H_{0}^{1}(\Omega)^{d} \times L^{2}(\Omega)$ is a weak solution to

$$
\begin{cases}-\Delta z+\nabla q=0 & \text { in } \Omega \tag{2.3}\\ \operatorname{div} z=\operatorname{div} \varphi & \text { in } \Omega \\ z=0 & \text { on } \Omega\end{cases}
$$

Proof. This decomposition is given in Corollary 2.3 p. 23 of [18] (also see Lemma 2.2 of [20]). We give a proof here for completeness.

Starting with $\varphi \in H_{0}^{1}(\Omega)^{d}$, set $g=\operatorname{div} \varphi \in L^{2}(\Omega)$ and solve (non-uniquely), $\operatorname{div} w=g$ for $w \in H_{0}^{1}(\Omega)$. That we can solve this is a matter we will return to in Section 4; specifically, see Lemma 2.11. We have, $\|w\|_{H^{1}(\Omega)} \leq C\|g\|$, as shown, for instance, in Exercise III.3.8 of [16].

Next let $f=\Delta w \in H^{-1}(\Omega)^{d}$, and let (v, q) be the unique solution to (2.1). Set $z=v+w$ and observe that $-\Delta z+\nabla q=f-\Delta w=0, \operatorname{div} z=g=\operatorname{div} \varphi$, and $z=0$ on $\partial \Omega$. Hence, (z, q) is a solution to (2.3), and we see that $P_{V} \varphi=\varphi-z$. Moreover,

$$
\left(P_{V} \varphi, z\right)_{V}=\left(\nabla P_{V} \varphi, \nabla z\right)=-\left(\Delta z, P_{V} \varphi\right)_{H^{-1}, H_{0}^{1}}=-\left(\nabla q, P_{V} \varphi\right)_{H^{-1}, H_{0}^{1}}=0 .
$$

Hence, we see that $z \in V^{\perp}$, so V^{\perp} contains the set on the righthand side of (2.2).
It remains to show that V^{\perp} contains only the set on the righthand side of (2.2). To see this, suppose that $z \in V^{\perp}$. Let $u \in V$ be arbitrary. Then

$$
(u, z)_{V}=(\nabla u, \nabla z)=(\Delta z, u)_{H^{-1}, H_{0}^{1}}=0 .
$$

Thus, $\Delta z=\nabla q$ for some $q \in L^{2}(\Omega)$ by Proposition 2.6. The bound $\left\|P_{V \perp} \varphi\right\| \leq C\|\operatorname{div} \varphi\|$ follows, for instance, from the Stokes problem bound in Exercise IV.1.1 of [16].

We could have directly used the solution to (2.3) to obtain the decomposition of $H_{0}^{1}(\Omega)^{d}$, but we wished to reduce the problem to the classical Stokes problem and (non-unique) inversion of the divergence operator.

Remark 2.8. Going a little beyond (2.2), there is a bijection between $\nabla L^{2}(\Omega)$ and V^{\perp} that comes from solving, for a given $q \in L^{2}(\Omega)$, the elliptic problem, $\Delta z^{i}=\partial_{i} q$ in $\Omega, z^{i}=0$ on $\partial \Omega$ for each i. We never, however, make use of this bijection.

Remark 2.9. Corollary 2.3 p. 23 of [18] gives the decomposition in Proposition 2.7, also using, as we did, a solution to the Stokes problem to obtain it. Interestingly, Amrouche and Girault in [3] invert this approach, using the decomposition to prove the existence of a solution to the Stokes problem. They then go on to give a proof of the decomposition that does not require knowledge of the existence of a solution to the Stokes problem (though it uses, and proves, that any solution satisfies certain estimates). All this is done in $W^{k, p}$ spaces for $p \in(1, \infty)$ and goes far beyond our purposes here.

Note that the solution of (2.1) can be rephrased as follows:

Proposition 2.10.

$$
H^{-1}(\Omega)^{d}=\Delta V \oplus \nabla L^{2}(\Omega)=\Delta V \oplus \Delta V^{\perp}=\Delta H_{0}^{1}(\Omega)^{d} .
$$

Proof. Let $f \in H^{-1}(\Omega)^{d}$ and let (v, q) solve (2.1). This gives $H^{-1}(\Omega)^{d}=\Delta V+\nabla L^{2}(\Omega)$, and the uniqueness of the solution shows that the decomposition is a direct sum. Then (2.2) shows that $\Delta V^{\perp}=\nabla L^{2}(\Omega)=\nabla L^{2}(\Omega)$, hence also $H^{-1}(\Omega)^{d}=\Delta V \oplus \Delta V^{\perp}=\Delta\left(V+V^{\perp}\right)=$ $\Delta H_{0}^{1}(\Omega)^{d}$, where we invoked Proposition 2.7.
Lemma 2.11. [Bogovskǐ [7, 8]] For any $f \in L_{0}^{2}(\Omega)$ there exists $v \in H_{0}^{1}(\Omega)^{d}$ for which $\operatorname{div} v=f$. We can choose the (non-unique) solutions in such a way as to define a bounded linear operator $R: L_{0}^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega)^{d}$ for which $\|\nabla R f\| \leq C\|f\|$. Moreover, we can assume that R maps into the space V^{\perp}.

Proof. For the proof of all but the last sentence, see Bogovskii [7, 8] or Theorem 2.4 of [9]. Then, for any $f \in L_{0}^{2}(\Omega), \operatorname{div}\left(P_{V^{\perp}} R f\right)=\operatorname{div} R f=f$ and

$$
\left\|\nabla\left(P_{V^{\perp}} R f\right)\right\|=\left\|P_{V^{\perp}} R f\right\|_{H_{0}^{1}(\Omega)^{d}} \leq\|R f\|_{H_{0}^{1}(\Omega)^{d}}=\|\nabla R f\| .
$$

So because $P_{V^{\perp}}$ is a continuous linear operator, we can replace R by $P_{V^{\perp}} R$.

In fact, Bogovskii in $[7,8]$ showed that the divergence is surjective for an arbitrary domain in \mathbb{R}^{d}. See, for instance, the historical comments on pages 208-209 of [2].

The difficult part of proving Lemma 2.11 is obtaining the surjectivity of the divergence as a map from $H_{0}^{1}(\Omega)^{d}$ to $L_{0}^{2}(\Omega)$: once that is obtained (or even just that the range of div is closed), the bounded linear (partial) inverse map R follows from basic functional analysis, by arguing much as we do in the proof of Theorem 1.1 in Section 4. (And see Remark 4.8.)

Much more can be said about the higher regularity of $R f$ when f is more regular. Moreover, it is shown in [9] also that $\|R f\| \leq C\|f\|_{H^{-1}}$, though for us the weaker bound $\|R f\|_{H_{0}^{1}} \leq$ $C\|f\|$, which follows from Lemma 2.11 and Poincaré's inequality, will suffice.

Moreover, since $P_{V^{\perp}}$ does not change the divergence of a vector field, the constant in the inequality in Lemma 2.11 is at least as small as the constant in Proposition 2.7. (This is a little misleading, however, as Lemma 2.11 is generally used to prove the estimates on the Stokes problem that lead to the inequality in Proposition 2.7.)

From R of Lemma 2.11, we define a matrix-valued operator, which we continue to call R, by applying R on each component of any vector in $L_{0}^{2}(\Omega)^{d}$:

$$
\begin{equation*}
R: L_{0}^{2}(\Omega)^{d} \rightarrow H_{0}^{1}(\Omega)^{d \times d}, \quad(R u)^{i}:=R u^{i} . \tag{2.4}
\end{equation*}
$$

We have been somewhat formal in our proof of Proposition 2.7, as we never gave a definition of a weak solution to (2.3) or even to the special case in (2.1). For this purpose, we unwind the definitions and results in $[16]^{2}$, leading to the following:
Definition 2.12. The pair $(z, q) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ is a weak solution to (2.3) if $z=v+w$, where $v, w \in H_{0}^{1}(\Omega), \operatorname{div} w=\operatorname{div} \varphi$, and

$$
\begin{aligned}
& (\nabla v, \nabla \psi)=\langle f, \psi\rangle \text { for all } \psi \in \mathcal{V} \\
& (\nabla v, \nabla \alpha)=\langle f, \alpha\rangle+(q, \operatorname{div} \alpha) \text { for all } \alpha \in C_{0}^{\infty}(\Omega)
\end{aligned}
$$

where $f=\Delta w$ and $\mathcal{V}:=V \cap C_{0}^{\infty}(\Omega)$ (this is what Galdi, very confusingly, calls $\mathcal{D}(\Omega)$). Also, $\langle\cdot, \cdot\rangle$ is the pairing between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$.

Now, since

$$
(\nabla v, \nabla \psi)=(\nabla z, \nabla \psi)-(\nabla w, \nabla \psi)=(\nabla z, \nabla \psi)+(\Delta w, \psi)=(\nabla z, \nabla \psi)+(f, \psi)
$$

and, similarly,

$$
(\nabla v, \nabla \alpha)=(\nabla z, \nabla \alpha)+(f, \alpha)
$$

we see that

$$
\begin{align*}
& (\nabla z, \nabla \psi)=0 \text { for all } \psi \in V \\
& (\nabla z, \nabla \alpha)=(q, \operatorname{div} \alpha) \text { for all } \alpha \in C_{0}^{\infty}(\Omega) \tag{2.5}
\end{align*}
$$

In the first equality we used the density of \mathcal{V} in V. Although f is eliminated in (2.5), q still appears, and q ultimately derives from f. Hence, we cannot use these identities together to define a weak solution.

We have the following simple proposition:
Proposition 2.13. If $u \in V$ then for all $\varphi \in H_{0}^{1}(\Omega)$,

$$
(\Delta u, \varphi)=\left(\Delta u, P_{V} \varphi\right) .
$$

If $u \in V^{\perp}$ then for all $\varphi \in H_{0}^{1}(\Omega)$,

$$
(\Delta u, \varphi)=\left(\Delta u, P_{V^{\perp}} \varphi\right) .
$$

[^1]Proof. Let $\varphi \in H_{0}^{1}(\Omega)$, which we can write as $\varphi=P_{V} \varphi+z$, as in Proposition 2.7. For $u \in V$,

$$
(\Delta u, \varphi)=\left(\Delta u, P_{V} \varphi\right)+(\Delta u, z)=\left(\Delta u, P_{V} \varphi\right)-(\nabla u, \nabla z)=\left(\Delta u, P_{V} \varphi\right)
$$

by $(2.5)_{1}$.
For $u \in V^{\perp}$, we know by Proposition 2.7 that $\Delta u=\nabla q$ for some $q \in L^{2}(\Omega)$. Hence,

$$
(\Delta u, \varphi)=\left(\Delta u, P_{V} \varphi\right)+(\Delta u, z)=\left(\nabla q, P_{V} \varphi\right)+\left(\Delta u, P_{V^{\perp}} \varphi\right)=\left(\Delta u, P_{V^{\perp}} \varphi\right) .
$$

A simple and immediate consequence of Proposition 2.13 is the following:
Corollary 2.14. Let $v \in \Delta V$. Then for all $\varphi \in H_{0}^{1}(\Omega)$,

$$
(v, \varphi)=\left(v, P_{V} \varphi\right)
$$

Moreover,

$$
(v, \psi)=0 \text { for all } \psi \in V \Longleftrightarrow(v, \varphi)=0 \text { for all } \varphi \in H_{0}^{1}(\Omega) .
$$

Remark 2.15. We might interpret Corollary 2.14 as saying that ΔV is a near proxy for V^{\prime} as a distribution space, touching upon the subject of the next section.

3. Dual spaces and Simon's trap

In the study of incompressible fluid mechanics, one sometimes makes the identification of H with H^{\prime} rather than L^{2} with $\left(L^{2}\right)^{\prime}$, as we described in Section 1 . The primary reason is that it allows for the use of some powerful functional analysis tools originating largely in the work of J. L. Lions in the 1950s and 1960s. These tools are used in the proof of the existence of solutions to PDEs, linear and nonlinear.

The identification of H with H^{\prime}, however, makes it impossible to treat V^{\prime} as a distribution space. This is as detailed by J. Simon in [28], as a consequence of a general result. We will return to Simon's paper in a moment, but let us first look at the problem explicitly as it relates to V^{\prime} to identify concretely the point of failure.

First, observe that for any linear functional $f \in V^{\prime}$, there exists, by the Riesz representation theorem, a unique $u \in V \subseteq H_{0}^{1}(\Omega)^{d}$ for which

$$
(f, \psi)_{V^{\prime}, V}=(u, \psi)_{V} \text { for all } \psi \in V
$$

But,

$$
(u, \psi)_{V}=(u, \psi)_{H_{0}^{1}}=(\nabla u, \nabla \psi)=-(\Delta u, \psi)_{H^{-1}, H_{0}^{1}} .
$$

Hence, the mapping $\gamma: f \mapsto \Delta u$ is an isometric isomorphism between V^{\prime} as an abstract dual space and a concrete manifestation of it as a subspace of H^{-1} (cf., Corollary 2.14). Or, we could view V^{\prime} as composed of equivalence classes in $H^{-1}(\Omega)^{d}$ where $u_{1} \sim u_{2}$ if $u_{1}-u_{2}=\nabla q$ for some $q \in L^{2}(\Omega)$.

Yet, we cannot employ either of these isomorphisms in an effective manner that allows for the usual, free "Calculus" operations of distribution or Sobolev spaces, such as "integration by parts." This is because the isomorphism is completely at odds with the identification of L^{2} with its (abstract) dual space, which allows such operations in the duality between H^{-1} and H_{0}^{1} (or as distributions).

To see this, by Proposition 2.10, any element of $H^{-1}(\Omega)^{d}$ can be written uniquely in the form $\Delta u+\nabla q$ for some $u \in V, q \in L_{0}^{2}(\Omega)$, where $L_{0}^{2}(\Omega)$ is the set of all functions in $L^{2}(\Omega)$ having mean zero. So fix $q \in L_{0}^{2}(\Omega)$. Since for any $\psi \in V,(\Delta u+\nabla q, \psi)=(\Delta u, \psi)$, we see that $\Delta V+\nabla q$, considered as a subspace of $H^{-1}(\Omega)^{d}$, is also isomorphic to V^{\prime}. This simply reflects the observation in [28] that there is not a unique element of $H^{-1}(\Omega)^{d}$ corresponding to any given element of V^{\prime}.

Now suppose we identify H with H^{\prime}. If we expect to be able to operate on constructs such as Δu for $u \in V$, we are at a loss, for then $\Delta u=\Delta u+\nabla q$ as elements of some space that is to contain V^{\prime}, or else the rules applying to "integration by parts," as for distribution spaces of elements of H^{-1}, cannot apply. So, for instance, we could still define the Stokes operator as acting on V to produce an element of V^{\prime}, but then V^{\prime} would be little more than an abstract dual space.

Returning to J. Simon's [28], at the center of the difficulties with V^{\prime} is Proposition 2 of [28]. This proposition says that if two topological vector spaces, E and V, are subspaces of a common space, then to make sense of $V^{\prime} \subseteq E^{\prime}$ as a continuous embedding we must have both (i) $E \cap V$ dense in E and (ii) $E \cap V$ dense in V. The failure of (i) gives a non-unique representative of elements in V^{\prime} as an element in E^{\prime}. This is the point of failure when we apply Simon's Proposition with $E=H_{0}^{1}(\Omega)^{d}, V=V$, and $E^{\prime}=H^{-1}(\Omega)^{d}$. Our observations above are merely an explicit unravelling of where this non-uniqueness occurs if one tries to make a concrete realization of V^{\prime} as a distribution space.

Moreover, with the identification of $L^{2}(\Omega)$ with $L^{2}(\Omega)^{\prime}$ as in (1.2), even the dual space H^{\prime} becomes problematic to work with. Given a vector field $u \in H$, each of its components are in $L^{2}(\Omega)$, so each component is identified with an element of $L^{2}(\Omega)^{\prime}$. But to any element v of $L^{2}(\Omega)^{d}, v+\nabla p$ for any $p \in H^{1}$ acts the same as v does on any element u of H; that is,

$$
(v, u)=(v+\nabla p, u) \text { for all } u \in H
$$

Hence, v and $v+\nabla p$ would need to be the same element of H^{\prime}, and we see that H^{\prime}, like V^{\prime}, cannot be treated concretely as a distribution space. The fundamental issue is the same as for V^{\prime} : in Simon's Proposition, while $H \cap L^{2}(\Omega)^{d}$ is dense in H it is not dense in $L^{2}(\Omega)^{d}$.

To summarize, if an element of H^{\prime} or V^{\prime} is to make sense as a distribution, it must be that $\nabla p=0$ for any $p \in H^{1}(\Omega)$ or $L^{2}(\Omega)$, respectively. Yet if $p \in H_{0}^{1}(\Omega)$, say, then $\nabla p \in L^{2}(\Omega)^{d}$ is a regular-distribution that has a value pointwise almost everywhere, which is manifestly non-zero as long as $p \not \equiv 0$. So ∇p does not vanish as an element of $L^{2}(\Omega)^{d}$, yet it vanishes in the presumably containing distribution spaces H^{\prime} and V^{\prime}. Hence, H^{\prime} and V^{\prime} cannot be distribution spaces.
3.1. Navier-Stokes Equations. Let us turn now to how Simon's trap shows up in the classical theory of the existence of weak solutions to the Navier-Stokes equations, and try to understand the practical impact of the difficulties he points out.

A common formulation of what it means to be a weak solution to the Navier-Stokes equation on Ω with no-slip boundary conditions is that

$$
\begin{equation*}
\frac{d}{d t}(u, v)+\nu(\nabla u, \nabla v)-(u \otimes u, \nabla v)=\langle f, v\rangle \text { for all } v \in V, \tag{3.1}
\end{equation*}
$$

along with a condition for initial velocity in H. (Integrating this equation formally in time and using a time-varying test function, as well as imposing an energy inequality as a condition, yields another, closely related formulation.)

Now, suppose we want to assume, say, that $f \in L^{2}\left(0, T ; V^{\prime}\right)$. Then the forcing term in (3.1) must be interpreted as the pairing of V with V^{\prime}; that is, $\langle f, v\rangle=\langle f, v\rangle_{V^{\prime}, V}$. Authors then often add the parenthetical comment that (3.1) means equality in V^{\prime}. If interpreted to mean that each side of (3.1) defines a continuous linear functional on V-the left-hand side through integration (with no need for distributions), the right-hand side in the sense of an element of the abstract dual space V^{\prime} applied to a test function in V-this is perfectly legitimate.

As Simon points out in Proposition 3 of [28], however, we cannot write

$$
\partial_{t} u+u \cdot \nabla u+\nabla p-\nu \Delta u=f
$$

if we mean it as the equality of distributions, because the left-hand side is a distribution while the right-hand side is not. Yet, of course, we could apply a test function in V and interpret the left-hand side as a distribution, while we interpret the right-hand side as an element of the abstract dual space V^{\prime} (this is (3.1)). Or, we could use the isomorphism described earlier and identify f with Δw for some $w \in V$, and treat both sides as distributions. ${ }^{3}$

All this could be, indeed has been, made to work, but the real problem, as Simon points out in Section 7 of [28], is that we cannot obtain a pressure if we assume that $f(t) \in V^{\prime}$. Essentially, this is because, as we observed above, if ∇p is to have any meaning as an element of V^{\prime} (which, being a distribution, it does not) it equals zero; that is, all pressure gradients are the same as elements of V^{\prime}. The simple resolution to all this is to assume that $f(t) \in H^{-1}(\Omega)^{d}$ and avoid the use of V^{\prime} entirely. Or, to allow a more direct physical interpretation and to avoid some other, minor technicalities, assume that $f(t) \in H$.

4. Proof of main result

In this section we prove our main result, Theorem 1.1. We present first some imporant existing results then establish a series of lemmas and propositions we will use in the (short) body of the proof of Theorem 1.1, with which we close the section.

Define the subspace

$$
H_{c}:=\{u \in H: \operatorname{curl} u=0\}
$$

of H. Here, we use the curl operator on \mathbb{R}^{d} in the form,

$$
\begin{equation*}
\operatorname{curl} u:=\nabla u-(\nabla u)^{T} . \tag{4.1}
\end{equation*}
$$

That is, curl u is twice the antisymmetric gradient, the $d \times d$ matrix-valued function with ($\operatorname{curl} u)_{j}^{i}=\partial_{j} u^{i}-\partial_{i} u^{j}$. This form of the curl is convenient for integrating by parts (applying the divergence theorem) in flat space. In 2D, we can define curl $u:=\partial_{1} u^{2}-\partial_{2} u^{1}$, the scalar curl, and in 3D we can define it as a vector in the usual way, denoting it curl ${ }_{3}$ for clarity.

We have the following simple lemma:
Lemma 4.1. $H_{c} \subseteq\{v \in H: \Delta v=0\}$.
Proof. Let $v \in H_{c}$, meaning that $\operatorname{div} v=0$ and $\operatorname{curl} v=0$. Then

$$
\Delta v=\operatorname{div} \nabla v=\operatorname{div}\left(\nabla v-(\nabla v)^{T}\right)+\operatorname{div}(\nabla v)^{T}=\operatorname{div} \operatorname{curl} v=0
$$

since $\left(\operatorname{div}(\nabla v)^{T}\right)^{i}=\partial_{j} \partial_{i} v^{j}=\partial_{i} \operatorname{div} v=0$.
H_{c} is clearly closed, so we can define

$$
H_{0}:=H_{c}^{\perp},
$$

the orthogonal complement of H_{c} in H. Hence, $H=H_{0} \oplus H_{c}$.
Remark 4.2. H_{c} is finite-dimensional for a large class of domains for which $\partial \Omega$ has a finite number of components. For smooth boundaries, this follows, for instance, from the discussion in Section 4.1 of [17]. For special classes of 3D Lipschitz domains, Helmholtz domains of [5], H_{c} (and H_{0}) can be characterized by making "cuts" in Ω that leave the remaining domain simply connected. This idea goes back to Helmholtz; see the historical comments in [11].

This is the definition of H_{0} that we will use to prove Theorem 1.1, as stated precisely in Theorem 1.1, below. We can view Theorem 1.1 as giving a direct characterization of H_{0}, but there is another direct characterization most often employed in 2 and 3 dimensions in terms of the vanishing of internal fluxes. We outline that perhaps somewhat more geometrical characterization of H_{0} in Appendix B.

[^2]In [22] (Corollary 7.5), the simple tool in Lemma 4.3 was used to investigate conditions under which solutions to the Navier-Stokes equation for incompressible fluids converge to a solution to the Euler equations (the so-called vanishing viscosity limit).

Lemma 4.3. For any $u \in H$ there exists (a non-unique) $A \in H_{0}^{1}(\Omega)^{d \times d}$ such that $u=\operatorname{div} A$; that is, such that $u^{i}=\partial_{j} A_{j}^{i}$.

The idea of the proof is that a simple integration by parts as in the proof of Lemma 2.4 shows that each component of any $v \in H$ lies in $L_{0}^{2}(\Omega)$. But by Lemma 2.11 , div maps $H_{0}^{1}(\Omega)^{d}$ onto $L_{0}^{2}(\Omega)$, so we can obtain each row of A independently. The proof of Lemma 4.3 is therefore quite simple, but it relies on the powerful and deep result in Lemma 2.11.

Left open in [22] was whether it could be assured that A in Lemma 4.3 is antisymmetric. In fact, such antisymmetry can be obtained, and was obtained in 3D by Borchers and Sohr in Theorem 2.1, Corollary 2.2 of [9], whose lowest regularity result can be stated as follows:

Lemma 4.4. Assume that $d=3$ and $\partial \Omega$ is $C^{1,1}$. For any $u \in H_{0}$ there exists $v \in H_{0}^{1}(\Omega)^{3}$ such that $u=\operatorname{curl}_{3} v$ and $\Delta \operatorname{div} v=0$. Moreover, one can choose the solutions in such a way as to define a bounded linear operator $S: H_{0} \rightarrow H_{0}^{1}(\Omega)^{3}$ with $\|\nabla S u\| \leq C\|u\|$.

To see that Lemma 4.4 provides a 3D form of an extension of Lemma 4.3 to antisymmetric matrices, note that any 3×3 antisymmetric matrix can be written in the form,

$$
A=\left(\begin{array}{ccc}
0 & \psi^{3} & -\psi^{2} \tag{4.2}\\
-\psi^{3} & 0 & \psi^{1} \\
\psi^{2} & -\psi^{1} & 0
\end{array}\right) .
$$

We can define a bijection Q from a vector in \mathbb{R}^{3} to an antisymmetric $d \times d$ matrix, by setting $Q(\psi)=Q\left(\psi^{1}, \psi^{2}, \psi^{3}\right)$ to be the matrix in (4.2), and we can write that $\operatorname{div} Q \psi=\operatorname{curl}_{3} \psi$. The claim in Theorem 1.1, then, is the natural extension of Lemma 4.4 to $d \geq 2$.

The simple argument in Proposition 4.5 shows that div X_{0} is at least dense in H_{0} :
Proposition 4.5. $H_{0}=\overline{\operatorname{div} X_{0}}$.
Proof. First, we show that $\operatorname{div} X_{0}$ is a subspace of H. To see this, observe that if $u \in \operatorname{div} X_{0}$ then $u^{i}=\operatorname{div} A^{i}=\partial_{j} A_{j}^{i}$. Hence, $\operatorname{div} u=\partial_{i j} A_{j}^{i}=-\partial_{i j} A_{i}^{j}=-\partial_{j i} A_{j}^{i}=-\partial_{i j} A_{j}^{i}=-\operatorname{div} u$, so $\operatorname{div} u=0$. (That $\operatorname{div} u=\operatorname{div} \operatorname{div} A=0$ is a reflection of $\delta^{2}=0$ when A is expressed as a 2-form as in Appendix A.)

Moreover, since A_{j}^{i} is constant along the boundary, ∇A_{j}^{i} is normal to the boundary, so we can write, $\nabla A_{j}^{i}=\alpha_{j}^{i} \boldsymbol{n}$, where

$$
\alpha_{j}^{i}=\frac{\partial A_{j}^{i}}{\partial \boldsymbol{n}}=-\frac{\partial A_{i}^{j}}{\partial \boldsymbol{n}}=-\alpha_{i}^{j}
$$

Then,

$$
\partial_{j} A_{j}^{i}=\nabla A_{j}^{i} \cdot \mathbf{e}^{j}=\alpha_{j}^{i} \boldsymbol{n} \cdot \mathbf{e}^{j}=\alpha_{j}^{i} n^{j}
$$

so, using that $\alpha_{j}^{i}=-\alpha_{i}^{j}$,

$$
u \cdot \boldsymbol{n}=\operatorname{div} A \cdot \boldsymbol{n}=\operatorname{div} A^{i} n^{i}=\partial_{j} A_{j}^{i} n^{i}=\alpha_{j}^{i} n^{j} n^{i}=-\alpha_{i}^{j} n^{j} n^{i}=-\alpha_{j}^{i} n^{j} n^{i}=-u \cdot \boldsymbol{n}
$$

so $u \cdot \boldsymbol{n}=0$. We conclude that $\operatorname{div} X_{0} \subseteq H$.
Here is the proof that $\operatorname{div} X_{0} \subseteq H$ specifically in three dimensions, which gives maybe a little extra insight. We have,

$$
A=\left(\begin{array}{ccc}
0 & f & g \\
-f & 0 & h \\
-g & -h & 0
\end{array}\right)
$$

so $\psi=Q^{-1} A=(h,-g, f)$, and

$$
u=\operatorname{curl}_{3} \psi=\left(\partial_{2} f+\partial_{3} g,-\partial_{1} f+\partial_{3} h,-\partial_{1} g-\partial_{2} h\right)
$$

We then automatically have

$$
0=\operatorname{div} u=\partial_{12} f+\partial_{13} g-\partial_{21} f+\partial_{23} h-\partial_{31} g-\partial_{32} h
$$

as required. Also,

$$
0=u \cdot \boldsymbol{n}=\operatorname{curl}_{3} \psi \cdot \boldsymbol{n}=\left(\partial_{2} f+\partial_{3} g\right) n^{1}+\left(-\partial_{1} f+\partial_{3} h\right) n^{2}+\left(-\partial_{1} g-\partial_{2} h\right) n^{3} .
$$

But A, and so f, g, and h, are constant along each boundary component. This means that ∇f is parallel to \boldsymbol{n}, so that

$$
\partial_{j} f=\nabla f \cdot e^{j}=\frac{\partial f}{\partial \boldsymbol{n}} n^{j}
$$

and similarly,

$$
\partial_{j} g=\frac{\partial g}{\partial \boldsymbol{n}} n^{j}, \quad \partial_{j} h=\frac{\partial h}{\partial \boldsymbol{n}} n^{j} .
$$

Thus,

$$
\begin{aligned}
& \left(\partial_{2} f+\partial_{3} g\right) n^{1}+\left(-\partial_{1} f+\partial_{3} h\right) n^{2}+\left(-\partial_{1} g-\partial_{2} h\right) n^{3} \\
& \quad=\left(\frac{\partial f}{\partial \boldsymbol{n}} n^{2}+\frac{\partial g}{\partial \boldsymbol{n}} n^{3}\right) n^{1}+\left(-\frac{\partial f}{\partial \boldsymbol{n}} n^{1}+\frac{\partial h}{\partial \boldsymbol{n}} n^{3}\right) n^{2}+\left(-\frac{\partial g}{\partial \boldsymbol{n}} n^{1}-\frac{\partial h}{\partial \boldsymbol{n}} n^{2}\right) n^{3}=0 .
\end{aligned}
$$

We now show that $\left(\operatorname{div} X_{0}\right)^{\perp}=H_{c}$. Let $A \in X_{0}$ and $v \in H$ be arbitrary. Then $u:=\operatorname{div} A$ is an arbitrary element of div X_{0}. Applying Lemma 2.2 and using $A=0$ on $\partial \Omega$,

$$
\begin{aligned}
(u, v) & =(\operatorname{div} A, v)=-(A, \nabla v)=-\left(A, \nabla v-(\nabla v)^{T}\right)-\left(A,(\nabla v)^{T}\right) \\
& =-(A, \operatorname{curl} v)-\left(A^{T}, \nabla v\right)=-(A, \operatorname{curl} v)+(A, \nabla v)
\end{aligned}
$$

Hence, $(A, \nabla v)=(1 / 2)(A, \operatorname{curl} v)$, and because both A and curl v are antisymmetric,

$$
(u, v)=-(A, \nabla v)=-\frac{1}{2}(A, \operatorname{curl} v)=-\sum_{i<j} A_{j}^{i}(\operatorname{curl} v)_{j}^{i}
$$

We can choose the components A_{j}^{i} independently for $i<j$, and $H_{0}^{1}(\Omega)$ is dense in $L^{2}(\Omega)$, so we conclude that $(u, v)=0$ for all $u \in \operatorname{div} X_{0}$ if and only if curl $v=0$; that is, if and only if $v \in H_{c}$. It then follows that $\left(\operatorname{div} X_{0}\right)^{\perp}=H_{c}$ so that, in fact, $\overline{\operatorname{div} X_{0}}=\left(\left(\operatorname{div} X_{0}\right)^{\perp}\right)^{\perp}=H_{c}^{\perp}=H_{0}$.

As we see in the proof of Proposition 4.5, the antisymmetry of $A \in X_{0}$ insures that $\operatorname{div} A \cdot \boldsymbol{n}=0$ on $\partial \Omega$. This need not be true without a symmetry assumption, but if $\operatorname{div} A$ happens to be in H so does A^{T}, as we see in Lemma 4.6.
Lemma 4.6. Let $A \in H_{0}^{1}(\Omega)^{d \times d}$, with no symmetry assumption, but with $\operatorname{div} A=u \in H$. Then $\operatorname{div} A^{T}$ is also in H.
Proof. We have, $0=\operatorname{div} u=\operatorname{div} \operatorname{div} A=\partial_{i} \partial_{j} A_{j}^{i}=\partial_{i} \partial_{j} A_{i}^{j}=\operatorname{div} \operatorname{div} A^{T}$. Decomposing A into its symmetric and antisymmetric parts, $A_{S}=(1 / 2)\left(A+A^{T}\right)$ and $A_{A}=(1 / 2)\left(A-A^{T}\right) \in$ X_{0}, it follows that div $\operatorname{div} A_{S}=0$ and, from Proposition 4.5, that $\operatorname{div} A_{A} \in H_{0}$. Hence, $\operatorname{div} A^{T}=\operatorname{div} A-2 \operatorname{div} A_{A} \in H$.

The operator R of (2.4) allows us to easily establish that $\operatorname{div} X_{0}$ actually yields all of H_{0} :
Proposition 4.7. $H_{0}=\operatorname{div} X_{0}$.
Proof. We have, $\operatorname{div} X_{0}=\operatorname{div}\left(R \operatorname{div} X_{0}\right)=\operatorname{div} Y$, where $Y=R \operatorname{div} X_{0}$. It follows from Proposition 4.5 that $\operatorname{div} Y$ is dense in H_{0}. If we can show that it is closed, then we are done.

Let $\left(u_{n}\right)$ be a sequence in $\operatorname{div} Y$ converging to u in H_{0}. Then $u_{n}=\operatorname{div} B_{n}$ with $B_{n}=R u_{n}$ in Y, and we have from Lemma 2.11 that $\left\|\nabla B_{n}\right\| \leq C\left\|u_{n}\right\|$. Since $\left(u_{n}\right)$ converges, it is Cauchy and hence $\left(B_{n}\right)$ is Cauchy and so converges to some $B \in Y$ with $u=\operatorname{div} B$. This shows that $H_{0}=\operatorname{div} Y=\operatorname{div} X_{0}$.

It remains only to obtain the bounded linear map S of Theorem 1.1. Examining the proof of Proposition 4.7, we see that $B_{n}=R u_{n}$ in Y has some D_{n} in X_{0} for which R div $D_{n}=B_{n}$, but the convergence of (B_{n}) does not mean the convergence of $\left(D_{n}\right)$. To surmount this difficulty, and obtain S, we restrict the domain of div to a subspace:

Proof of Theorem 1.1. Observe that div $A=\operatorname{div} B$ for $A, B \in X_{0}$ if and only if $B=A+E$ for some E in $V^{d} \cap X_{0}$, a closed subspace of X_{0}. Letting $Y_{0}=\left(V^{d} \cap X_{0}\right)^{\perp}$, the orthogonal complement of $V^{d} \cap X_{0}$ in X_{0} as a Hilbert space, div: $Y_{0} \rightarrow H_{0}$ is a continuous bijection. It follows from a corollary of the open mapping theorem (see, for instance, Corollary 2.7 of [10]) that the inverse map, $S:=\left.\operatorname{div}\right|_{Y_{0}} ^{-1}$, is also continuous. But this means that, $\|S u\|_{X_{0}}=$ $\|S u\|_{Y_{0}} \leq C\|u\|_{H_{0}}$, giving us the bounded linear map of Theorem 1.1.

The Baire category theorem appears through the proof of the corollary to the open mapping theorem we applied. Hence, the constant we obtain in $\|\nabla S u\| \leq C\|\operatorname{div} u\|$ is not effectively computable, although we can see that C is no smaller than the constant in Lemma 2.11.
Remark 4.8. Although the adjoints to the two forms of div appearing in Lemma 2.11 and Theorem 1.1 never appear explicitly, they are, in a sense, hiding in the proofs. We show in Section 6 that the adjoint of div: $X_{0} \rightarrow H_{0}$ is $-(1 / 2)$ curl, whose null space is H_{c}. Since div is a closed map, div X_{0} is closed if and only if it equals $H_{c}^{\perp}=: H_{0}$. Similarly, it can be shown that the adjoint of div: $H_{0}^{1}(\Omega)^{d} \rightarrow L_{0}^{2}(\Omega)$ is $-\nabla$, whose null space is trivial. Hence, div $H_{0}^{1}(\Omega)^{d}$ is closed if only if it equals all of $L_{0}^{2}\left(\mathbb{R}^{d}\right)$. Proving that the range of either version of div is closed is the hard part of each proof, but we were able to leverage the powerful result in Lemma 2.11 to obtain the hard part for Theorem 1.1 with minimal effort.

We avoided characterizing the space $Y_{0}=\left(V^{d} \cap X_{0}\right)^{\perp}$ explicitly, but given that the adjoint of div: $X_{0} \rightarrow H_{0}$ is $-(1 / 2)$ curl, we show in Proposition 6.3 that $Y_{0}=\left\{z \in X_{0}: \Delta z=\right.$ $\operatorname{curl} q$ for some $\left.q \in L_{0}^{2}(\Omega)^{d}\right\}$, in analogy with Proposition 2.7. In 3D, this is $Y_{0}=\{z \in$ $\left.H_{0}^{1}(\Omega)^{3}: \Delta z=\operatorname{curl}_{3} q, q \in L_{0}^{2}(\Omega)^{d}\right\}$, which yields $\Delta \operatorname{div} S u=0$, as in Lemma 4.4.

5. Higher regularity

Bogovskii in [7, 8] showed more than what we stated in Lemma 2.11 (see Theorem 2.4 of [9]):
Lemma 5.1. [Bogovskiĭ [7, 8]] Let $p \in(1, \infty)$ and $m \geq 0$ be an integer. Define $H_{0,0}^{m, p}(\Omega)$ to be the functions in $H_{0}^{m, p}(\Omega)$ having mean zero. There exists a bounded linear operator $R=$ $R_{m, p}: H_{0,0}^{m, p}(\Omega) \rightarrow H_{0}^{m+1, p}(\Omega)^{d}$ satisfying div $R f=f$ with $\left\|\nabla^{m+1} R f\right\|_{L^{p}(\Omega)} \leq C\left\|\nabla^{m} f\right\|_{L^{p}(\Omega)}$.

Restricting ourselves to $p=2$, we define, as in (2.4), a matrix-valued operator $R_{m}=R_{m, 2}$:

$$
R_{m}: H_{0}^{m}(\Omega)^{d} \rightarrow H_{0}^{m+1}(\Omega)^{d \times d}, \quad\left(R_{m} u\right)^{i}:=R_{m} u^{i} .
$$

We will use Lemma 5.1 to study the stream function for an element of V.
Theorem 5.2. The map S of Theorem 1.1 also maps $V \cap H_{0}$ continuously onto $Y_{0} \cap H_{0}^{2}(\Omega)^{d \times d}$, where $Y_{0}=\left(V^{d} \cap X_{0}\right)^{\perp}$.
Proof. The space $Y_{0}^{2}:=Y_{0} \cap H_{0}^{2}(\Omega)^{d \times d}$ is dense in Y_{0} and div: $Y_{0} \rightarrow H_{0}$ is a continuous surjection, so $\operatorname{div} Y_{0}^{2}$ is dense in H_{0}. Moreover, $\operatorname{div} Y_{0}^{2} \subseteq V \cap H_{0}$, so div Y_{0}^{2} is dense in $V \cap H_{0}$. Then, arguing as in the proof of Proposition 4.7, $\operatorname{div} Y_{0}^{2}=\operatorname{div}\left(R_{1} \operatorname{div} Y_{0}^{2}\right)$ is closed in $V \cap H_{0}$ and hence $\operatorname{div} Y_{0}^{2}=V \cap H_{0}$. Because div $\left.\right|_{Y_{0}}$ is injective it also holds that $\left.\operatorname{div}\right|_{Y_{0}^{2}}$ is injective. Finally, arguing as in the proof of Theorem 1.1, the inverse map, $\left.\operatorname{div}\right|_{Y_{0}^{2}} ^{-1}$, is continuous. But this is the same map S as in Theorem 1.1, restricted to $V \cap H_{0}$.
Remark 5.3. Using R_{m}, one can extend Theorem 5.2 to $S: H_{0} \cap H_{0}^{m}(\Omega)^{d} \rightarrow Y_{0} \cap H_{0}^{m+1}(\Omega)^{d \times d}$, though its utility is likely limited for $m \geq 2$. Similarly, one can employ Lemma 5.1 to develop L^{p} bounds in analog with Theorem 1.1.

6. OF div and curl

We explore, now, the relation between div and curl, which we will see are (almost) adjoints.
Since div: $X_{0} \rightarrow H_{0}$, its adjoint is a map div* $D\left(\operatorname{div}^{*}\right) \subseteq H_{0}^{\prime} \rightarrow X_{0}^{\prime}$, where we must first determine $D\left(\operatorname{div}^{*}\right)$. (We do not reduce the domain of div to Y_{0}, as we did in the previous section, because the dual space of Y_{0} is hard to characterize directly in a concrete form, so the adjoint, while it exists, would be hard to relate to the curl operator.)

Now, H_{0} and X_{0} are both Hilbert spaces, not just Banach spaces. To go further and obtain a concrete characterization of div* we need to exploit this fact, but there is a delicate issue: we have identified L^{2} with its dual space (as briefly mentioned in Section 1), but this is not compatible with identifying H_{0} with H_{0}^{\prime} because of the divergence-free condition (Simon has an informative exposition on this issue in [28]). Nonetheless, this identification will be very useful to us, so, to be careful, we will only treat H_{0}^{\prime} as an abstract dual space, and use the identification explicitly: For any $v \in H_{0}^{\prime}$ we will write $I v$ for that element of H_{0} for which $\langle v, u\rangle_{H_{0}^{\prime}, H_{0}}=(I v, u)_{H_{0}}$ for all $u \in H_{0}$; that is, I gives the usual identification of the dual of a Hilbert space with itself.

The identification of $L^{2}(\Omega)$ with its dual is also not altogether compatible with identifying X_{0}^{\prime} with the space of antisymmetric matrices in $H^{-1}(\Omega)^{d \times d}$, as natural as that would be. This is because $X_{0} \subseteq H_{0}^{1}(\Omega)^{d \times d}$, so we should have $H^{-1}(\Omega)^{d \times d}=\left(H_{0}^{1}(\Omega)^{d \times d}\right)^{\prime} \subseteq X_{0}^{\prime}$.

However, X_{0}, is naturally isomorphic with $H_{0}^{1}(\Omega)^{d(d-1) / 2}$, whose dual space we can identify with $H^{-1}(\Omega)^{d(d-1) / 2}$ in a manner that is compatible with the identification of $L^{2}(\Omega)$ with its dual. Then, $H^{-1}(\Omega)^{d(d-1) / 2}$ is naturally isomorphic with the space of antisymmetric matrices in $H^{-1}(\Omega)^{d \times d}$. This will allow us to treat X_{0}^{\prime} as the space,

$$
\begin{equation*}
X_{0}^{\prime}=\left\{A \in H^{-1}(\Omega)^{d \times d}: A \text { antisymmetric }\right\} \subset H^{-1}(\Omega)^{d \times d} \tag{6.1}
\end{equation*}
$$

Remark 6.1. More precisely, let J map antisymmetric $d \times d$ matrices into $\mathbb{R}^{d(d-1) / 2}$ be given by $(J A)^{k}=A_{j}^{i}$, where $k=d(i-1)+j-1$. Then define the operator $F: H_{0}^{1}(\Omega)^{d(d-1) / 2} \rightarrow H_{0}$ by $F B=\operatorname{div}\left(J^{-1} B\right)$. Then F^{*} will map some subspace of H_{0}^{\prime} into $H^{-1}(\Omega)^{d(d-1) / 2}$, and we will have div* $=J^{-1} F^{*}$. We will not, however, make this mapping explicit in what follows.

With this concrete version of X_{0}^{\prime}, we can characterize div* as in Proposition 6.2.
Proposition 6.2. The following hold:
(1) div: $X_{0} \rightarrow H_{0}$ is a closed map;
(2) $D\left(\operatorname{div}^{*}\right)$ is all of H_{0}^{\prime};
(3) div$^{*}: H_{0}^{\prime} \rightarrow X_{0}^{\prime}$ is given by div$^{*}=-(1 / 2) \operatorname{curl} I$;
(4) div is surjective;
(5) curl is injective with curl H_{0} closed in X_{0}^{\prime};
(6) $\|u\|_{H} \leq C\|\operatorname{curl} u\|_{X_{0}^{\prime}}$.

Proof. (1) We first show that div: $X_{0} \rightarrow H_{0}$ is a closed map (that is, its graph is closed in $X_{0} \times H_{0}$). To see this, suppose that $A_{n} \rightarrow A$ in X_{0} with div $A_{n} \rightarrow u$ in H_{0}. But $A_{n} \rightarrow A$ in X_{0} means that $\partial_{k}\left(A_{n}\right)_{j}^{i} \rightarrow \partial_{k} A_{j}^{i}$ in $L^{2}(\Omega)$ for all i, j, k so $\operatorname{div} A_{n} \rightarrow \operatorname{div} A$ in H_{0}. Hence, by the uniqueness of limits, $u=\operatorname{div} A$.
(2) By definition, the domain of div* is

$$
D\left(\operatorname{div}^{*}\right)=\left\{v \in H_{0}^{\prime}: \exists C \geq 0 \text { such that }\left|\langle v, \operatorname{div} A\rangle_{H_{0}^{\prime}, H_{0}}\right| \leq C\|A\|_{X_{0}} \forall A \in X_{0}\right\}
$$

But, for any $v \in H_{0}^{\prime}$, we have

$$
\left|\langle v, \operatorname{div} A\rangle_{H_{0}^{\prime}, H_{0}}\right| \leq\|v\|_{H_{0}^{\prime}}\|\operatorname{div} A\|_{H_{0}} \leq C\|\nabla A\|_{L^{2}}=C\|A\|_{X_{0}},
$$

where $C=\|v\|_{H_{0}^{\prime}}$. Hence, $D\left(\operatorname{div}^{*}\right)$ is all of H_{0}^{\prime}.
(3) Also by the definition of the adjoint, we have

$$
\langle v, \operatorname{div} A\rangle_{H_{0}^{\prime}, H_{0}}=\left\langle\operatorname{div}^{*} v, A\right\rangle_{X_{0}^{\prime}, X_{0}}
$$

for all $v \in H_{0}^{\prime}, A \in X_{0}$. For any $v \in H_{0}^{\prime}$,

$$
\langle v, \operatorname{div} A\rangle_{H_{0}^{\prime}, H_{0}}=(I v, \operatorname{div} A)=-\langle\nabla I v, A\rangle_{H^{-1}, H_{0}^{1}},
$$

where we applied Lemma 2.2 (to each component of v and row of A). But

$$
\begin{aligned}
-\langle\nabla I v, A\rangle_{H^{-1}, H_{0}^{1}} & =-\left\langle\nabla I v-(\nabla I v)^{T}, A\right\rangle_{H^{-1}, H_{0}^{1}}-\left\langle(\nabla I v)^{T}, A\right\rangle_{H^{-1}, H_{0}^{1}} \\
& =-\langle\operatorname{curl} I v, A\rangle_{H^{-1}, H_{0}^{1}}-\left\langle\nabla I v, A^{T}\right\rangle_{H^{-1}, H_{0}^{1}} \\
& =-\langle\operatorname{curl} I v, A\rangle_{X_{0}^{\prime}, X_{0}}+\langle\nabla I v, A\rangle_{H^{-1}, H_{0}^{1}}
\end{aligned}
$$

where we used that curl $I v$ is antisymmetric and so lies in X_{0}^{\prime}. It follows that

$$
\left\langle\operatorname{div}^{*} v, A\right\rangle_{X_{0}^{\prime}, X_{0}}=\langle v, \operatorname{div} A\rangle_{H_{0}^{\prime}, H_{0}}=(I v, \operatorname{div} A)=-\frac{1}{2}\langle\operatorname{curl} I v, A\rangle_{X_{0}^{\prime}, X_{0}}
$$

We conclude that $\operatorname{div}^{*} v=-(1 / 2)$ curl $I v$.
(4) div surjective follows from Proposition 4.7.
(5) and (6) follow, for instance, from Theorem 2.20 of [10].

We can now characterize the space $Y_{0}=\left(V^{d} \cap X_{0}\right)^{\perp}$, which we used in the proof of Theorem 1.1:

Proposition 6.3. Letting $Y_{0}=\left(V^{d} \cap X_{0}\right)^{\perp}$, the orthogonal complement of $V^{d} \cap X_{0}$ in X_{0} as a Hilbert space, we have

$$
Y_{0}=\left\{z \in X_{0}: \Delta z=\operatorname{curl} q \text { for some } q \in L_{0}^{2}(\Omega)^{d}\right\}
$$

Proof. Fix $z \in X_{0}$. Then $z \in Y_{0}$ if and only if

$$
(z, v)_{X_{0}}:=(\nabla z, \nabla v)=-(\Delta z, v)_{X_{0}^{\prime}, X_{0}}=0
$$

for all $v \in V^{d} \cap X_{0}$. Thus, $z \in Y_{0}$ if and only if $\Delta z \in\left(V^{d} \cap X_{0}\right)^{\perp_{B}}$, where we have used \perp_{B} here to refer to the subspace of X_{0}^{\prime} that is orthogonal to $V^{d} \cap X_{0}$ in the duality between X_{0}^{\prime} and X_{0}. But, $V^{d} \cap X_{0}=$ ker div, so $\left(V^{d} \cap X_{0}\right)^{\perp_{B}}=(\text { ker div })^{\perp_{B}}=$ range curl.

7. 3D vector potentials

In 2D, the stream function of Theorem 1.1 is unique in that no other $A \in X_{0}$ satisfies $\operatorname{div} A=u$ for a given $u \in H_{0}$. This is not, however, true in any higher dimension. Let us take a closer look at 3D. There, for $u \in H_{0}$, our "stream function" is to satisfy

$$
\begin{cases}\operatorname{curl}_{3} \psi=u & \text { in } \Omega \\ \psi=0 & \text { on } \partial \Omega\end{cases}
$$

We have, however, complete freedom to choose the divergence. Hence, if p is any scalar field for which $\nabla p=0$ on $\partial \Omega$ (for instance, any $\left.p \in H_{0}^{2}(\Omega)\right)$ then we also have

$$
\begin{cases}\operatorname{curl}_{3}(\psi+\nabla p)=u & \text { in } \Omega \\ \psi+\nabla p=0 & \text { on } \partial \Omega\end{cases}
$$

so $\psi+\nabla p$ is also a stream function.
This kind of argument also leads to the perhaps more familiar formulation of a 3D stream function in Proposition 7.1.
We can use Theorem 1.1 to obtain the more classical versions of 3D stream functions or vector potentials of Propositions 7.1 and 7.2 (cf., Theorems 3.5 and 3.6 Chapter I of [18] or Theorem 3.12 and 3.17 of [1]).

Proposition 7.1. Let $u \in H_{0}$ for $d=3$. There exists a vector potential $\bar{\psi} \in H$ for which $\operatorname{curl}_{3} \bar{\psi}=u$. The vector potential is unique up to the addition of an arbitrary element in H_{c}; or, equivalently, the vector potential is unique if we require it to lie in H_{0}. If $\partial \Omega$ is $C^{1,1}$ then $\bar{\psi} \in H \cap H^{1}(\Omega)^{3}$.

Proof. First, we show existence. Let ψ be the 3D stream function given by Theorem 1.1 and let p be the unique (up to an additive constant) solution to the Neumann problem,

$$
\begin{cases}\Delta p=-\operatorname{div} \psi & \text { in } \Omega \tag{7.1}\\ \nabla p \cdot \boldsymbol{n}=0 & \text { on } \partial \Omega\end{cases}
$$

If $\partial \Omega$ is Lipschitz, we can only conclude that $p \in H^{1}(\Omega)$ so $\nabla p \in L^{2}(\Omega)^{3}$, but if $\partial \Omega$ is $C^{1,1}$ then $p \in H^{2}(\Omega)$ so $\nabla p \in H^{1}(\Omega)^{3}$. Letting $\bar{\psi}=\psi+\nabla p$, we see that

$$
\begin{cases}\operatorname{curl}_{3} \bar{\psi}=u & \text { in } \Omega, \tag{7.2}\\ \operatorname{div} \bar{\psi}=0 & \text { in } \Omega \\ \bar{\psi} \cdot \boldsymbol{n}=0 & \text { on } \partial \Omega\end{cases}
$$

Hence, $\bar{\psi} \in H$ with $\operatorname{curl}_{3} \bar{\psi}=u$, as required, with $\bar{\psi} \in H \cap H^{1}(\Omega)^{3}$ if $\partial \Omega$ is $C^{1,1}$.
Adding any element of H_{c} to $\bar{\psi}$ clearly yields another vector potential for u, and the difference of any two vector potentials for u lies in H and is curl-free; that is, it lies in H_{c}. This proves the uniqueness statement.

The need for a more regular boundary in Proposition 7.1 arose from the need to obtain a classical solution to an elliptic problem, an issue we avoided in the proof of Theorem 1.1.

Define the space,

$$
\widetilde{H}:=\left\{\psi \in L^{2}(\Omega)^{3}: \operatorname{div} \psi=0, \operatorname{curl} \psi \in L^{2}(\Omega)^{3}, \psi \times \boldsymbol{n}=0 \text { on } \partial \Omega\right\}
$$

with the norm $\|\psi\|_{\tilde{H}}:=\|\psi\|+\|\operatorname{curl} \psi\|$. That $\psi \times \boldsymbol{n}$ makes sense in terms of a trace is shown in Theorem 2.11 of [18]. Also let

$$
\widetilde{H}_{c}:=\{\psi \in \widetilde{H}: \operatorname{curl} \psi=0\} .
$$

Proposition 7.2. Let $u \in H_{0}$ for $d=3$. There exists a vector potential $\bar{\psi} \in \widetilde{H}$ for which $\operatorname{curl}_{3} \bar{\psi}=u$. The vector potential is unique up to the addition of an arbitrary element in \widetilde{H}_{c}. If $\partial \Omega$ is $C^{1,1}$ then $\bar{\psi} \in \widetilde{H} \cap H^{1}(\Omega)^{3}$.

Proof. The proof is the same as that of Proposition 7.1, but using the boundary condition $p=0$ on $\partial \Omega$ in (7.1), noting that then $\nabla p \times \boldsymbol{n}=0$. As in (7.2), this gives $\operatorname{curl}_{3} \bar{\psi}=u$ and $\operatorname{div} \bar{\psi}=0$ but with $\bar{\psi} \times \boldsymbol{n}=\psi \times \boldsymbol{n}+\nabla p \times \boldsymbol{n}=0$ on $\partial \Omega$. Adding any element of \widetilde{H}_{c} to $\bar{\psi}$ clearly yields another vector potential for u, and the difference of any two vector potentials for u lies in \widetilde{H} and is curl-free; that is, it lies in \widetilde{H}_{c}. This proves the uniqueness statement.

Suppose that $\Omega \subseteq \mathbb{R}^{3}$ has a finite number of boundary components $\Gamma_{0}, \cdots, \Gamma_{N}$. Then the vector potential $\bar{\psi}$ of Proposition 7.2 is unique if one imposes the condition $\int_{\Gamma_{i}} \bar{\psi} \cdot \boldsymbol{n}=0$ for all i. This is shown in Theorem 3.6 Chapter I of [18] and 3.17 of [1]. The idea, in essence, is to use the boundary condition $p=c_{i}$ on Γ_{i} instead of $p=0$ on $\partial \Omega$ in (7.1), and show that, fixing $c_{0}=0$, there exists a unique choice of the c_{i} such that $\int_{\Gamma_{i}} \nabla p \cdot \boldsymbol{n}=-\int_{\Gamma_{i}} \psi \cdot \boldsymbol{n}$ for all i. See, for instance, the argument on pages 49-50 of [18].
Remark 7.3. The boundary condition $\psi \times \boldsymbol{n}=0$ in the definition of \widetilde{H} corresponds to $A \boldsymbol{n}=0$ via the bijection given by (4.2). This suggests that Proposition 7.2 has a natural higherdimensional formulation. Indeed for smooth boundaries it does, as follows from Theorem 3.1.1 of [27], in which $\bar{\psi}$ becomes a co-closed 2 -form.

8. A Biot-Savart kernel?

The Biot-Savart law is the classical method for obtaining a vector field in, say $H_{0} \cap H^{1}(\Omega)^{d}$, having a given vorticity in $L^{2}(\Omega)$. But the existence of an integral representation for this law, that is, of a Biot-Savart kernel, for a bounded domain is a largely open question: the existence for all of \mathbb{R}^{d} and for a bounded domain in \mathbb{R}^{2} is quite classical, but only recently, in [15], has a kernel for a 3D bounded domain been obtained, and that was for domains with smooth boundary. In dimensions higher than 3 a kernel has not been obtained even for smooth domains. (Also, see the introductory comments in [15].)

To give a feeling for why obtaining a Biot-Savart kernel, even for smooth boundaries, is so difficult, let us examine an obvious approach that does not work. Start, following Section 1.3 of [13], with the Biot-Savart law for all of \mathbb{R}^{d}, which employs the fundamental solution E_{d} to the Laplacian in all of \mathbb{R}^{d} (so $\Delta E_{d} * f=f$). We then define the vector-valued kernel $K_{d}=\nabla E_{d}$. Then if, say, $B \in\left(L^{1} \cap L^{\infty}\right)\left(\mathbb{R}^{d}\right)^{d \times d}$ is antisymmetric, then defining the vector field u by $u^{i}:=K_{d}^{j} * B_{j}^{i}$, we will have $u \in \dot{H}^{1}\left(\mathbb{R}^{d}\right)$, u divergence-free, with curl $u=B$.

Now let $G(x, y)=E_{d}(x-y)+H(x, y)$ be the Green's function for the Dirichlet Laplacian on Ω. The obvious thing to try is to set $K_{\Omega}(x, y):=\nabla_{x} G(x, y)=K_{d}(x, y)+\nabla_{x} H(x, y)$. Then, operating formally, if $B \in L^{2}(\Omega)^{d \times d}$ is antisymmetric, let

$$
\phi=\int_{\Omega} G(x, y) B(y) d y, \quad u^{i}=(\operatorname{div} \phi)^{i}=\int_{\Omega} K_{\Omega}^{j}(x, y) B_{j}^{i}(y) d y
$$

Since $G(x, \cdot)=0$ for $x \in \partial \Omega$, we see that $\phi \in X_{0}$, so by Proposition $4.5, u \in H_{0}$. And $\Delta \phi=B$, since G is the fundamental solution to the Laplacian. In $2 \mathrm{D}, \Delta \phi=\operatorname{curl} \operatorname{div} \phi$, and one can verify that ϕ is the antisymmetric matrix form of the usual scalar 2D stream function, and in fact K_{Ω} this is the Biot-Savart kernel. In higher dimension, however, $\Delta \neq$ curl div, so K_{Ω} is not the Biot-Savart kernel. Nor is there a clear way to correct this deficiency.

We can show, however, the conditional result in Theorem 8.1: a Biot-Savart kernel exists if and only if a kernel for the stream function exists, and there is a duality between them.

Theorem 8.1. We say that $K \in L^{1}\left(\Omega^{2}\right)^{d}$ is a kernel for the Biot-Savart law on Ω if for all antisymmetric $B \in C(\bar{\Omega})^{d \times d}$,

$$
\begin{equation*}
u^{i}(x)=\int_{\Omega} K^{j}(x, y) B_{j}^{i}(y) d y \tag{8.1}
\end{equation*}
$$

lies in H_{0} with $\operatorname{curl} u=B$. We say that $T \in L^{1}\left(\Omega^{2}\right)^{d}$ is a kernel for the stream function on Ω if for all $v \in H_{0} \cap C^{\infty}(\bar{\Omega})^{d}$,

$$
\begin{equation*}
A_{j}^{i}(y)=\int_{\Omega} T_{j}(x, y) v^{i}(x) d x-\int_{\Omega} T_{i}(x, y) v^{j}(x) d x \tag{8.2}
\end{equation*}
$$

lies in X_{0} with $\operatorname{div} A=v$. A kernel K exists if and only if a kernel T exists, and in such a case, we can set $K=T$.
Proof. Assume that T exists. Let $v \in H_{0} \cap C^{\infty}(\bar{\Omega})^{d}$ and let A be as given in (8.2). Let $u \in H_{0} \cap C^{\infty}(\bar{\Omega})^{d}$ with curl $u=B$. Then, applying Fubini's theorem,

$$
\begin{aligned}
(2 u, v) & =2(u, \operatorname{div} A)=-2(\nabla u, A)=-(\nabla u, A)-\left((\nabla u)^{T}, A^{T}\right) \\
& =-(\nabla u, A)+\left((\nabla u)^{T}, A\right)=-(\operatorname{curl} u, A)=-(B, A) \\
& =\int_{\Omega} \int_{\Omega} B_{j}^{i}(y)\left[T_{i}(x, y) v^{j}(x) d x-\int_{\Omega} T_{j}(x, y) v^{i}(x) d x\right] d y \\
& =\int_{\Omega} \int_{\Omega} B_{j}^{i}(y) T_{i}(x, y) v^{j}(x) d x-\int_{\Omega} \int_{\Omega} B_{j}^{i}(y) T_{j}(x, y) v^{i}(x) d x d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\Omega} \int_{\Omega} B_{j}^{i}(y) T_{i}(x, y) v^{j}(x) d x-\int_{\Omega} \int_{\Omega} B_{i}^{j}(y) T_{i}(x, y) v^{j}(x) d x d y \\
& =2 \int_{\Omega} \int_{\Omega} B_{j}^{i}(y) T_{i}(x, y) v^{j}(x) d x d y=(2 w, v)
\end{aligned}
$$

where

$$
w(x)=\int_{\Omega} T_{i}(x, y) B_{j}^{i}(y) d y
$$

Since $H_{0} \cap C^{\infty}(\bar{\Omega})^{d}$ is dense in H_{0} it follows that we must have $u=w$. Examining (8.1), then, we see that we can set $K=T$.

To show that the existence of K implies the existence of T, we reverse the order of the integrations by parts.

9. A further decomposition of H in 3D

In 3D, we have two types of stream functions for any $u \in H_{0}$: that given by Theorem 1.1 and the more classical one given by Proposition 7.1. The former lacks the divergence-free condition, but, like 2D stream functions, vanishes entirely on the boundary, which eliminates many boundary terms when integrating by parts. The latter is only tangential to the boundary, but is divergence-free, a condition whose main usefulness is that $\operatorname{curl}_{3}^{2} \psi=-\Delta \psi$ for such stream functions, so that $\operatorname{curl}_{3} u=-\Delta \psi$, as for 2D stream functions. ${ }^{4}$ Hence, each form has one and only one of these two key features of 2D stream functions.

Note that any element of V qualifies as a stream function of both types, as it is both divergence-free and vanishes on (and so is normal to) the boundary. Hence, it has both key features of 2D stream functions. Thus, it is natural to consider what elements of H are created from such a stream function; that is, to look at the space, $\operatorname{curl}_{3} V \subseteq H_{0}$.

Another motivation for considering this space is that solutions to the Navier-Stokes equations with no-slip boundary conditions lie in V, and hence their curl lies in curl V. In the vorticity formulation of the Navier-Stokes equations this is particularly important, since the velocity is recovered from the vorticity (curl of the velocity) via the Biot-Savart law. Hence, there may be utility in having some understanding of curl V as a subspace of H_{0}; this is the purpose of Proposition 9.1.
Proposition 9.1. We have $\operatorname{curl}_{3} V^{\perp}=\left(\operatorname{curl}_{3} V\right)^{\perp}$, giving the orthogonal decomposition,

$$
H_{0}=\operatorname{curl}_{3}\left(V \oplus V^{\perp}\right)=\operatorname{curl}_{3} V \oplus \operatorname{curl}_{3} V^{\perp}
$$

or, to be more explicit,

$$
H_{0}=\operatorname{curl}_{3}\left(V \oplus_{H_{0}^{1}(\Omega)^{3}} V^{\perp}\right)=\operatorname{curl}_{3} V \oplus_{H} \operatorname{curl}_{3} V^{\perp}
$$

Also,

$$
\begin{equation*}
\operatorname{curl}_{3} V^{\perp} \subseteq\left\{u \in H_{0}: u \text { is harmonic }\right\}, \tag{9.1}
\end{equation*}
$$

with equality if Ω is simply connected.
Proof. By Proposition 2.7, $H_{0}^{1}(\Omega)^{3}=V \oplus V^{\perp}$, so by Theorem 1.1, $H_{0}=\operatorname{curl}_{3} V+\operatorname{curl}_{3} V^{\perp}$. Hence, we need only show that $\operatorname{curl}_{3} V^{\perp} \subseteq\left(\operatorname{curl}_{3} V\right)^{\perp}$. To see this, write arbitrary elements in $\operatorname{curl}_{3} V, \operatorname{curl}_{3} V^{\perp}$ as $\operatorname{curl}_{3} u, \operatorname{curl}_{3} z$, where $u \in V, z \in V^{\perp}$. Then, applying Lemma 2.3,

$$
\left(\operatorname{curl}_{3} u, \operatorname{curl}_{3} z\right)=\left(u, \operatorname{curl}_{3}^{2} z\right)=-(u, \Delta z+\nabla \operatorname{div} z)=-(u, \nabla(q+\operatorname{div} z))=0
$$

where we applied Proposition 2.7 to know that $\Delta z=\nabla q$ for some $q \in L^{2}(\Omega)$.

[^3]Moreover, it follows that if $w \in\left(\operatorname{curl}_{3} V\right)^{\perp}$ then $w=\operatorname{curl}_{3} z$, where $\Delta z=\nabla q$ for some $q \in L^{2}(\Omega)$, since $z \in V^{\perp}$. But then $\Delta w=\operatorname{curl}_{3} \Delta z=0$, giving (9.1).

Now assume that Ω is simply connected and that $v \in H=H_{0}$ is harmonic. Then $v=$ $\operatorname{curl}_{3} \psi_{v}$ for some $v \in H_{0}^{1}(\Omega)^{3}$, so $\Delta v=\operatorname{curl}_{3} \Delta \psi_{v}=0$ in $H^{-2}(\Omega)$, so we know by Poincaré's lemma (see Proposition 11.1) that $\Delta \psi_{v}$ is a gradient, and hence $\psi_{v} \in V^{\perp}$. That is, $v \in H$ harmonic implies that $v=\operatorname{curl}_{3} \psi_{v} \in \operatorname{curl}_{3} V^{\perp}$, giving equality in (9.1).

10. An alternate characterization of H and ΔV

Proposition 10.1 shows that H_{0} is the space of minimizers of the L^{2} norm over all vector fields in L^{2} having a given H^{-1} vorticity. This gives a characterization of H_{0} without a priori assuming either the divergence-free condition or the no-penetration condition.

Proposition 10.1. Let u be a vector field in $L^{2}(\Omega)$. There exists a unique minimizer $\bar{u} \in$ $L^{2}(\Omega)$ to

$$
\min \left\{\|w\|_{L^{2}}: w \in L^{2}(\Omega)^{d}, \operatorname{curl} w=\operatorname{curl} u\right\} .
$$

Moreover, $\bar{u}=P_{H_{0}} u$, where $P_{H_{0}}$ is orthogonal projection onto the space H_{0} defined in Section 4. When Ω is simply connected, $\bar{u}=P_{H} u$, where P_{H} is the classical Leray projector of vector fields in $L^{2}(\Omega)$ onto H. (The equalities $\operatorname{curl} w=\operatorname{curl} u$ and $\operatorname{div} \bar{u}=0$ are as elements of H^{-1}.)

Proof. This is an immediate consequence of the decomposition, $L^{2}(\Omega)^{d}=H_{0} \oplus H_{c} \oplus G$, where G is the space of gradients in $L^{2}(\Omega)^{d}$, since elements of H_{c} and G both have vanishing curl.

More interesting is the analogous statement for ΔV as a subspace of $H^{-1}(\Omega)^{d}$:
Proposition 10.2. Add the assumption that Ω is simply connected. Let $u \in H^{-1}(\Omega)^{d}$. There exists a unique minimizer $\bar{u} \in H^{-1}(\Omega)^{d}$ to

$$
\min \left\{\|w\|_{H^{-1}}: w \in H^{-1}(\Omega)^{d}, \operatorname{curl} w=\operatorname{curl} u\right\}
$$

Moreover, \bar{u} is in the image of Δ applied to V; in particular, $\operatorname{div} \bar{u}=0$. (The equalities $\operatorname{curl} w=\operatorname{curl} u$ and $\operatorname{div} \bar{u}=0$ are as elements of H^{-2}.)
Proof. By Proposition 2.10, we can uniquely write $u=\Delta v+\nabla q$ for some $v \in V, q \in L^{2} / \mathbb{R}$, where L^{2} / \mathbb{R} is the set of all functions in $L^{2}(\Omega)$ having mean zero. We will directly show that \bar{u} exists and that, in fact, $\bar{u}=\Delta v$.

First, let us characterize all possible candidates for our desired minimizer. So let

$$
w \in S:=\left\{w \in H^{-1}(\Omega)^{d}: \operatorname{curl} w=\operatorname{curl} u\right\}
$$

be arbitrary. Applying Poincaré's lemma (see Proposition 11.1) to $u-w$, we see that u and w differ by a gradient. Hence, we seek a minimizer \bar{u} of the form

$$
\bar{u}=\Delta v+\nabla \bar{q}
$$

for some $\bar{q} \in L^{2} / \mathbb{R}$. It is only in establishing this form for the minimizer that we use Ω being simply connected. (Note that this would not follow simply from Proposition 2.10, which would only give $\bar{u}=\Delta \bar{v}+\nabla \bar{q}$ with $\operatorname{curl} \Delta \bar{v}=\operatorname{curl} \Delta v$.)

What we must show is that choosing $\bar{q}=0$ produces the minimizer. Toward this end, first let us determine $\|\Delta v\|_{H^{-1}}$ by pairing it with an arbitrary $\varphi \in H_{0}^{1}(\Omega)^{d}$. By Proposition 2.13,

$$
(\Delta v, \varphi)=\left(\Delta v, P_{V} \varphi\right)=-\left(\nabla v, \nabla P_{V} \varphi\right) .
$$

Hence,

$$
(\Delta v, \varphi)=-\left(\nabla v, \nabla P_{V} \varphi\right) \leq\|\nabla v\|\left\|\nabla P_{V} \varphi\right\|=\|v\|_{V}\left\|P_{V} \varphi\right\|_{V} \leq\|v\|_{V}\|\varphi\|_{V} .
$$

It follows that $\|\Delta v\|_{H^{-1}} \leq\|v\|_{V}$. Choosing $\varphi=-v$, we see that equality is achieved. Hence,

$$
\|\Delta v\|_{H^{-1}}=\|v\|_{V}=\|v\|_{H_{0}^{1}}
$$

Now assume that $\nabla \bar{q} \neq 0$. We will show that there exists $\varphi \in H_{0}^{1}(\Omega)^{d}$ for which

$$
\frac{|(\bar{u}, \varphi)|}{\|\varphi\|_{H_{0}^{1}}}>\|v\|_{V}
$$

from which it will follow that $\bar{u}=\Delta v$ is the desired unique minimizer.
By Proposition 2.7, we can write any $\varphi \in H_{0}^{1}(\Omega)^{d}$ in the form $\varphi=P_{V} \varphi+z$. We will choose φ so that $P_{V} \varphi=-v$, giving $\varphi=-v+z$, leaving $z \in V^{\perp}$ and z alone to be freely chosen.

Then,

$$
\begin{aligned}
(\bar{u}, \varphi) & =(\Delta v+\nabla \bar{q},-v+z)=-(\Delta v, v)+(\Delta v, z)-(\nabla \bar{q},-v)+(\nabla \bar{q}, z) \\
& =(\nabla v, \nabla v)-(\nabla v, \nabla z)-0-(\bar{q}, \operatorname{div} z)=(\nabla v, \nabla v)+0-0-(\bar{q}, \operatorname{div} z) \\
& =\|v\|_{V}^{2}-(\bar{q}, \operatorname{div} z),
\end{aligned}
$$

where (2.5) gave us $(\nabla v, \nabla z)=0$. Hence,

$$
\|\bar{u}\|_{H^{-1}} \geq \sup _{z \in V^{\perp}} \frac{\|v\|_{V}^{2}-(\bar{q}, \operatorname{div} z)}{\|-v+z\|_{V}}=\sup _{z \in V^{\perp}} \frac{\|v\|_{V}^{2}-(\bar{q}, \operatorname{div} z)}{\sqrt{\|v\|_{V}^{2}+\|z\|_{V}^{2}}}
$$

where we used the orthogonality of the projection operator, P_{V}.
Now, given any $a>0$, we can choose $\left(z_{a}, r_{a}\right)$ so that it is a weak solution to

$$
\begin{cases}-\Delta z_{a}+\nabla r_{a}=0 & \text { in } \Omega, \\ \operatorname{div} z_{a}=-a \bar{q} & \text { in } \Omega, \\ z_{a}=0 & \text { on } \Omega .\end{cases}
$$

This is uniquely solvable for $z_{a} \in H^{-1}, r_{a} \in L^{2} / \mathbb{R}$ by Exercise IV.1.1 of [16], the same result we reference in the proof of Proposition 2.7, because the compatibility condition,

$$
\int_{\Omega}(-a \bar{q})=-a \int_{\Omega} \bar{q}=0=\int_{\partial \Omega} z_{a}
$$

is satisfied. Noting that $z_{a}=a z_{1}$, we have $\left\|z_{a}\right\|_{V}=a\left\|z_{1}\right\|_{V}$. Thus, setting $z=z_{a}$ in our estimate on $\|\bar{u}\|_{H^{-1}}$, it follows that

$$
\|\bar{u}\|_{H^{-1}} \geq \sup _{a>0} \frac{\|v\|_{V}^{2}+a\|\bar{q}\|^{2}}{\sqrt{\|v\|_{V}^{2}+a^{2}\left\|z_{1}\right\|_{V}^{2}}}
$$

At this point, \bar{q} and hence z_{1} are fixed, but we are free to choose any $a>0$ so that

$$
a\|\bar{q}\|^{2}>a^{2}\left\|z_{1}\right\|_{V}^{2}
$$

that is, so that

$$
a<\frac{\|\bar{q}\|^{2}}{\left\|z_{1}\right\|_{V}^{2}} .
$$

This allows us to conclude that $\|\bar{u}\|_{H^{-1}}>\|v\|_{V}$. Or, more explicitly,

$$
\|\bar{u}\|_{H^{-1}} \geq \frac{\|v\|_{V}^{2}+a\|\bar{q}\|^{2}}{\sqrt{\|v\|_{V}^{2}+a^{2}\left\|z_{1}\right\|_{V}^{2}}}>\|v\|_{V}=\|\Delta v\|_{H^{-1}}
$$

To be more explicit in the bound from below of $\|\bar{u}\|_{H^{-1}}$, we can use the classical estimate on solutions to the Stokes problem, which for z_{1} gives

$$
\left\|z_{1}\right\|_{V} \leq C_{0}\|\bar{q}\| .
$$

(See, for instance, Exercise IV.1.1 of [16].) Then,

$$
\|\bar{u}\|_{H^{-1}} \geq \frac{\|v\|_{V}^{2}+a\|\bar{q}\|^{2}}{\sqrt{\|v\|_{V}^{2}+C_{0}^{2} a^{2}\|\bar{q}\|^{2}}}
$$

for any $a<C_{0}^{-1}$. Using elementary Calculus, the resulting maximal lower bound occurs when $a=C_{0}^{-2}$, giving

$$
\|\bar{u}\|_{H^{-1}} \geq \frac{\|v\|_{V}^{2}+C_{0}^{-2}\|\bar{q}\|^{2}}{\sqrt{\|v\|_{V}^{2}+C_{0}^{-2}\|\bar{q}\|^{2}}}=\sqrt{\|v\|_{V}^{2}+C_{0}^{-2}\|\bar{q}\|^{2}} .
$$

11. Application: A simple proof of Poincaré's Lemma

Proposition 11.1 is a version of Poincaré's Lemma, which we prove as a corollary of de Rham's lemma, Proposition 2.6, along with Theorem 5.2.

Proposition 11.1. Adding the assumption that Ω is simply connected, let f be a vector field in $H^{-1}(\Omega)^{d}$. Then curl $f=0$ in $H^{-2}(\Omega)$ if and only if $f=\nabla q$ for some unique $q \in L_{0}^{2}(\Omega)$.
Proof. The reverse implication is immediate. For the forward implication, fix $f \in\left(H^{-1}\right)^{d}$ and let $v \in V \subseteq H=H_{0}$ be arbitrary. By Theorem $5.2, v=\operatorname{div} A$ for some $A \in Y_{0} \cap H_{0}^{2}(\Omega)^{d \times d}$. Then,

$$
(f, v)_{H^{-1}, H_{0}^{1}}=(f, \operatorname{div} A)_{H^{-1}, H_{0}^{1}}=-(\nabla f, A)_{H^{-2}, H_{0}^{2}}=\left(\nabla f, A^{T}\right)_{H^{-2}, H_{0}^{2}},
$$

since A is antisymmetric. But also,

$$
\begin{aligned}
-(\nabla f, A)_{H^{-2}, H_{0}^{2}} & =-\left(\nabla f-(\nabla f)^{T}, A\right)_{H^{-2}, H_{0}^{2}}-\left((\nabla f)^{T}, A\right)_{H^{-2}, H_{0}^{2}} \\
& =-\left((\nabla f)^{T}, A\right)_{H^{-2}, H_{0}^{2}}=-\left(\nabla f, A^{T}\right)_{H^{-2}, H_{0}^{2}},
\end{aligned}
$$

since curl $f=0$. We conclude that $(f, v)_{H^{-1}, H_{0}^{1}}=0$ and hence from Proposition 2.6 that $f=\nabla q$ for some $q \in L^{2}(\Omega)$. If \bar{q} is another such element of $L^{2}(\Omega)$ then $\nabla(q-\bar{q})=0$ in $H^{-1}(\Omega)$ so they must differ by a constant. This gives the uniqueness of $q \in L_{0}^{2}(\Omega) .{ }^{5}$
Remark 11.2. For other relatively simple proofs of Proposition 11.1, see Theorem 2.1 of [14] (also see Theorem 3.1 of [24]). There is a short, clear, and simple proof of the result in [14] given by Kesavan in [23]. He uses a solution to the stationary Stokes problem and, most important, uses a Lemma of Lions, which states that if $q \in \mathcal{D}^{\prime}(\Omega)$ with $\nabla q \in H^{-1}(\Omega)$ then $q \in L^{2}(\Omega)$, whose proof for Lipschitz domains is due to Amrouche and Girault [3]. Also, see the historical comments in [2].

Remark 11.3. The decomposition in Proposition 2.10 is not sufficient to prove Proposition 11.1. To see this, observe that by Proposition 2.10, we have $f=\Delta v+\Delta z$ for some $v \in V, z \in V^{\perp}$. Then

$$
\operatorname{curl} f=\Delta \operatorname{curl} v+\Delta \operatorname{curl} z=\Delta \operatorname{curl} v
$$

since $\Delta \operatorname{curl} z=\operatorname{curl} \Delta z=-\operatorname{curl} \nabla q=0$ as elements of $H^{-2}(\Omega)$. Assuming curl $f=0$ it follows that $\operatorname{curl}(\Delta v)=\Delta \operatorname{curl} v=0$. But this only shows that it is sufficient to establish Proposition 11.1 for $f \in \Delta V$, our near proxy for V^{\prime} (see Remark 2.15).

[^4]
12. A CONSTRUCTIVE APPROACH

In this section, we give a more constructive, somewhat geometric proof of Theorem 1.1. We will need, however, a key fact, described in Remark 12.2, not firmly established in the literature concerning smooth manifolds embedded in \mathbb{R}^{d} having Lipschitz boundaries. Hence, this approach should be considered incomplete (though it would be complete for smooth boundaries).

Our starting point is Proposition 4.5 , which we can use to obtain important information about any element of H_{0} :

Corollary 12.1. Let $u \in H_{0}$ and let C be any generator of $H_{d-2}\left(\Omega^{C}, \partial \Omega^{C} ; \mathbb{R}\right)$. If Σ is any $(d-1)$-cycle in Ω for which $\partial \Sigma=C$ then

$$
\int_{\Sigma} u \cdot \boldsymbol{n}=0
$$

Proof. Let $\left(\psi_{n}\right)$ be a sequence in X_{0} with $u_{n}:=\operatorname{div} \psi_{n} \rightarrow u$ in H, the existence of such a sequence being assured by Proposition 4.5. Then, using that for a $(d-1)$-form, $* \delta=* * d *=$ $(-1)^{d} d *$ and applying Stokes's theorem,

$$
\int_{\Sigma} u_{n} \cdot \boldsymbol{n}=\int_{\Sigma} * \xi u_{n}=\int_{\Sigma} * \xi \operatorname{div} \psi_{n}=\int_{\Sigma} * \delta \theta \psi_{n}=(-1)^{d} \int_{\Sigma} d * \theta \psi_{n}=(-1)^{d} \int_{C} * \theta \psi_{n}=0
$$

In the first step, we used Lemma A.10. In the last step, we used that ψ_{n}, and so $\theta \psi_{n}$ and $* \theta \psi_{n}$, vanish on the boundary. (See Remark 12.2.)

We will apply the analog of Lemma 2.2 for Σ, where now $E(\Omega)=E(\Sigma)$. Since u_{n} and u are divergence-free, observe that $u_{n} \rightarrow u$ in $E(\Sigma)$ so $u_{n} \cdot \boldsymbol{n} \rightarrow u \cdot \boldsymbol{n}$ in $H^{-\frac{1}{2}}(C)$, from which the result follows.

Remark 12.2 (Difficulty in the proof of Corollary 12.1). Being a Lipschitz domain in \mathbb{R}^{d}, Ω is also a topological manifold, and so singular homology makes sense for it. However, for integration, we need to have some degree of smoothness to the chains or cycles over which we are integrating. In particular, while the generator C of $H_{d-2}\left(\Omega^{C}, \partial \Omega^{C} ; \mathbb{R}\right)$ will have Lipschitz regularity, we have no inherent regularity at all of the $(d-1)$-cycle Σ for which $\partial \Sigma=C$. Lipschitz regularity of C is sufficient, but the lack of regularity of Σ is an obstacle.

Alternate proof of Theorem 1.1. In 2D, any $A \in H_{0}$ would be of the form

$$
A=\left(\begin{array}{cc}
0 & -\psi \tag{12.1}\\
\psi & 0
\end{array}\right)
$$

so then $\operatorname{div} A=\left(-\partial_{2} \psi, \partial_{1} \psi\right)=\nabla^{\perp} \psi=u$. Hence, ψ is the classical 2D stream function for $u \in H_{0}$ (so also A is unique, since we require it to vanish on the boundary.)

In 3 D , making the bijection in (4.2), we see that

$$
u=\left(\partial_{2} \psi^{3}-\partial_{3} \psi^{2}, \partial_{1} \psi^{3}-\partial_{3} \psi^{1}, \partial_{1} \psi^{2}-\partial_{2} \psi^{1}\right)=\operatorname{curl}_{3} \psi
$$

Hence if the general result for $d \geq 3$ holds, we obtain the 3D result.
So assume now that $d \geq 3$. We will establish the expression for H_{0} following as closely as possible the 3 D argument in [9].

Assume that $u \in H_{0}$ and let $\mathcal{E}_{0} u$ be u extended by zero to all of \mathbb{R}^{d}. Then $\mathcal{E}_{0} u \in L^{2}\left(\mathbb{R}^{d}\right)$ and $\operatorname{div} \mathcal{E}_{0} u=0$ still holds in the sense of distributions, so $\mathcal{E}_{0} u \in H\left(\mathbb{R}^{d}\right)$. Let G be the fundamental solution to the Laplacian in \mathbb{R}^{d}, so $\Delta G * f=f$, and define the antisymmetric matrix-valued function ψ by

$$
\psi_{j}^{i}:=\partial_{j} G * \mathcal{E}_{0} u^{i}-\partial_{i} G * \mathcal{E}_{0} u^{j}
$$

(Formally, $\psi=G *\left(\operatorname{curl} \mathcal{E}_{0} u\right)$.) Then

$$
(\operatorname{div} \psi)^{i}=\partial_{j j} G * \mathcal{E}_{0} u^{i}-\partial_{i} G * \partial_{j} \mathcal{E}_{0} u^{j}=\Delta G * \mathcal{E}_{0} u^{i}-\partial_{i} G *\left(\operatorname{div} \mathcal{E}_{0} u\right)=\mathcal{E}_{0} u^{i} .
$$

These calculations are as convolutions of $\mathcal{E}_{0} u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{d}\right)$, the space of compactly supported distributions, with derivatives of $G \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$, the space of distributions. Or the convolution defining ψ can be viewed as the convolution of the $L_{l o c}^{1}$-function $\partial_{i} G$ with the compactly supported $\mathcal{E}_{0} u^{j}$, and the expression for $\operatorname{div} \psi$ can be verified by a standard limiting argument. Hence, $\mathcal{E}_{0} u=\operatorname{div} \psi$: this is a form of the Biot-Savart law (see, for example, Chapter 1 of [12]).

Moreover, for any k,

$$
\partial_{k} \psi_{j}^{i}:=\partial_{k} \partial_{j} G * \mathcal{E}_{0} u^{i}-\partial_{k} \partial_{i} G * \mathcal{E}_{0} u^{j} .
$$

This calculation holds as the convolution of an element in $\mathcal{E}^{\prime}\left(\mathbb{R}^{d}\right)$ with an element of $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$, but in that form, $\partial_{k} \partial_{j} G *$ is not a Calderon-Zygmund operator. A more careful, but standard, argument (see, for instance, Proposition 6.1 of [4]) would give that

$$
\partial_{k} \partial_{j} G * \mathcal{E}_{0} u^{i}(x)=\frac{\delta_{j k}}{d} \mathcal{E}_{0} u^{i}(x)+\text { p.v. } \int \partial_{k} \partial_{j} G(x-y) \mathcal{E}_{0} u^{i}(y) d y .
$$

The principal value integrals are Calderon-Zygmund operators applied to $\mathcal{E}_{0} u^{i}$, so each term on the right-hand side lies in $L^{2}\left(\mathbb{R}^{d}\right)$. Hence, $\partial_{k} \psi_{j}^{i} \in L^{2}\left(\mathbb{R}^{d}\right)$ so $\psi \in H^{1}\left(\mathbb{R}^{d}\right)^{d \times d}$.

Nonetheless, ψ does not satisfy the boundary condition, $\psi=0$ on $\partial \Omega$. To correct for this, let us first consider the 3D approach taken in [9], using the bijection Q given by (4.2).

In the language of the 3 D curl, we have $\operatorname{curl}_{3} Q^{-1} \psi=\mathcal{E}_{0} u$ on \mathbb{R}^{3}. In particular, $\operatorname{curl}_{3} Q^{-1} \psi=$ 0 on $U:=\mathbb{R}^{3} \backslash \bar{\Omega}$. Let γ be any simple closed curve that is a generator of $H_{1}\left(\Omega^{C}, \partial \Omega^{C} ; \mathbb{R}\right)$
that generate $H_{d-1}(\Omega, \partial \Omega ; \mathbb{R})$, the $(d-1)$-dimensional real homology class of Ω relative to its boundary
and let Σ be a smooth surface in Ω whose boundary is γ. Then by Stokes's theorem, and using that $Q^{-1} \psi \in H^{1}\left(\mathbb{R}^{3}\right)$ so its trace on $\partial \Omega$ is well-defined,

$$
\begin{equation*}
\int_{\gamma} Q^{-1} \psi \cdot d s=\int_{\Sigma_{i}} \operatorname{curl}_{3} Q^{-1} \psi \cdot \boldsymbol{n}=\int_{\Sigma_{i}} u \cdot \boldsymbol{n}=0, \tag{12.2}
\end{equation*}
$$

the last equality following from Corollary 12.1 since $u \in H_{0}$. It follows that $\psi=\nabla p$ on U (by the classical, 3D version of Lemma A.9) for some $p \in H^{2}(U)$ (since $\left.\nabla p=\psi \in H^{1}\left(\mathbb{R}^{2}\right)^{d \times d}\right)$. Extend p to lie in $H^{2}\left(\mathbb{R}^{d}\right)$ using Theorem 5' p. 181 of [29] (and a cutoff function inside Ω). Let $N=Q \nabla p$. Then $A:=\psi-N \in H_{0}^{1}(\Omega)^{d \times d}$ and is antisymmetric, and $\operatorname{div} A=$ $\operatorname{div}(\psi-N)=\operatorname{div} \psi=u$.

In higher dimension, the argument is similar, though now we need to use the language of differential forms. In Appendix A, we define a bijection θ that maps ψ to a $(d-2)$-form on Ω, and a bijection ξ that maps vector fields on Ω to $d-1$ forms on Ω with the property that $d \theta=\xi$ div. Then $d \theta \psi=\xi\left(\mathcal{E}_{0} u\right)$, which vanishes on $U:=\mathbb{R}^{d} \backslash \bar{\Omega}$; that is, $\theta \psi$ is closed on U.

We now show that, in fact, $\theta \psi$ is exact on U. Let C be any generator of $H_{d-2}\left(\Omega^{C}, \partial \Omega^{C} ; \mathbb{R}\right)$ and let Σ be a ($d-1$)-cycle whose boundary is C. Now, although ψ does not vanish on $\partial \Omega$, we still have $\operatorname{div} \psi=u$ on Ω, and so can integrate just as in the proof of Corollary 12.1, though now we do so in reverse order:

$$
\begin{equation*}
\int_{C} * \theta \psi=(-1)^{d} \int_{\Sigma} d * \theta \psi=\int_{\Sigma} * \delta \operatorname{div} \psi=\int_{\Sigma} * \xi \operatorname{div} \psi=\int_{\Sigma} \xi u=\int_{\Sigma} u \cdot \boldsymbol{n}=0 . \tag{12.3}
\end{equation*}
$$

The vanishing of the final integral follows from Corollary 12.1 since $u \in H_{0}$.
It follows from Lemma A. 9 that $* \theta \psi$ is exact on U. Thus, $* \theta \psi=d p$ for some 0 -form $p \in H^{2}(U)$. We then extend p to $H^{2}\left(\mathbb{R}^{d}\right)$, and set $A=\psi-\theta^{-1} d p$, where we used that $* *$ is the identity when applied to a $(d-2)$-form.

Although A is not unique, we have constructed it in an unambiguous way (that depended only upon our choice of extension operator from $H^{2}(U)$ to $H^{2}\left(\mathbb{R}^{d}\right)$). Hence, the operator $S: H_{0} \rightarrow X_{0}, S u=A$, is well-defined, and $\|S u\|_{X_{0}} \leq C\|u\|_{H}$.
Remark 12.3. Rather than extending p into Ω using an extension operator, as we did in the proof of Theorem 1.1, which requires only (in fact, less than) Lipschitz regularity of the boundary, the authors of [9], working specifically in 3D, solve a biharmonic equation on Ω to obtain the equivalent of what we have called N in the proof of Theorem 1.1. This requires a $C^{1,1}$ boundary to know that $N \in H^{1}(\Omega)$, but gives that div v in Lemma 4.4 is harmonic on Ω. Assuming that $u \in H_{0}$ vanishes to order m on the boundary, they use a solution of a higher-order polyharmonic equation with higher-regularity boundaries, to obtain higher regularity of A. We will consider, in Theorem 12.5, only the one additional derivative of regularity gained by assuming that $u \in V$ (but without adding additional regularity on the boundary), as velocity fields vanishing to higher order on the boundary are not common in fluid mechanics applications.
Remark 12.4. In the proof of Proposition 7.1, we used the stream function of Theorem 1.1 to obtain the classical stream function. In light of Remark A.4 and the way we integrated in (12.3), we could have reversed this, obtaining the stream function of Theorem 1.1 from that of Proposition 7.1.

Theorem 12.5 gives the regularity of the stream function that results if we assume that u is in V.
Theorem 12.5. Define the space,

$$
X_{0}^{2}:=X_{0} \cap H^{2}(\Omega)^{d \times d} \text { with the } H^{2}(\Omega)^{d \times d} \text {-norm. }
$$

The operator S defined in Theorem 1.1 maps $V \cap H_{0}$ continuously into X_{0}^{2}.
Proof. We follow the proof of Theorem 1.1, letting $u \in V \cap H_{0}$. Because $u \in H_{0}^{1}(\Omega)^{d}$, $\mathcal{E}_{0} u \in H^{1}\left(\mathbb{R}^{d}\right)^{d}$. Hence,

$$
\nabla \psi_{j}^{i}:=\partial_{j} G * \nabla \mathcal{E}_{0} u^{i}-\partial_{i} G * \nabla \mathcal{E}_{0} u^{j}
$$

where we have convolutions of an $L_{l o c}^{1}$ function with a compactly supported L^{∞} function; thus, we can treat the convolutions in either of the two ways we treated them in the proof of Theorem 1.1. It follows as in the remainder of that proof that $A \in H^{2}(\Omega)$ and the operator S is continuous from $V \cap H_{0}$ into X_{0}^{2}.

Finally, we have the following simple but useful bound in Lemma 12.6, a generalization of sorts of Corollary 3.2 of [21]:
Lemma 12.6. Assume that $\partial \Omega$ is C^{k} for some $k \in(1, \infty]$. Let X be any function space embedded in H that contains $C^{k}(\Omega)$. For any $u \in X$,

$$
\|u\|_{X} \leq\left\|P_{H_{0}} u\right\|_{X}+C(X)\|u\|_{H}
$$

Proof. Since H_{c} is finite dimensional, it has some orthonormal basis w_{1}, \ldots, w_{N}, and one can show by elliptic regularity theory that, in fact, each $w_{j} \in C^{k}(\bar{\Omega})$. Hence, $H_{c} u=\sum_{j}\left(u, w_{j}\right) w_{j}$ with

$$
\sum_{j}\left(u, w_{j}\right)^{2}=\left\|H_{c} u\right\|^{2} \leq\|u\|^{2}
$$

It follows that

$$
\|u\|_{X} \leq\left\|P_{H_{0}} u\right\|_{X}+\left\|P_{H_{c}} u\right\|_{X} \leq\left\|P_{H_{0}} u\right\|_{X}+\sum_{j=1}^{n}\left|\left(u, w_{j}\right)\right|\left\|w_{j}\right\|_{X}
$$

$$
\leq\left\|P_{H_{0}} u\right\|_{X}+C(X)\|u\|_{H}
$$

Appendix A. Differential forms point of view

We have been treating Ω as an open subset of \mathbb{R}^{d}. We wish now to also treat it as an oriented manifold with boundary: more specifically, as a ∂-manifold, as given in Definition 1.2 of [27]. We write $\mathcal{A}^{k}\left(H^{j}(\Omega)\right)$ for the space of k-forms on Ω having coefficients in $H^{j}(\Omega)$. We identify a vector field $v \in H^{j}(\Omega)^{d} \cong T \Omega(\Omega)$ with a 1-form in $\mathcal{A}^{1}\left(H^{j}(\Omega)\right)$ the usual way by the bijection,

$$
\xi\left(v^{1}, \ldots, v^{d}\right)=v^{1} d x_{1}+\cdots+v^{d} d x_{d}
$$

Defining

$$
X:=\left\{\text { antisymmetric } A \in H^{1}(\Omega)^{d \times d}\right\}
$$

we define the bijection,

$$
\begin{aligned}
& \theta: X \rightarrow \mathcal{A}^{2}\left(H^{1}(\Omega)\right) \\
& \theta A=(-1)^{d} \sum_{j>i} A_{j}^{i} d x_{i} \wedge d x_{j}
\end{aligned}
$$

Here, δ is the codifferential operator, defined by

$$
\begin{aligned}
& \delta: \mathcal{A}^{k}\left(H^{j}(\Omega)\right) \rightarrow \mathcal{A}^{k-1}\left(H^{j}(\Omega)\right), \\
& \delta \omega=(-1)^{d(k+1)+1} * d(* \omega)
\end{aligned}
$$

where $*$ is the Hodge dual operator.
We will use the notation,

$$
d x_{I(i)}=d x_{1} \wedge \cdots \wedge d x^{i-1} \wedge d x^{i+1} \cdots \wedge \cdots d x^{d}
$$

and similarly, $d x_{I(i, j)}, i \neq j$, is the wedge product of $d x_{1} \wedge \cdots \wedge d x^{d}$ with $d x^{i}$ and $d x^{j}$ excluded.
Since we are working in flat space, $*: \mathcal{A}^{2}\left(H^{j}(\Omega)\right) \rightarrow \mathcal{A}^{d-2}\left(H^{j}(\Omega)\right)$ can be defined by requiring that

$$
*\left(d x_{i_{1}} \wedge d x_{i_{k}}\right)=(-1)^{n} d x_{j_{1}} \wedge d x_{j_{d-k}}
$$

where $i_{1}<\cdots<i_{k}, j_{1}<\cdots<j_{d-k},\left\{i_{1}, \ldots, i_{k}\right\} \cup\left\{j_{1}, \ldots, j_{d-k}\right\}=\{1, \ldots, d\}$ and n is the sign of the permutation, $\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{d-k}\right)$. It follows, in particular, that for $i<j$,

$$
*\left(d x_{i} \wedge d x_{j}\right)=(-1)^{i+j} d x_{I(i, j)}
$$

Similarly, we can define $*: \mathcal{A}^{1}\left(H^{j}(\Omega)\right) \rightarrow \mathcal{A}^{d-1}\left(H^{j}(\Omega)\right)$ by requiring that

$$
* d x_{j}=(-1)^{j-1} d x_{I(j)}
$$

Observe that for $j>i$,

$$
\begin{align*}
* d x_{I(i)} & =(-1)^{i-1} d x_{i} \\
d d x_{I(i)} & =(-1)^{i-1} d x_{1} \wedge \cdots \wedge d x_{d} \\
d x_{I(i, j)} & =(-1)^{i-1} d x_{I(j)}-(-1)^{j-1} d x_{I(i)} \tag{A.1}\\
d x^{i} \wedge d x_{I(i, j)} & =(-1)^{i-1} d x_{I(j)} \\
d x^{j} \wedge d x_{I(i, j)} & =(-1)^{j} d x_{I(i)}
\end{align*}
$$

For instance, the wedge product in the fourth identity involves $i-1$ transpositions while that in the fifth identity involves $j-2$ transpositions and $(-1)^{j-2}=(-1)^{j}$.

Lemma A.1. For all $A \in X$,

$$
\begin{equation*}
\delta(\theta A)=\xi \operatorname{div} A \text { for all } A \in X \tag{A.2}
\end{equation*}
$$

Proof. Let $A \in X$. We see, then, that

$$
\begin{aligned}
\delta(\theta A) & =(-1)^{d(2+1)+1}(-1)^{d} * d \sum_{j>i} A_{j}^{i} *\left(d x_{i} \wedge d x_{j}\right)=-* d \sum_{j>i}(-1)^{i+j} A_{j}^{i} d x_{I(i, j)} \\
& =-* \sum_{j>i}(-1)^{i+j}\left[(-1)^{i-1} \partial_{i} A_{j}^{i} d x_{I(j)}+(-1)^{j} \partial_{j} A_{j}^{i} d x_{I(i)}\right] \\
& =-* \sum_{j>i}\left[(-1)^{j-1} \partial_{i} A_{j}^{i} d x_{I(j)}+(-1)^{i} \partial_{j} A_{j}^{i} d x_{I(i)}\right] \\
& =-*\left[\sum_{j<i}(-1)^{i-1} \partial_{j} A_{i}^{j} d x_{I(i)}+\sum_{j>i}(-1)^{i} \partial_{j} A_{j}^{i} d x_{I(i)},\right]
\end{aligned}
$$

where we used (A.1).
But, again using (A.1) $* d x_{I(i)}=(-1)^{i-1} d x_{i}$, so

$$
\delta(\theta A)=-\left[\sum_{j<i} \partial_{j} A_{i}^{j} d x_{i}-\sum_{j>i} \partial_{j} A_{j}^{i} d x_{i}\right] .
$$

On the other hand,

$$
\begin{aligned}
\xi \operatorname{div} A & =\xi \sum_{i} \sum_{j} \partial_{j} A_{j}^{i} \mathbf{e}_{i}=\sum_{i} \sum_{j} \partial_{j} A_{j}^{i} d x_{i}=\sum_{j<i} \partial_{j} A_{j}^{i} d x_{i}+\sum_{j>i} \partial_{j} A_{j}^{i} d x_{i} \\
& =-\sum_{j<i} \partial_{j} A_{i}^{j} d x_{i}+\sum_{j>i} \partial_{j} A_{j}^{i} d x_{i},
\end{aligned}
$$

since A is antisymmetric as a $d \times d$ matrix. This gives (A.2).
We have, then, the bijections,

$$
\xi: L^{2}(\Omega)^{d} \rightarrow \mathcal{A}^{1}\left(L^{2}(\Omega)\right), \quad \theta: X \rightarrow \mathcal{A}^{2}\left(H^{1}(\Omega)\right),
$$

so that the diagram,

is commutative ${ }^{6}$; that is, so that (A.2) holds.
Theorem 2.4.2 of [27] gives the Hodge-Morrey decomposition of forms in L^{2}, which for k-forms is

$$
\mathcal{A}^{k}\left(L^{2}(\Omega)\right)=\mathcal{E}^{k}(\Omega) \oplus \mathcal{C}^{k}(\Omega) \oplus \mathcal{H}^{k}(\Omega),
$$

where

$$
\mathcal{E}^{k}(\Omega):=\left\{d \alpha: \alpha \in \mathcal{A}^{k-1}(\Omega), \boldsymbol{t} \alpha=0\right\},
$$

[^5]\[

$$
\begin{aligned}
\mathcal{C}^{k}(\Omega) & :=\left\{\delta \beta: \beta \in \mathcal{A}^{k+1}(\Omega), \boldsymbol{n} \beta=0\right\}, \\
\mathcal{H}^{k}(\Omega) & :=\left\{\lambda \in \mathcal{A}^{k}\left(L^{2}(\Omega)\right): d \lambda=0, \delta \lambda=0\right\},
\end{aligned}
$$
\]

where $\boldsymbol{t}, \boldsymbol{n}$ give the tangential and normal components of a form on the boundary. It is important to note that such components vanishing do not (necessarily) directly transfer to what happens to the corresponding vector field or matrix under the mappings θ and ξ we have defined. Rather, for a k-form $\omega, \boldsymbol{t} \omega$ is defined by its action on vector fields by

$$
\boldsymbol{t} \omega\left(X_{1}, \ldots, X_{k}\right):=\omega\left(X_{1}^{\|}, \ldots, X_{k}^{\|}\right)
$$

where $\omega\left(X_{1}^{\|}, \ldots, X_{k}^{\|}\right)$are the components of the vector fields X_{1}, \ldots, X_{k} parallel to (tangent to) the boundary. Then

$$
\boldsymbol{n} \omega\left(X_{1}, \ldots, X_{k}\right):=\omega\left(X_{1}, \ldots, X_{k}\right)-\boldsymbol{t} \omega\left(X_{1}, \ldots, X_{k}\right) .
$$

The Hodge-Morrey decomposition is a full decomposition of k-forms in L^{2}; we are interested in the subspace of those 1 -forms in L^{2} corresponding to divergence-free vector fields tangential to the boundary. That is, we wish to calculate

$$
\xi\left(\xi^{-1}\left(\mathcal{A}^{1}\left(L^{2}(\Omega)\right)\right) \cap H\right) .
$$

Since in our correspondence, div of an L^{2} vector field corresponds to δ of a 1 -form, we should first determine the subspaces of the Hodge-Morrey decomposition whose codifferential vanishes, and whose normal components-when translated to vector fields-vanish:

$$
\begin{aligned}
\mathcal{E}_{\sigma, \boldsymbol{n}}^{1}(\Omega) & :=\left\{d \alpha: \alpha \in \mathcal{A}^{0}(\Omega), \boldsymbol{t} \alpha=0, \delta d \alpha=0,\left(\xi^{-1} d \alpha\right) \cdot \boldsymbol{n}=0\right\}, \\
\mathcal{C}_{\sigma, \boldsymbol{n}}^{1}(\Omega) & :=\left\{\delta \beta: \beta \in \mathcal{A}^{2}(\Omega), \boldsymbol{n} \beta=0, \delta^{2} \beta=0,\left(\xi^{-1} \delta \beta\right) \cdot \boldsymbol{n}=0\right\}, \\
\mathcal{H}_{\sigma, \boldsymbol{n}}^{1}(\Omega) & :=\left\{\lambda \in \mathcal{A}^{1}\left(L^{2}(\Omega)\right): d \lambda=0, \delta \lambda=0,\left(\xi^{-1} \lambda\right) \cdot \boldsymbol{n}=0\right\} .
\end{aligned}
$$

Lemma A.2. $\mathcal{C}_{\sigma, \boldsymbol{n}}^{1}(\Omega)=\mathcal{C}^{1}(\Omega), \mathcal{E}_{\sigma, \boldsymbol{n}}^{1}(\Omega)=\{0\}$.
Proof. Let $d \alpha \in \mathcal{E}_{\sigma, n}^{1}(\Omega)$, and let $u=\xi^{-1} d \alpha$. Now,

$$
d \alpha=\sum_{i=1}^{d} \partial_{i} \alpha d x_{i}=\xi \nabla \alpha
$$

where we are treating α interchangeably as a 0 -form and as a scalar-valued function. Then, using (A.1),

$$
\delta d \alpha=(-1)^{2 d+1} * d * d \alpha=-\sum_{i=1}^{d} * d *\left(\partial_{i} \alpha d x_{i}\right) .
$$

But,

$$
\begin{aligned}
& * d *\left(\partial_{i} \alpha d x_{i}\right)=* d\left(\partial_{i} \alpha * d x_{i}\right)=* d\left(\partial_{i} \alpha(-1)^{i-1} d x_{I(i)}\right)=(-1)^{i-1} * d\left(\partial_{i} \alpha d x_{I(i)}\right) \\
& \quad=(-1)^{i-1} *(-1)^{i-1} \partial_{i i} \alpha d x_{1} \wedge \cdots \wedge d x_{d}=\partial_{i i} \alpha *\left(d x_{1} \wedge \cdots \wedge d x_{d}\right)=\partial_{i i} \alpha .
\end{aligned}
$$

Hence,

$$
\delta d \alpha=-\sum_{i=1}^{d} \partial_{i i} \alpha=-\Delta \alpha=0 .
$$

This agrees with $\operatorname{div} u=\operatorname{div} \nabla \alpha=\Delta \alpha=0$.
Since also we require that $u \cdot \boldsymbol{n}=\left(\xi^{-1} d \alpha\right) \cdot \boldsymbol{n}=0$, we have $\Delta h=0$ with $\nabla h \cdot \boldsymbol{n}=0$, and we conclude that h is constant on Ω. But then $u=\nabla h \equiv 0$, and we find that $\mathcal{E}_{\sigma, n}^{1}(\Omega)=\{0\}$.

Now let $\delta \beta \in \mathcal{C}_{\sigma, n}^{1}(\Omega)$. Then Then $\delta^{2} \beta=0$ automatically and hence poses no additional restriction. So let β be any form in $\mathcal{A}^{2}(\Omega)$ for which $\boldsymbol{n} \beta=0$. Then by Proposition 1.2.6 of
$[27], \boldsymbol{n}(\delta \beta)=\delta(\boldsymbol{n} \beta)=0$. But $\delta \beta$ is a 1 -form, so $\beta=\sum_{i} v^{i} d x_{i}$ for some $v^{i} \in L^{2}(\Omega)$. So let \boldsymbol{n} be the unit normal vector field and extend it, via the collar theorem, into Ω. Then

$$
\boldsymbol{n}(\delta \beta)=(\delta \beta)(\boldsymbol{n})-\omega\left(\boldsymbol{n}^{\|}\right)=(\delta \beta)(\boldsymbol{n})=\sum_{i} v^{i} n^{i}=\xi^{-1}(\delta \beta) \cdot \boldsymbol{n}
$$

That is, $\xi^{-1}(\delta \beta) \cdot \boldsymbol{n}=0$ also poses no additional restriction, and we see that $\mathcal{C}_{\sigma, \boldsymbol{n}}^{1}(\Omega)=$ $\mathcal{C}^{1}(\Omega)$.

We have the immediate corollary:
Corollary A.3. $H_{0}=\xi^{-1}\left(\mathcal{C}^{1}(\Omega)\right)$.
Remark A.4. Corollary A. 3 can be viewed as the differenential forms analog of Proposition 7.1 in any dimension:

$$
\xi\left(H_{0}\right)=\delta\left\{\beta \in \mathcal{A}^{2}(\Omega): \boldsymbol{n} \beta=0\right\}
$$

Here, β is the stream function whose normal component vanishes on the boundary and δ is playing the role of the curl operator.

Remark A.5. Similar reasoning shows that also $H_{0}=(* \xi)^{-1} \mathcal{E}^{d-1}(\Omega)$.
In fact, using the tools developed in Chapter 3 of [27], we can obtain the differential form equivalent of Theorem 1.1 in fairly short order:
Theorem A.6. Let M be a ∂-manifold with C^{∞} boundary. Define

$$
\widetilde{H}_{0}:=\left\{\alpha \in \mathcal{A}^{1}(\Omega): \boldsymbol{n} \alpha=0, \int_{M} \alpha \wedge * \lambda=0 \text { for all } \lambda \in \mathcal{H}_{N}^{1}(\Omega)\right\}
$$

where

$$
\mathcal{H}_{N}^{1}(\Omega):=\left\{\lambda \in \mathcal{A}^{1}\left(L^{2}(\Omega)\right): d \lambda=0, \delta \lambda=0, \boldsymbol{n} \lambda=0\right\}
$$

Then

$$
\widetilde{H}_{0}=\delta\left\{\beta \in \mathcal{A}^{2}(\Omega):\left.\beta\right|_{\partial M}=0\right\}
$$

Proof. Given $\alpha \in \widetilde{H}_{0}$, it is always possible, by Corollary 3.3.4 of [27], to solve the boundary value problem,

$$
\begin{cases}\delta \beta=\alpha & \text { on } M \\ \left.\beta\right|_{\partial M}=0 & \text { on } \partial M\end{cases}
$$

Remark A.7. In Theorem A.6, we are using \widetilde{H}_{0} as a convenient proxy for H_{0} as given by Remark A.4. Better would be to see it as equivalent to the homology-based version of H_{0} given in Section 12. Exploring these issues would take us too far afield, however.

Remark A.8. We could also have proved Theorem A. 6 by first establishing that the form of H_{0} as given by Remark $A .4$ holds. Then, letting $\beta \in H_{0}$, we could "correct" its boundary value by subtracting from it the solution to

$$
\begin{cases}\delta \gamma=0 & \text { on } M \\ \left.\gamma\right|_{\partial M}=\beta & \text { on } \partial M\end{cases}
$$

which we also can solve by applying Corollary 3.3.4 of [27]. This much less direct approach is in sympathy with the "corrector" argument we made in the proof of Theorem 1.1 (involving (12.3)). In fact, we could have used Corollary 3.3.4 of [27] in the proof of Theorem 1.1 to correct the boundary value without resorting to knowledge of the domain exterior to Ω. We
wished, however, to obtain a result for Lipschitz boundaries and to, as much as possible, keep the argument in the language of "flat space."

The following two lemmas were used in Section 12. Lemma A. 9 gives a convenient test for the exactness of a closed k-form on a manifold with boundary. It follows from Lemma 3.2.1 with Theorem 3.2.3 of [27]), along with a remark following the statement of Corollary 3.2.4 of [27]. Lemma A. 10 relates integration of a $d-1$ form and a classical integral of a vector field.

Lemma A.9. A closed k-form $\alpha, 0 \leq k \leq d$, on a manifold with boundary is exact if and only if

$$
\int_{C} \alpha=0
$$

for any k-cycle C in the manifold. It suffices to only consider k-cycles that are generators of $H_{k}(M, \partial M ; \mathbb{R})$.
Lemma A.10. Let Σ be a (d-1)-cycle (or more generally a $(d-1)$-chain), in \mathbb{R}^{d}, and also write Σ for the corresponding subset of \mathbb{R}^{d}. Then for any divergence-free vector field on \mathbb{R}^{d},

$$
\int_{\Sigma} u \cdot \boldsymbol{n}=\int_{\Sigma} u \cdot \boldsymbol{d} \boldsymbol{S}=\int_{\Sigma} * \xi u
$$

The first two integrals are different ways to write the classical "surface" integral, while the last integral is the integration of $a(d-1)$-form.
Proof. This is a standard calculation. See, for instance, the example on page 169-170 in [19], which is worked out explicitly for $d=3$.

Appendix B. A characterization H_{0} in 2D and 3D

In this section we outline the characterization of H_{0} that is more commonly used in 2D and 3D. The characterization applies to all dimensions $d \geq 2$, but the topological issues for $d \geq 4$ become more complex. Since our purpose is to be motivational, we will content ourselves with being a little imprecise about some of our arguments.

Let $\Gamma_{1}, \ldots, \Gamma_{N+1}$, be the $N+1$ components of $\partial \Omega$ with Γ_{N+1} the boundary of the unbounded component of Ω^{C}. Let $\Sigma_{1}, \ldots, \Sigma_{N}$ be pairwise disjoint Lipschitz regular $(d-1)$ submanifolds of Ω that generate $H_{d-1}(\Omega, \partial \Omega ; \mathbb{R})$, the ($d-1$)-dimensional real homology class of Ω relative to its boundary. For a vector field $v \in H$, the internal flux across Σ_{i} is the value of

$$
\int_{\Sigma_{i}} v \cdot n .
$$

Because v is divergence-free and tangential to the boundary, it is easy to see that the internal fluxes do not depend upon the specific choices of the Σ_{i}.

In 2 D , each Σ_{i} is a curve from one boundary component to another, its boundary being two points, one on one boundary component the other on another boundary component. In 3D, each Σ_{i} is a surface whose boundary is a curve lying in a single component of the boundary. In 4 D , each Σ_{i} is a 3 -manifold, whose boundary is a 2 -manifold that lies in one component of the boundary. The deepest fact about homology that we will use is the following:
Lemma B.1. $\left\{\partial \Sigma_{1}, \ldots, \partial \Sigma_{N}\right\}$ is a complete set of generators for $H_{d-2}\left(\partial \Omega^{C} ; \mathbb{R}\right)$, an homology group on the boundary of Ω. Because of this, it is also a complete set of generators for $H_{d-2}\left(\Omega^{C}, \partial \Omega^{C} ; \mathbb{R}\right)$.

Proposition B. 2 gives a direct characterization of H_{0}. We prove it using ideas from Appendix I of [30].

Proposition B.2. $H_{0}=\{v \in H$: all internal fluxes are zero $\}$.
Proof. Let $\widetilde{H}_{0}=\{v \in H$: all internal fluxes are zero $\}$. Let $\dot{\Omega}$ be the simply connected open subset of Ω having a Lipschitz boundary that is produced by cutting along (that is, removing) each Σ_{i}. (We know that $\dot{\Omega}$ is simply connected, for otherwise we would obtain an additional generator for $H_{d-1}(\Omega, \partial \Omega ; \mathbb{R})$.) Let $h \in H_{c}$. Then on $\dot{\Omega}, h$ is curl-free (closed when viewed as a 1 -form) and so is exact; hence, $h=\nabla p$ for some $p \in H^{1}(\dot{\Omega})$. Of necessity, the jump $[p]_{i}$ across each Σ_{i} is constant along Σ_{i}. (Or, we can view p as multi-valued on Ω with $v=\nabla p$.)

Now let $v \in H$ be arbitrary. Then

$$
\begin{aligned}
(h, v) & =\int_{\Omega} h \cdot v=\int_{\dot{\Omega}} \nabla p \cdot v=-\int_{\dot{\Omega}} p \operatorname{div} v+\int_{\partial \dot{\Omega}} p(v \cdot \boldsymbol{n}) \\
& =\int_{\partial \Omega} p(v \cdot \boldsymbol{n})+\sum_{i} \int_{\Sigma_{i}} p(v \cdot \boldsymbol{n})=\sum_{i}[p]_{i} \int_{\Sigma_{i}} v \cdot \boldsymbol{n} .
\end{aligned}
$$

This will vanish if and only if $v \in \widetilde{H}_{0}$. We conclude that $H_{0}:=H_{c}^{\perp}=\widetilde{H}_{0}$.

Acknowledgments

The author would like to thank Stefano Vidussi for helpful discussions.

References

[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci., 21(9):823-864, 1998. 16, 17
[2] Chérif Amrouche, Philippe G. Ciarlet, and Cristinel Mardare. On a lemma of Jacques-Louis Lions and its relation to other fundamental results. J. Math. Pures Appl. (9), 104(2):207-226, 2015. 8, 22
[3] Chérif Amrouche and Vivette Girault. Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J., 44(119)(1):109-140, 1994. 6, 7, 22
[4] Hantaek Bae and James P Kelliher. Propagation of regularity of level sets for a class of active transport equations. Preprint, 2019. 24
[5] R. Benedetti, R. Frigerio, and R. Ghiloni. The topology of Helmholtz domains. Expo. Math., 30(4):319375, 2012. 11
[6] Luigi C. Berselli and Placido Longo. Classical solutions for the system curl $v=g$, with vanishing Dirichlet boundary conditions. Discrete Contin. Dyn. Syst. Ser. S, 12(2):215-229, 2019. 3
[7] M. E. Bogovskii. Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR, 248(5):1037-1040, 1979. 3, 7, 8, 14
[8] M. E. Bogovskiĭ. Solutions of some problems of vector analysis, associated with the operators div and grad. In Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, volume 1980 of Trudy Sem. S. L. Soboleva, No. 1, pages 5-40, 149. Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1980. 3, 7, 8, 14
[9] Wolfgang Borchers and Hermann Sohr. On the equations rot $v=g$ and div $u=f$ with zero boundary conditions. Hokkaido Math. J., 19(1):67-87, 1990. 2, 3, 7, 8, 12, 14, 23, 24, 25
[10] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. 14, 16
[11] Jason Cantarella, Dennis DeTurck, and Herman Gluck. Vector calculus and the topology of domains in 3-space. Amer. Math. Monthly, 109(5):409-442, 2002. 11
[12] Jean-Yves Chemin. A remark on the inviscid limit for two-dimensional incompressible fluids. Comm. Partial Differential Equations, 21(11-12):1771-1779, 1996. 24
[13] Jean-Yves Chemin. Perfect incompressible fluids, volume 14 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. 18
[14] Philippe G. Ciarlet and Patrick Ciarlet, Jr. Another approach to linearized elasticity and a new proof of Korn's inequality. Math. Models Methods Appl. Sci., 15(2):259-271, 2005. 22
[15] Alberto Enciso, M. Ángeles García-Ferrero, and Daniel Peralta-Salas. The Biot-Savart operator of a bounded domain. J. Math. Pures Appl. (9), 119:85-113, 2018. 18
[16] G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Springer Monographs in Mathematics. Springer, New York, second edition, 2011. Steady-state problems. 4, 5, 6, 7, 8, 21, 22
[17] Peter B. Gilkey. Invariance theory, the heat equation, and the Atiyah-Singer index theorem, volume 11 of Mathematics Lecture Series. Publish or Perish, Inc., Wilmington, DE, 1984. 11
[18] Vivette Girault and Pierre-Arnaud Raviart. Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms. $4,5,6,7,16,17$
[19] Victor Guillemin and Alan Pollack. Differential topology. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. 30
[20] Mihaela Ignatova, Gautam Iyer, James P. Kelliher, Robert L. Pego, and Arghir D. Zarnescu. Global existence for two extended Navier-Stokes systems. Commun. Math. Sci., 13(1):249-267, 2015. 6
[21] James P. Kelliher. Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM Math Analysis, 38(1):210-232, 2006. 25
[22] James P. Kelliher. Vanishing viscosity and the accumulation of vorticity on the boundary. Communications in Mathematical Sciences, 6(4):869-880, 2008. 2, 12
[23] Srinivasan Kesavan. On Poincaré's and J. L. Lions' lemmas. C. R. Math. Acad. Sci. Paris, 340(1):27-30, 2005. 22
[24] Sorin Mardare. On Poincaré and de Rham's theorems. Rev. Roumaine Math. Pures Appl., 53(5-6):523541, 2008. 22
[25] Dorina Mitrea, Marius Mitrea, and Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Commun. Pure Appl. Anal., 7(6):12951333, 2008. 2
[26] G. Schwarz. The existence of solutions of a general boundary value problem for the divergence. Math. Methods Appl. Sci., 17(2):95-105, 1994. 2
[27] Günter Schwarz. Hodge decomposition - a method for solving boundary value problems, volume 1607 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1995. 3, 4, 17, 26, 27, 29, 30
[28] J. Simon. On the identification $H=H^{\prime}$ in the Lions theorem and a related inaccuracy. Ric. Mat., 59(2):245-255, 2010. 4, 9, 10, 11, 15
[29] Elias M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970. 24
[30] Roger Temam. Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis, Reprint of the 1984 edition. 5, 31
[31] Wolf von Wahl. On necessary and sufficient conditions for the solvability of the equations rot $u=\gamma$ and $\operatorname{div} u=\varepsilon$ with u vanishing on the boundary. In The Navier-Stokes equations (Oberwolfach, 1988), volume 1431 of Lecture Notes in Math., pages 152-157. Springer, Berlin, 1990. 2
${ }^{1}$ Department of Mathematics, University of California, Riverside, 900 University Ave., Riverside, CA 92521, U.S.A.

E-mail address: kelliher@math.ucr.edu

[^0]: ${ }^{1}$ By a distribution space we mean any function space allowing for well-defined weak derivatives up to at least some finite order. Hence, we need not view the spaces as subspaces of distributions, which avoids the need to deal with their topology. For our purposes, a distribution space will always be a subspace of a Sobolev space.

[^1]: ${ }^{2}$ See Definition IV.1.1, Remark IV.1.1, (IV.1.3), Lemma IV.1.1 in [16], and note the sign change, since Galdi solves $\Delta v-\nabla q=f$.

[^2]: ${ }^{3}$ By doing this, we would be choosing a pressure arbitrarily; see the next paragraph in the text.

[^3]: ${ }^{4}$ If, in $2 \mathrm{D}, \nabla^{\perp}$ is defined as ∇ rotated clockwise 90°; we have used the counterclockwise convention, which gives curl $u=\Delta \psi$.

[^4]: ${ }^{5}$ Ultimately, this relies upon the divergence operator mapping $H_{0}^{1}(\Omega)^{d}$ onto $L^{2}(\Omega)$, itself a non-trivial result.

[^5]: ${ }^{6}$ The solid lines indicate the maps that commute; the dashed lines indicate maps in the reverse direction that are not the inverses of those in the solid lines

