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Abstract. In 1990, Von Wahl and, independently, Borchers and Sohr showed that a
divergence-free vector field u in a 3D bounded domain that is tangential to the bound-
ary can be written as the curl of a vector field vanishing on the boundary of the domain.
We extend this result to higher dimension and to Lipschitz boundaries in a form suitable
for integration in flat space, showing that u can be written as the divergence of an antisym-
metric matrix field. We also demonstrate how obtaining a kernel for such a matrix field is
dual to obtaining a Biot-Savart kernel for the domain.
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Constructive Version with Digressions

This version includes Sections 3, 6, and 9 to 11, along with a few words in Section 1.
These are digressions, not intended for publication (at least, not in their present form).
This version includes a constructive, more geometric (and much longer) approach to
obtaining the stream function in Section 12. It also includes Appendices A and B.

Blue italicized text in smaller fonts contains parenthetical comments or details of
proofs not intended for publication.

1. Overview

Let u be a divergence-free vector field on a bounded Lipschitz domain Ω ⊆ Rd, d ≥ 2, that
is tangential to the boundary. For a simply connected domain, it is well known that in two
dimensions, u = ∇⊥ψ := (−∂2ψ, ∂1ψ) for a stream function, ψ, vanishing on the boundary.
It is also well known that in three dimensions, we can write u = curlψ, where now the vector
potential ψ is a divergence-free vector field tangential to the boundary. Perhaps somewhat
less well-known is that ψ can also be chosen (non-uniquely) to vanish on the boundary, though
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sacrificing the divergence-free condition. This 3D form of the vector potential was developed
in [9, 31], where it is studied in Sobolev, Hölder spaces, for C1,1, C∞ boundaries, respectively.

In higher dimension, we can no longer use a vector field as the potential; instead, we will
use an antisymmetric matrix field A vanishing on the boundary, for which u = divA, the
divergence applied to A row-by-row. This was the manner it was utilized in [22], without,
however, the key antisymmetric condition.

Our main result is Theorem 1.1.

Theorem 1.1. Let H be the space of divergence-free vector fields on Ω that are tangential to
the boundary and that have L2 coefficients. Let Hc be the closed subspace of curl-free vector
fields (see (4.1)) in H, let H0 be its orthogonal complement in H, and let

X0 := {A ∈ H1
0 (Ω)

d×d : A antisymmetric}.
Then H0 = divX0, and there exists a bounded linear map S : H0 → X0 with divSu = u.

Specializing to d = 2, 3, we can write

H0 =

{
∇⊥H1

0 (Ω), d = 2,

curl3H
1
0 (Ω)

3, d = 3.

Because the term matrix potential is commonly used in the literature for other purposes,
we will adopt the 2D terminology for all dimensions, calling A the stream function for u.

Closely connected to stream functions is the Hodge decomposition of L2-vector fields on
Ω. Indeed, one form of the Hodge decomposition in 3D is

H = Hc ⊕ curl(H ∩H1(Ω)3).

That is, each element of H0 := H⊥
c is the image of a classical, divergence-free vector potential

tangential to the boundary. Moreover, for any u ∈ H0, the boundary value problem{
curlψ = u in Ω,

ψ = 0 on ∂Ω
(1.1)

is (non-uniquely) solvable, and gives the 3D form of the stream function in Theorem 1.1.
In fact, solving the analog of (1.1) in any dimension in the more general setting of an

oriented manifold with boundary was worked out by Schwarz in [26]. He shows that for such
a manifold with C1,1 boundary, given a 1-form α having L2-regularity and vanishing normal
component, the boundary value problem{

δβ = α on M,

β|∂M = 0 on ∂M

(δ is the codifferential) is solvable for a 2-form having H1-regularity if and only if∫
M
α ∧ ∗λ = 0 for all λ ∈ H1

N (Ω).

Here, H1
N (Ω) is the space of harmonic fields having vanishing normal component, the analog

of Hc, and the integral condition on α defines the analog of H0. (Appendix A has a more
detailed account.)

Schwarz’s result is not restricted to 1-forms, but holds for k-forms and also allows non-zero
boundary values. It is restricted, however, to C1,1 boundaries. For manifolds embedded in
Rd, this restriction is loosened in [25], which applies to boundaries even less regular than
Lipschitz. The authors show that, given an (ℓ− 1)-form α for any 0 ≤ l ≤ d− 1, there exists
an ℓ-form β having prescribed boundary value for which δβ = α. They assume, however,
that the (ℓ− 1)-st Betti number vanishes. Since we need such a result for ℓ = 2, this means
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that the first Betti number must vanish, which means that Ω must be simply connected, an
assumption we wish to avoid.

We present our derivation of a stream function here, therefore, because it applies to non-
simply connected domains having only a Lipschitz continuous boundary. Moreover, we obtain
the stream function non-constructively, using simple functional analytic arguments, avoiding
entirely the language of differential forms, making it more accessible and self-contained for
our intended primary audience of analysts working in flat space.

Central to our approach is the fact that the divergence operator maps vector fields in
H1

0 (Ω)
d onto L2

0(Ω), the space of L2 functions with mean zero. For arbitrary domains, this

is a result of Bogovskĭi [7, 8] (see Lemma 2.11, below). Bogovskĭi produces an integral kernel
for solving the problem div u = f in a star-shaped domain. This kernel and adaptations
of it have been used in other approaches to Theorem 1.1 in 3D, such as [6] for star-shaped

domains, but we use Bogovskĭi’s result as a “black box,” for with it, we can easily obtain
Theorem 1.1 except for the key antisymmetric condition on the stream function.

Nevertheless, the partially constructive 3D approach taken in [9] can be adapted, using
aspects of the geometric approach taken in [27], to obtain the same result. We present this
approach in Section 12. It relies, however, upon two lemmas that hold true for manifolds in
Rd with smooth boundary, but whose proofs for Lipschitz boundaries do not, as far as the
author can determine, appear in the literature. Hence, this approach is incomplete.

We also present in Appendix A an overview of the results as presented in [27] as regards the
Hodge decomposition and what we are calling stream functions in the language of differential
forms, making the connection with the “flat space” approach we have taken.

We assume that Ω is a bounded, connected, open subset of Rd, d ≥ 2, with Lipschitz
boundary, ∂Ω. We define the L2-based Sobolev spaces, Hk(Ω) and Hk

0 (Ω), for nonnegative k
in the usual way (the boundary is regular enough that all standard definitions are equivalent).
Identifying L2 with its own dual, we also define the dual spaces, H−k(Ω) := Hk

0 (Ω)
′.

Defined this way, H−1 is what we will call an abstract dual space; that is, it is simply the
space of all continuous linear functionals on a given Banach space (H1

0 , in this case). The
usual realization of H−1 as what we will call a concrete dual space—by which me mean a
specific, presumably useful space that is isometrically isomorphic to the abstract dual space—
is as a subspace of distributions. This realization requires, however, making the identification
of L2 with its own (abstract) dual space (L2)′, and leads to the continuous embeddings,

D(Ω) ⊊ H1
0 (Ω) ⊊ L2(Ω) = L2(Ω)′ ⊊ H−1(Ω) ⊊ D(Ω)′. (1.2)

We then define weak derivatives of functions in L2 in the usual way. So, for instance, given
f in L2, ∂if is that element of H−1 for which

(∂if, φ) = −(f, ∂iφ) for all φ ∈ D(Ω) := C∞
0 (Ω).

Defined this way, it is classical that any element of H−1 is a sum of an L2 function and the
divergence of a vector field in L2. Another concrete manifestation of this definition of H−1

is given in Proposition 2.10, and there are many others.
We will work with the classical function spaces, H and V , of incompressible fluid mechanics:

H := {u ∈ L2(Ω)d : div u = 0, u · n = 0},

V := {u ∈ H1
0 (Ω)

d : div u = 0}.
(1.3)

The divergence here is defined in terms of weak derivatives, and u ·n is defined as an element

of H− 1
2 (∂Ω) in terms of a trace (see Lemma 2.2), n being the outward unit normal vector.

Both H and V are Hilbert spaces with norms and inner products as subspaces of L2 and H1
0 .



4 JAMES P. KELLIHER

By virtue of the Poincaré inequality, we can use

(f, g)H1
0
:= (∇f,∇g)L2 , ∥f∥H1

0
:= ∥∇f∥L2 ,

(u, v)V := (∇u,∇v)L2 , ∥u∥V := ∥∇u∥L2 .

Because ∂Ω is Lipschitz, we know that H1
0 (Ω) is both the closure in the H1 norm of C∞

0 (Ω)
and the subspace of all elements of H1(Ω) whose trace on the boundary vanishes. It follows
in the classical way that we can equivalently characterize H as

H = closure of V in the L2 norm. (1.4)

(Or we could use the closure of V = C∞
0 (Ω) ∩ V in the L2 norm.)

Now, H is, by its very definition, a subspace of L2(Ω)d and V is a subspace of H1
0 (Ω)

d.
Hence, any number of derivatives of functions lying in them will yield functions lying in some
negative Sobolev space. That is, they are distribution spaces1: H,V ⊆ D′(Ω).

With these very cursory definitions out of the way, we give in Section 2 some further
necessary background material drawn mostly from [16, 18]. Before moving on to our main
result, however, we make a detour in Section 3 to explore a cautionary tale of J. Simon’s [28]
about how the dual space V ′ is not a distribution space. The tools we presented in Section 2
to construct our stream function turn out to be well suited to describe, in a very concrete
manner, the nature of these difficulties. In Section 4, we prove our main result, Theorem 1.1,
extending it to the space V in Section 5. In Section 6, we prove that the adjoint of div as
an operator on antisymmetric d× d matrices in H1

0 is −(1/2) curl. In Section 7 we show how
the classical 3D vector potentials can be obtained from the stream function of Theorem 1.1.

In Section 8 we demonstrate that the Biot-Savart law, which recovers a vector field in
H0 from its vorticity (curl), is, in a precise way, dual to the problem of obtaining a stream
function from a velocity field in H0. We show that if there is an integral kernel associated
with one of these problems it is also the kernel associated with the other problem.

In 3D, there is a further, useful, though somewhat non-standard, decomposition of H, that
follows as a corollary of Theorem 1.1, and which we describe in Section 9. In Section 10, we
give an alternate characterization of the spaceH and, for simply connected domains, a parallel
characterization of ∆V as a subspace of H−1(Ω)d. As an application of our main result, in
Section 11 we use the stream function developed in Theorem 5.2 to prove Poincaré’s lemma
as a simple consequence of de Rham’s lemma. In Section 12 we present a more constructive,
geometric proof of Theorem 1.1.

In Appendix A we present the Hodge-Morrey decomposition of L2 differential forms cor-
responding to the space H by using the results of [27], and give a few results regarding
differential forms that we need in the proof of Theorem 1.1. Finally, in Appendix B, we
present, for comparison, an outline of the more classical characterization of the space H0.

Throughout, we follow the convention that ∥·∥ := ∥·∥L2(Ω) or ∥·∥H .

We write (u, v) for the inner product in L2 or H. We write vi for the i-th coordinate of
a vector v; Ai

j for the element in the i-th row, j-th column of a matrix A; Ai for the i-th
row of A; Aj for the j-th column of A. We follow the convention that repeated indices are
implicitly summed, even when both indices are superscripts or both are subscripts.

1By a distribution space we mean any function space allowing for well-defined weak derivatives up to at least
some finite order. Hence, we need not view the spaces as subspaces of distributions, which avoids the need to
deal with their topology. For our purposes, a distribution space will always be a subspace of a Sobolev space.



STREAM FUNCTIONS 5

2. Background material

Here, we present a number of tools we will use in what follows. The results themselves are
classical, but their form and proofs are based primarily upon Galdi’s invaluable introductory
chapters in [16] along with material from the equally invaluable [18]. Table 1 converts some
of Galdi’s notation to the notation we are using, which may be useful for the reader who
wishes to examine our explicit references to Galdi’s text.

Table 1. Some notation in Galdi’s [16]

Galdi Our notation
D(Ω) V = V ∩ C∞

0 (Ω): divergence-free test functions
H2 the space H defined in (1.3)
H1 or H1

2 H ∩H1(Ω), with H as defined in in (1.3)

Dm Ḣm(Ω), the homogeneous Sobolev space

Dm
0 Ḣm

0 (Ω), the homogeneous Sobolev space

(for us, Ω is bounded, so Ḣm
0 (Ω) = Hm

0 (Ω))

Definition 2.1. As in [30], we define the space

E(Ω) := {u ∈ L2(Ω)d : div u ∈ L2(Ω)},
endowed with the norm, ∥u∥+ ∥div u∥. We also define the space,

Ẽ(Ω) := {u ∈ L2(Ω)3 : curlu ∈ L2(Ω)},

endowed with the norm, ∥u∥+ ∥curlu∥. We use Ẽ(Ω) only in 3D.

We frequently integrate by parts using Lemma 2.2 (see Theorem 2.5 and (2.17) of [18]):

Lemma 2.2. There exists a normal trace operator from E(Ω) to H−1/2(∂Ω) that continuously
extends u 7→ u ·n|∂Ω from C(Ω) to E(Ω). We will simply write u ·n rather than naming this
trace operator. For all u ∈ E(Ω), φ ∈ H1(Ω),

(u,∇φ) = −(div u, φ) +

∫
∂Ω

(u · n)φ,

where we have written (u · n, φ)H−1/2(∂Ω),H1/2(∂Ω) in the form of a boundary integral.

In 3D, we also have the following (see Theorem 2.11 of [18]):

Lemma 2.3. In 3D, there exists a tangential trace operator from Ẽ(Ω) to H−1/2(∂Ω) that

continuously extends u 7→ u × n|∂Ω from C(Ω) to Ẽ(Ω). We will simply write u × n rather

than naming this operator. For all u ∈ Ẽ(Ω), φ ∈ H1(Ω),

(curlu, φ) = (u, curlφ) +

∫
∂Ω

(u× n) · φ.

Poincaré’s inequality holds not just for V , but for the larger space H ∩H1(Ω)d:

Lemma 2.4. There exists a constant C = C(Ω) such that for all u ∈ H ∩H1(Ω)d,

∥u∥ ≤ C ∥∇u∥ .

Proof. For any u ∈ H,∫
Ω
uj =

∫
Ω
u · ∇xj = −

∫
Ω
div uxj +

∫
∂Ω

(u · n)xj = 0.

Hence, u has mean value zero, so Poincaré’s inequality holds in the form stated. □
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The well-posedness of solutions to the (stationary) Stokes problem is a classical, deep
result, that lies at the heart of much of what we do. We will rely heavily upon the following
version of it:

Proposition 2.5. For any f ∈ H−1(Ω)d, the (stationary) Stokes problem,
−∆v +∇q = f in Ω,

div v = 0 in Ω,

v = 0 on Ω,

(2.1)

has a unique (up to an additive constant for q) weak solution, (v, q) ∈ H1(Ω)d ×L2(R). (See
Definition 2.12 for a precise definition of a weak solution.) Moreover,

∥v∥H1 + ∥q∥ ≤ C ∥f∥H−1 .

Proof. See, for instance, Proposition 4.2 of [3] or Theorem IV.1.1 of [16]. □

The well-posedness of the Stokes problem quickly yields a proof of the version of de Rham’s
lemma in Proposition 2.6. (This makes de Rham’s lemma appear quite simple, yet de Rham’s
lemma is generally used in the proof of the well-posedness of the Stokes problem, as it is in
the proof in [16] that we referenced. This perceived simplicity, then, is merely a consequence
of the presentation, and hardly a self-contained proof.)

Proposition 2.6 (de Rham’s Lemma). A vector field f ∈ H−1(Ω) is the gradient of an L2

function if and only if

(f, v) = 0 for all v ∈ V.

Proof. The forward direction is immediate. For the converse, given f ∈ H−1(Ω)d, let (v, q) ∈
V × L2(Ω) be the solution to (2.1) given by Proposition 2.5. Since v ∈ V , we then have

0 = (f, v) = (−∆v, v) + (∇q, v) = ∥∇v∥2 .

Hence, v = 0, so f = ∇q. □

Proposition 2.6 does not say that if f vanishes in V ′ then it is a gradient, for f must be
an element in H−1. Interpreting it that way is the origin of Simon’s trap, which we explore
in the next section.

Key tools for us will be the decomposition of vector fields in H1
0 (Ω) given in Proposition 2.7

and the surjectivity of the divergence operator in Lemma 2.11. These results employ the space

L2
0(Ω) := {f ∈ L2(Ω):

∫
Ω
f = 0}.

Proposition 2.7. The orthogonal decomposition, H1
0 (Ω)

d = V ⊕ V ⊥, holds with

V ⊥ = {z ∈ H1
0 (Ω)

d : ∆z = ∇q for some q ∈ L2(Ω)} (2.2)

and ∥PV ⊥φ∥ ≤ C ∥divφ∥. Moreover, the orthogonal projection PV : H1
0 (Ω)

d → V given by
φ = PV φ+ z, where (z, q) ∈ H1

0 (Ω)
d × L2(Ω) is a weak solution to
−∆z +∇q = 0 in Ω,

div z = divφ in Ω,

z = 0 on Ω.

(2.3)

Proof. This decomposition is given in Corollary 2.3 p. 23 of [18] (also see Lemma 2.2 of [20]).
We give a proof here for completeness.
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Starting with φ ∈ H1
0 (Ω)

d, set g = divφ ∈ L2(Ω) and solve (non-uniquely), divw = g for
w ∈ H1

0 (Ω). That we can solve this is a matter we will return to in Section 4; specifically, see
Lemma 2.11. We have, ∥w∥H1(Ω) ≤ C ∥g∥, as shown, for instance, in Exercise III.3.8 of [16].

Next let f = ∆w ∈ H−1(Ω)d, and let (v, q) be the unique solution to (2.1). Set z = v +w
and observe that −∆z + ∇q = f − ∆w = 0, div z = g = divφ, and z = 0 on ∂Ω. Hence,
(z, q) is a solution to (2.3), and we see that PV φ = φ− z. Moreover,

(PV φ, z)V = (∇PV φ,∇z) = −(∆z, PV φ)H−1,H1
0
= −(∇q, PV φ)H−1,H1

0
= 0.

Hence, we see that z ∈ V ⊥, so V ⊥ contains the set on the righthand side of (2.2).
It remains to show that V ⊥ contains only the set on the righthand side of (2.2). To see

this, suppose that z ∈ V ⊥. Let u ∈ V be arbitrary. Then

(u, z)V = (∇u,∇z) = (∆z, u)H−1,H1
0
= 0.

Thus, ∆z = ∇q for some q ∈ L2(Ω) by Proposition 2.6. The bound ∥PV ⊥φ∥ ≤ C ∥divφ∥
follows, for instance, from the Stokes problem bound in Exercise IV.1.1 of [16]. □

We could have directly used the solution to (2.3) to obtain the decomposition of H1
0 (Ω)

d,
but we wished to reduce the problem to the classical Stokes problem and (non-unique) inver-
sion of the divergence operator.

Remark 2.8. Going a little beyond (2.2), there is a bijection between ∇L2(Ω) and V ⊥ that
comes from solving, for a given q ∈ L2(Ω), the elliptic problem, ∆zi = ∂iq in Ω, zi = 0 on
∂Ω for each i. We never, however, make use of this bijection.

Remark 2.9. Corollary 2.3 p. 23 of [18] gives the decomposition in Proposition 2.7, also
using, as we did, a solution to the Stokes problem to obtain it. Interestingly, Amrouche
and Girault in [3] invert this approach, using the decomposition to prove the existence of a
solution to the Stokes problem. They then go on to give a proof of the decomposition that
does not require knowledge of the existence of a solution to the Stokes problem (though it
uses, and proves, that any solution satisfies certain estimates). All this is done in W k,p

spaces for p ∈ (1,∞) and goes far beyond our purposes here.

Note that the solution of (2.1) can be rephrased as follows:

Proposition 2.10.

H−1(Ω)d = ∆V ⊕∇L2(Ω) = ∆V ⊕∆V ⊥ = ∆H1
0 (Ω)

d.

Proof. Let f ∈ H−1(Ω)d and let (v, q) solve (2.1). This gives H−1(Ω)d = ∆V + ∇L2(Ω),
and the uniqueness of the solution shows that the decomposition is a direct sum. Then (2.2)
shows that ∆V ⊥ = ∇L2(Ω) = ∇L2(Ω), hence also H−1(Ω)d = ∆V ⊕∆V ⊥ = ∆(V + V ⊥) =
∆H1

0 (Ω)
d, where we invoked Proposition 2.7. □

Lemma 2.11. [Bogovskĭi [7, 8]] For any f ∈ L2
0(Ω) there exists v ∈ H1

0 (Ω)
d for which

div v = f . We can choose the (non-unique) solutions in such a way as to define a bounded
linear operator R : L2

0(Ω) → H1
0 (Ω)

d for which ∥∇Rf∥ ≤ C ∥f∥. Moreover, we can assume
that R maps into the space V ⊥.

Proof. For the proof of all but the last sentence, see Bogovskĭi [7, 8] or Theorem 2.4 of [9].
Then, for any f ∈ L2

0(Ω), div(PV ⊥Rf) = divRf = f and

∥∇(PV ⊥Rf)∥ = ∥PV ⊥Rf∥H1
0 (Ω)d ≤ ∥Rf∥H1

0 (Ω)d = ∥∇Rf∥ .

So because PV ⊥ is a continuous linear operator, we can replace R by PV ⊥R. □
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In fact, Bogovskĭi in [7, 8] showed that the divergence is surjective for an arbitrary domain
in Rd. See, for instance, the historical comments on pages 208-209 of [2].

The difficult part of proving Lemma 2.11 is obtaining the surjectivity of the divergence as
a map from H1

0 (Ω)
d to L2

0(Ω): once that is obtained (or even just that the range of div is
closed), the bounded linear (partial) inverse map R follows from basic functional analysis, by
arguing much as we do in the proof of Theorem 1.1 in Section 4. (And see Remark 4.8.)

Much more can be said about the higher regularity of Rf when f is more regular. Moreover,
it is shown in [9] also that ∥Rf∥ ≤ C ∥f∥H−1 , though for us the weaker bound ∥Rf∥H1

0
≤

C ∥f∥, which follows from Lemma 2.11 and Poincaré’s inequality, will suffice.
Moreover, since PV ⊥ does not change the divergence of a vector field, the constant in the

inequality in Lemma 2.11 is at least as small as the constant in Proposition 2.7. (This is
a little misleading, however, as Lemma 2.11 is generally used to prove the estimates on the
Stokes problem that lead to the inequality in Proposition 2.7.)

From R of Lemma 2.11, we define a matrix-valued operator, which we continue to call R,
by applying R on each component of any vector in L2

0(Ω)
d:

R : L2
0(Ω)

d → H1
0 (Ω)

d×d, (Ru)i := Rui. (2.4)

We have been somewhat formal in our proof of Proposition 2.7, as we never gave a definition
of a weak solution to (2.3) or even to the special case in (2.1). For this purpose, we unwind
the definitions and results in [16]2, leading to the following:

Definition 2.12. The pair (z, q) ∈ H1
0 (Ω)× L2(Ω) is a weak solution to (2.3) if z = v + w,

where v, w ∈ H1
0 (Ω), divw = divφ, and

(∇v,∇ψ) = ⟨f, ψ⟩ for all ψ ∈ V,
(∇v,∇α) = ⟨f, α⟩+ (q,divα) for all α ∈ C∞

0 (Ω),

where f = ∆w and V := V ∩C∞
0 (Ω) (this is what Galdi, very confusingly, calls D(Ω)). Also,

⟨·, ·⟩ is the pairing between H−1(Ω) and H1
0 (Ω).

Now, since

(∇v,∇ψ) = (∇z,∇ψ)− (∇w,∇ψ) = (∇z,∇ψ) + (∆w,ψ) = (∇z,∇ψ) + (f, ψ)

and, similarly,

(∇v,∇α) = (∇z,∇α) + (f, α),

we see that

(∇z,∇ψ) = 0 for all ψ ∈ V,

(∇z,∇α) = (q,divα) for all α ∈ C∞
0 (Ω).

(2.5)

In the first equality we used the density of V in V . Although f is eliminated in (2.5), q still
appears, and q ultimately derives from f . Hence, we cannot use these identities together to
define a weak solution.

We have the following simple proposition:

Proposition 2.13. If u ∈ V then for all φ ∈ H1
0 (Ω),

(∆u, φ) = (∆u, PV φ).

If u ∈ V ⊥ then for all φ ∈ H1
0 (Ω),

(∆u, φ) = (∆u, PV ⊥φ).

2See Definition IV.1.1, Remark IV.1.1, (IV.1.3), Lemma IV.1.1 in [16], and note the sign change, since Galdi
solves ∆v −∇q = f .
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Proof. Let φ ∈ H1
0 (Ω), which we can write as φ = PV φ+ z, as in Proposition 2.7. For u ∈ V ,

(∆u, φ) = (∆u, PV φ) + (∆u, z) = (∆u, PV φ)− (∇u,∇z) = (∆u, PV φ)

by (2.5)1.
For u ∈ V ⊥, we know by Proposition 2.7 that ∆u = ∇q for some q ∈ L2(Ω). Hence,

(∆u, φ) = (∆u, PV φ) + (∆u, z) = (∇q, PV φ) + (∆u, PV ⊥φ) = (∆u, PV ⊥φ). □

A simple and immediate consequence of Proposition 2.13 is the following:

Corollary 2.14. Let v ∈ ∆V . Then for all φ ∈ H1
0 (Ω),

(v, φ) = (v, PV φ).

Moreover,

(v, ψ) = 0 for all ψ ∈ V ⇐⇒ (v, φ) = 0 for all φ ∈ H1
0 (Ω).

Remark 2.15. We might interpret Corollary 2.14 as saying that ∆V is a near proxy for V ′

as a distribution space, touching upon the subject of the next section.

3. Dual spaces and Simon’s trap

In the study of incompressible fluid mechanics, one sometimes makes the identification of H
with H ′ rather than L2 with (L2)′, as we described in Section 1. The primary reason is that
it allows for the use of some powerful functional analysis tools originating largely in the work
of J. L. Lions in the 1950s and 1960s. These tools are used in the proof of the existence of
solutions to PDEs, linear and nonlinear.

The identification of H with H ′, however, makes it impossible to treat V ′ as a distribution
space. This is as detailed by J. Simon in [28], as a consequence of a general result. We will
return to Simon’s paper in a moment, but let us first look at the problem explicitly as it
relates to V ′ to identify concretely the point of failure.

First, observe that for any linear functional f ∈ V ′, there exists, by the Riesz representation
theorem, a unique u ∈ V ⊆ H1

0 (Ω)
d for which

(f, ψ)V ′,V = (u, ψ)V for all ψ ∈ V.

But,

(u, ψ)V = (u, ψ)H1
0
= (∇u,∇ψ) = −(∆u, ψ)H−1,H1

0
.

Hence, the mapping γ : f 7→ ∆u is an isometric isomorphism between V ′ as an abstract dual
space and a concrete manifestation of it as a subspace of H−1 (cf., Corollary 2.14). Or, we
could view V ′ as composed of equivalence classes in H−1(Ω)d where u1 ∼ u2 if u1 − u2 = ∇q
for some q ∈ L2(Ω).

Yet, we cannot employ either of these isomorphisms in an effective manner that allows for
the usual, free “Calculus” operations of distribution or Sobolev spaces, such as “integration
by parts.” This is because the isomorphism is completely at odds with the identification of
L2 with its (abstract) dual space, which allows such operations in the duality between H−1

and H1
0 (or as distributions).

To see this, by Proposition 2.10, any element of H−1(Ω)d can be written uniquely in the
form ∆u +∇q for some u ∈ V , q ∈ L2

0(Ω), where L
2
0(Ω) is the set of all functions in L2(Ω)

having mean zero. So fix q ∈ L2
0(Ω). Since for any ψ ∈ V , (∆u +∇q, ψ) = (∆u, ψ), we see

that ∆V +∇q, considered as a subspace of H−1(Ω)d, is also isomorphic to V ′. This simply
reflects the observation in [28] that there is not a unique element of H−1(Ω)d corresponding
to any given element of V ′.
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Now suppose we identify H with H ′. If we expect to be able to operate on constructs such
as ∆u for u ∈ V , we are at a loss, for then ∆u = ∆u+∇q as elements of some space that is to
contain V ′, or else the rules applying to “integration by parts,” as for distribution spaces of
elements of H−1, cannot apply. So, for instance, we could still define the Stokes operator as
acting on V to produce an element of V ′, but then V ′ would be little more than an abstract
dual space.

Returning to J. Simon’s [28], at the center of the difficulties with V ′ is Proposition 2 of
[28]. This proposition says that if two topological vector spaces, E and V , are subspaces of
a common space, then to make sense of V ′ ⊆ E′ as a continuous embedding we must have
both (i) E ∩ V dense in E and (ii) E ∩ V dense in V . The failure of (i) gives a non-unique
representative of elements in V ′ as an element in E′. This is the point of failure when we
apply Simon’s Proposition with E = H1

0 (Ω)
d, V = V , and E′ = H−1(Ω)d. Our observations

above are merely an explicit unravelling of where this non-uniqueness occurs if one tries to
make a concrete realization of V ′ as a distribution space.

Moreover, with the identification of L2(Ω) with L2(Ω)′ as in (1.2), even the dual space H ′

becomes problematic to work with. Given a vector field u ∈ H, each of its components are
in L2(Ω), so each component is identified with an element of L2(Ω)′. But to any element v
of L2(Ω)d, v +∇p for any p ∈ H1 acts the same as v does on any element u of H; that is,

(v, u) = (v +∇p, u) for all u ∈ H.

Hence, v and v +∇p would need to be the same element of H ′, and we see that H ′, like V ′,
cannot be treated concretely as a distribution space. The fundamental issue is the same as
for V ′: in Simon’s Proposition, while H ∩ L2(Ω)d is dense in H it is not dense in L2(Ω)d.

To summarize, if an element of H ′ or V ′ is to make sense as a distribution, it must be that
∇p = 0 for any p ∈ H1(Ω) or L2(Ω), respectively. Yet if p ∈ H1

0 (Ω), say, then ∇p ∈ L2(Ω)d

is a regular-distribution that has a value pointwise almost everywhere, which is manifestly
non-zero as long as p ̸≡ 0. So ∇p does not vanish as an element of L2(Ω)d, yet it vanishes
in the presumably containing distribution spaces H ′ and V ′. Hence, H ′ and V ′ cannot be
distribution spaces.

3.1. Navier-Stokes Equations. Let us turn now to how Simon’s trap shows up in the
classical theory of the existence of weak solutions to the Navier-Stokes equations, and try to
understand the practical impact of the difficulties he points out.

A common formulation of what it means to be a weak solution to the Navier-Stokes equa-
tion on Ω with no-slip boundary conditions is that

d

dt
(u, v) + ν(∇u,∇v)− (u⊗ u,∇v) = ⟨f, v⟩ for all v ∈ V, (3.1)

along with a condition for initial velocity inH. (Integrating this equation formally in time and
using a time-varying test function, as well as imposing an energy inequality as a condition,
yields another, closely related formulation.)

Now, suppose we want to assume, say, that f ∈ L2(0, T ;V ′). Then the forcing term in
(3.1) must be interpreted as the pairing of V with V ′; that is, ⟨f, v⟩ = ⟨f, v⟩V ′,V . Authors
then often add the parenthetical comment that (3.1) means equality in V ′. If interpreted
to mean that each side of (3.1) defines a continuous linear functional on V—the left-hand
side through integration (with no need for distributions), the right-hand side in the sense of
an element of the abstract dual space V ′ applied to a test function in V—this is perfectly
legitimate.

As Simon points out in Proposition 3 of [28], however, we cannot write

∂tu+ u · ∇u+∇p− ν∆u = f
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if we mean it as the equality of distributions, because the left-hand side is a distribution while
the right-hand side is not. Yet, of course, we could apply a test function in V and interpret
the left-hand side as a distribution, while we interpret the right-hand side as an element of
the abstract dual space V ′ (this is (3.1)). Or, we could use the isomorphism described earlier
and identify f with ∆w for some w ∈ V , and treat both sides as distributions.3

All this could be, indeed has been, made to work, but the real problem, as Simon points
out in Section 7 of [28], is that we cannot obtain a pressure if we assume that f(t) ∈ V ′.
Essentially, this is because, as we observed above, if ∇p is to have any meaning as an element
of V ′ (which, being a distribution, it does not) it equals zero; that is, all pressure gradients are
the same as elements of V ′. The simple resolution to all this is to assume that f(t) ∈ H−1(Ω)d

and avoid the use of V ′ entirely. Or, to allow a more direct physical interpretation and to
avoid some other, minor technicalities, assume that f(t) ∈ H.

4. Proof of main result

In this section we prove our main result, Theorem 1.1. We present first some imporant
existing results then establish a series of lemmas and propositions we will use in the (short)
body of the proof of Theorem 1.1, with which we close the section.

Define the subspace

Hc := {u ∈ H : curlu = 0}

of H. Here, we use the curl operator on Rd in the form,

curlu := ∇u− (∇u)T . (4.1)

That is, curlu is twice the antisymmetric gradient, the d × d matrix-valued function with
(curlu)ij = ∂ju

i− ∂iu
j . This form of the curl is convenient for integrating by parts (applying

the divergence theorem) in flat space. In 2D, we can define curlu := ∂1u
2 − ∂2u

1, the scalar
curl, and in 3D we can define it as a vector in the usual way, denoting it curl3 for clarity.

We have the following simple lemma:

Lemma 4.1. Hc ⊆ {v ∈ H : ∆v = 0}.
Proof. Let v ∈ Hc, meaning that div v = 0 and curl v = 0. Then

∆v = div∇v = div(∇v − (∇v)T ) + div(∇v)T = div curl v = 0,

since (div(∇v)T )i = ∂j∂iv
j = ∂i div v = 0. □

Hc is clearly closed, so we can define

H0 := H⊥
c ,

the orthogonal complement of Hc in H. Hence, H = H0 ⊕Hc.

Remark 4.2. Hc is finite-dimensional for a large class of domains for which ∂Ω has a finite
number of components. For smooth boundaries, this follows, for instance, from the discussion
in Section 4.1 of [17]. For special classes of 3D Lipschitz domains, Helmholtz domains of [5],
Hc (and H0) can be characterized by making “cuts” in Ω that leave the remaining domain
simply connected. This idea goes back to Helmholtz; see the historical comments in [11].

This is the definition of H0 that we will use to prove Theorem 1.1, as stated precisely in
Theorem 1.1, below. We can view Theorem 1.1 as giving a direct characterization of H0, but
there is another direct characterization most often employed in 2 and 3 dimensions in terms
of the vanishing of internal fluxes. We outline that perhaps somewhat more geometrical
characterization of H0 in Appendix B.

3By doing this, we would be choosing a pressure arbitrarily; see the next paragraph in the text.
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In [22] (Corollary 7.5), the simple tool in Lemma 4.3 was used to investigate conditions
under which solutions to the Navier-Stokes equation for incompressible fluids converge to a
solution to the Euler equations (the so-called vanishing viscosity limit).

Lemma 4.3. For any u ∈ H there exists (a non-unique) A ∈ H1
0 (Ω)

d×d such that u = divA;
that is, such that ui = ∂jA

i
j.

The idea of the proof is that a simple integration by parts as in the proof of Lemma 2.4
shows that each component of any v ∈ H lies in L2

0(Ω). But by Lemma 2.11, div maps
H1

0 (Ω)
d onto L2

0(Ω), so we can obtain each row of A independently. The proof of Lemma 4.3
is therefore quite simple, but it relies on the powerful and deep result in Lemma 2.11.

Left open in [22] was whether it could be assured that A in Lemma 4.3 is antisymmetric.
In fact, such antisymmetry can be obtained, and was obtained in 3D by Borchers and Sohr
in Theorem 2.1, Corollary 2.2 of [9], whose lowest regularity result can be stated as follows:

Lemma 4.4. Assume that d = 3 and ∂Ω is C1,1. For any u ∈ H0 there exists v ∈ H1
0 (Ω)

3

such that u = curl3 v and ∆div v = 0. Moreover, one can choose the solutions in such a way
as to define a bounded linear operator S : H0 → H1

0 (Ω)
3 with ∥∇Su∥ ≤ C ∥u∥.

To see that Lemma 4.4 provides a 3D form of an extension of Lemma 4.3 to antisymmetric
matrices, note that any 3× 3 antisymmetric matrix can be written in the form,

A =

 0 ψ3 −ψ2

−ψ3 0 ψ1

ψ2 −ψ1 0

 . (4.2)

We can define a bijection Q from a vector in R3 to an antisymmetric d×d matrix, by setting
Q(ψ) = Q(ψ1, ψ2, ψ3) to be the matrix in (4.2), and we can write that divQψ = curl3 ψ. The
claim in Theorem 1.1, then, is the natural extension of Lemma 4.4 to d ≥ 2.

The simple argument in Proposition 4.5 shows that divX0 is at least dense in H0:

Proposition 4.5. H0 = divX0.

Proof. First, we show that divX0 is a subspace of H. To see this, observe that if u ∈ divX0

then ui = divAi = ∂jA
i
j . Hence, div u = ∂ijA

i
j = −∂ijAj

i = −∂jiAi
j = −∂ijAi

j = −div u, so

div u = 0. (That div u = div divA = 0 is a reflection of δ2 = 0 when A is expressed as a
2-form as in Appendix A.)

Moreover, since Ai
j is constant along the boundary, ∇Ai

j is normal to the boundary, so we

can write, ∇Ai
j = αi

jn, where

αi
j =

∂Ai
j

∂n
= −

∂Aj
i

∂n
= −αj

i .

Then,

∂jA
i
j = ∇Ai

j · ej = αi
jn · ej = αi

jn
j

so, using that αi
j = −αj

i ,

u · n = divA · n = divAini = ∂jA
i
jn

i = αi
jn

jni = −αj
in

jni = −αi
jn

jni = −u · n,
so u · n = 0. We conclude that divX0 ⊆ H.

Here is the proof that divX0 ⊆ H specifically in three dimensions, which gives maybe a
little extra insight. We have,

A =

 0 f g
−f 0 h
−g −h 0

 ,
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so ψ = Q−1A = (h,−g, f), and
u = curl3 ψ = (∂2f + ∂3g,−∂1f + ∂3h,−∂1g − ∂2h).

We then automatically have

0 = div u = ∂12f + ∂13g − ∂21f + ∂23h− ∂31g − ∂32h,

as required. Also,

0 = u · n = curl3 ψ · n = (∂2f + ∂3g)n
1 + (−∂1f + ∂3h)n

2 + (−∂1g − ∂2h)n
3.

But A, and so f , g, and h, are constant along each boundary component. This means
that ∇f is parallel to n, so that

∂jf = ∇f · ej =
∂f

∂n
nj

and similarly,

∂jg =
∂g

∂n
nj , ∂jh =

∂h

∂n
nj .

Thus,

(∂2f + ∂3g)n
1 + (−∂1f + ∂3h)n

2 + (−∂1g − ∂2h)n
3

= (
∂f

∂n
n2 +

∂g

∂n
n3)n1 + (− ∂f

∂n
n1 +

∂h

∂n
n3)n2 + (− ∂g

∂n
n1 − ∂h

∂n
n2)n3 = 0.

We now show that (divX0)
⊥ = Hc. Let A ∈ X0 and v ∈ H be arbitrary. Then u := divA

is an arbitrary element of divX0. Applying Lemma 2.2 and using A = 0 on ∂Ω,

(u, v) = (divA, v) = −(A,∇v) = −(A,∇v − (∇v)T )− (A, (∇v)T )
= −(A, curl v)− (AT ,∇v) = −(A, curl v) + (A,∇v).

Hence, (A,∇v) = (1/2)(A, curl v), and because both A and curl v are antisymmetric,

(u, v) = −(A,∇v) = −1

2
(A, curl v) = −

∑
i<j

Ai
j(curl v)

i
j .

We can choose the components Ai
j independently for i < j, andH1

0 (Ω) is dense in L
2(Ω), so we

conclude that (u, v) = 0 for all u ∈ divX0 if and only if curl v = 0; that is, if and only if v ∈ Hc.
It then follows that (divX0)

⊥ = Hc so that, in fact, divX0 = ((divX0)
⊥)⊥ = H⊥

c = H0. □

As we see in the proof of Proposition 4.5, the antisymmetry of A ∈ X0 insures that
divA · n = 0 on ∂Ω. This need not be true without a symmetry assumption, but if divA
happens to be in H so does AT , as we see in Lemma 4.6.

Lemma 4.6. Let A ∈ H1
0 (Ω)

d×d, with no symmetry assumption, but with divA = u ∈ H.
Then divAT is also in H.

Proof. We have, 0 = div u = div divA = ∂i∂jA
i
j = ∂i∂jA

j
i = div divAT . Decomposing A

into its symmetric and antisymmetric parts, AS = (1/2)(A+AT ) and AA = (1/2)(A−AT ) ∈
X0, it follows that div divAS = 0 and, from Proposition 4.5, that divAA ∈ H0. Hence,
divAT = divA− 2 divAA ∈ H. □

The operator R of (2.4) allows us to easily establish that divX0 actually yields all of H0:

Proposition 4.7. H0 = divX0.

Proof. We have, divX0 = div(R divX0) = div Y , where Y = R divX0. It follows from
Proposition 4.5 that div Y is dense in H0. If we can show that it is closed, then we are done.

Let (un) be a sequence in div Y converging to u in H0. Then un = divBn with Bn = Run
in Y , and we have from Lemma 2.11 that ∥∇Bn∥ ≤ C ∥un∥. Since (un) converges, it is
Cauchy and hence (Bn) is Cauchy and so converges to some B ∈ Y with u = divB. This
shows that H0 = div Y = divX0. □
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It remains only to obtain the bounded linear map S of Theorem 1.1. Examining the proof
of Proposition 4.7, we see that Bn = Run in Y has some Dn in X0 for which R divDn = Bn,
but the convergence of (Bn) does not mean the convergence of (Dn). To surmount this
difficulty, and obtain S, we restrict the domain of div to a subspace:

Proof of Theorem 1.1. Observe that divA = divB for A,B ∈ X0 if and only if B = A+E
for some E in V d ∩X0, a closed subspace of X0. Letting Y0 = (V d ∩X0)

⊥, the orthogonal
complement of V d ∩ X0 in X0 as a Hilbert space, div : Y0 → H0 is a continuous bijection.
It follows from a corollary of the open mapping theorem (see, for instance, Corollary 2.7 of
[10]) that the inverse map, S := div |−1

Y0
, is also continuous. But this means that, ∥Su∥X0

=

∥Su∥Y0
≤ C ∥u∥H0

, giving us the bounded linear map of Theorem 1.1. □

The Baire category theorem appears through the proof of the corollary to the open mapping
theorem we applied. Hence, the constant we obtain in ∥∇Su∥ ≤ C ∥div u∥ is not effectively
computable, although we can see that C is no smaller than the constant in Lemma 2.11.

Remark 4.8. Although the adjoints to the two forms of div appearing in Lemma 2.11
and Theorem 1.1 never appear explicitly, they are, in a sense, hiding in the proofs. We
show in Section 6 that the adjoint of div : X0 → H0 is −(1/2) curl, whose null space is Hc.
Since div is a closed map, divX0 is closed if and only if it equals H⊥

c =: H0. Similarly, it can
be shown that the adjoint of div : H1

0 (Ω)
d → L2

0(Ω) is −∇, whose null space is trivial. Hence,
divH1

0 (Ω)
d is closed if only if it equals all of L2

0(Rd). Proving that the range of either version
of div is closed is the hard part of each proof, but we were able to leverage the powerful result
in Lemma 2.11 to obtain the hard part for Theorem 1.1 with minimal effort.

We avoided characterizing the space Y0 = (V d ∩X0)
⊥ explicitly, but given that the adjoint

of div : X0 → H0 is −(1/2) curl, we show in Proposition 6.3 that Y0 = {z ∈ X0 : ∆z =
curl q for some q ∈ L2

0(Ω)
d}, in analogy with Proposition 2.7. In 3D, this is Y0 = {z ∈

H1
0 (Ω)

3 : ∆z = curl3 q, q ∈ L2
0(Ω)

d}, which yields ∆divSu = 0, as in Lemma 4.4.

5. Higher regularity

Bogovskĭi in [7, 8] showed more than what we stated in Lemma 2.11 (see Theorem 2.4 of [9]):

Lemma 5.1. [Bogovskĭi [7, 8]] Let p ∈ (1,∞) and m ≥ 0 be an integer. Define Hm,p
0,0 (Ω) to

be the functions in Hm,p
0 (Ω) having mean zero. There exists a bounded linear operator R =

Rm,p : H
m,p
0,0 (Ω) → Hm+1,p

0 (Ω)d satisfying divRf = f with
∥∥∇m+1Rf

∥∥
Lp(Ω)

≤ C ∥∇mf∥Lp(Ω).

Restricting ourselves to p = 2, we define, as in (2.4), a matrix-valued operator Rm = Rm,2:

Rm : Hm
0 (Ω)d → Hm+1

0 (Ω)d×d, (Rmu)
i := Rmu

i.

We will use Lemma 5.1 to study the stream function for an element of V .

Theorem 5.2. The map S of Theorem 1.1 also maps V ∩H0 continuously onto Y0∩H2
0 (Ω)

d×d,
where Y0 = (V d ∩X0)

⊥.

Proof. The space Y 2
0 := Y0 ∩ H2

0 (Ω)
d×d is dense in Y0 and div : Y0 → H0 is a continuous

surjection, so div Y 2
0 is dense in H0. Moreover, div Y 2

0 ⊆ V ∩H0, so div Y 2
0 is dense in V ∩H0.

Then, arguing as in the proof of Proposition 4.7, div Y 2
0 = div(R1 div Y

2
0 ) is closed in V ∩H0

and hence div Y 2
0 = V ∩H0. Because div |Y0 is injective it also holds that div |Y 2

0
is injective.

Finally, arguing as in the proof of Theorem 1.1, the inverse map, div |−1
Y 2
0
, is continuous. But

this is the same map S as in Theorem 1.1, restricted to V ∩H0. □

Remark 5.3. Using Rm, one can extend Theorem 5.2 to S : H0∩Hm
0 (Ω)d → Y0∩Hm+1

0 (Ω)d×d,
though its utility is likely limited for m ≥ 2. Similarly, one can employ Lemma 5.1 to develop
Lp bounds in analog with Theorem 1.1.
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6. Of div and curl

We explore, now, the relation between div and curl, which we will see are (almost) adjoints.
Since div : X0 → H0, its adjoint is a map div∗ : D(div∗) ⊆ H ′

0 → X ′
0, where we must first

determine D(div∗). (We do not reduce the domain of div to Y0, as we did in the previous
section, because the dual space of Y0 is hard to characterize directly in a concrete form, so
the adjoint, while it exists, would be hard to relate to the curl operator.)

Now, H0 and X0 are both Hilbert spaces, not just Banach spaces. To go further and obtain
a concrete characterization of div∗ we need to exploit this fact, but there is a delicate issue:
we have identified L2 with its dual space (as briefly mentioned in Section 1), but this is not
compatible with identifying H0 with H ′

0 because of the divergence-free condition (Simon has
an informative exposition on this issue in [28]). Nonetheless, this identification will be very
useful to us, so, to be careful, we will only treat H ′

0 as an abstract dual space, and use the
identification explicitly: For any v ∈ H ′

0 we will write Iv for that element of H0 for which
⟨v, u⟩H′

0,H0
= (Iv, u)H0 for all u ∈ H0; that is, I gives the usual identification of the dual of

a Hilbert space with itself.
The identification of L2(Ω) with its dual is also not altogether compatible with identifying

X ′
0 with the space of antisymmetric matrices in H−1(Ω)d×d, as natural as that would be.

This is because X0 ⊆ H1
0 (Ω)

d×d, so we should have H−1(Ω)d×d = (H1
0 (Ω)

d×d)′ ⊆ X ′
0.

However, X0, is naturally isomorphic with H1
0 (Ω)

d(d−1)/2, whose dual space we can identify

with H−1(Ω)d(d−1)/2 in a manner that is compatible with the identification of L2(Ω) with its

dual. Then, H−1(Ω)d(d−1)/2 is naturally isomorphic with the space of antisymmetric matrices
in H−1(Ω)d×d. This will allow us to treat X ′

0 as the space,

X ′
0 = {A ∈ H−1(Ω)d×d : A antisymmetric} ⊂ H−1(Ω)d×d. (6.1)

Remark 6.1. More precisely, let J map antisymmetric d×d matrices into Rd(d−1)/2 be given
by (JA)k = Ai

j, where k = d(i− 1)+ j− 1. Then define the operator F : H1
0 (Ω)

d(d−1)/2 → H0

by FB = div(J−1B). Then F ∗ will map some subspace of H ′
0 into H−1(Ω)d(d−1)/2, and we

will have div∗ = J−1F ∗. We will not, however, make this mapping explicit in what follows.

With this concrete version of X ′
0, we can characterize div∗ as in Proposition 6.2.

Proposition 6.2. The following hold:

(1) div : X0 → H0 is a closed map;
(2) D(div∗) is all of H ′

0;
(3) div∗ : H ′

0 → X ′
0 is given by div∗ = −(1/2) curl I;

(4) div is surjective;
(5) curl is injective with curlH0 closed in X ′

0;
(6) ∥u∥H ≤ C ∥curlu∥X′

0
.

Proof. (1) We first show that div : X0 → H0 is a closed map (that is, its graph is closed in
X0 ×H0). To see this, suppose that An → A in X0 with divAn → u in H0. But An → A in
X0 means that ∂k(An)

i
j → ∂kA

i
j in L2(Ω) for all i, j, k so divAn → divA in H0. Hence, by

the uniqueness of limits, u = divA.
(2) By definition, the domain of div∗ is

D(div∗) = {v ∈ H ′
0 : ∃C ≥ 0 such that |⟨v,divA⟩H′

0,H0
| ≤ C ∥A∥X0

∀A ∈ X0}.

But, for any v ∈ H ′
0, we have

|⟨v,divA⟩H′
0,H0

| ≤ ∥v∥H′
0
∥divA∥H0

≤ C ∥∇A∥L2 = C ∥A∥X0
,

where C = ∥v∥H′
0
. Hence, D(div∗) is all of H ′

0.
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(3) Also by the definition of the adjoint, we have

⟨v,divA⟩H′
0,H0

= ⟨div∗ v,A⟩X′
0,X0

for all v ∈ H ′
0, A ∈ X0. For any v ∈ H ′

0,

⟨v,divA⟩H′
0,H0

= (Iv, divA) = −⟨∇Iv,A⟩H−1,H1
0
,

where we applied Lemma 2.2 (to each component of v and row of A). But

−⟨∇Iv,A⟩H−1,H1
0
= −⟨∇Iv − (∇Iv)T , A⟩H−1,H1

0
− ⟨(∇Iv)T , A⟩H−1,H1

0

= −⟨curl Iv,A⟩H−1,H1
0
− ⟨∇Iv,AT ⟩H−1,H1

0

= −⟨curl Iv,A⟩X′
0,X0

+ ⟨∇Iv,A⟩H−1,H1
0
,

where we used that curl Iv is antisymmetric and so lies in X ′
0. It follows that

⟨div∗ v,A⟩X′
0,X0

= ⟨v,divA⟩H′
0,H0

= (Iv, divA) = −1

2
⟨curl Iv,A⟩X′

0,X0
.

We conclude that div∗ v = −(1/2) curl Iv.
(4) div surjective follows from Proposition 4.7.
(5) and (6) follow, for instance, from Theorem 2.20 of [10]. □

We can now characterize the space Y0 = (V d ∩ X0)
⊥, which we used in the proof of

Theorem 1.1:

Proposition 6.3. Letting Y0 = (V d ∩ X0)
⊥, the orthogonal complement of V d ∩ X0 in X0

as a Hilbert space, we have

Y0 = {z ∈ X0 : ∆z = curl q for some q ∈ L2
0(Ω)

d}.

Proof. Fix z ∈ X0. Then z ∈ Y0 if and only if

(z, v)X0 := (∇z,∇v) = −(∆z, v)X′
0,X0

= 0

for all v ∈ V d ∩X0. Thus, z ∈ Y0 if and only if ∆z ∈ (V d ∩X0)
⊥B , where we have used ⊥B

here to refer to the subspace of X ′
0 that is orthogonal to V d ∩X0 in the duality between X ′

0

and X0. But, V
d ∩X0 = ker div, so (V d ∩X0)

⊥B = (ker div)⊥B = range curl. □

7. 3D vector potentials

In 2D, the stream function of Theorem 1.1 is unique in that no other A ∈ X0 satisfies
divA = u for a given u ∈ H0. This is not, however, true in any higher dimension. Let us
take a closer look at 3D. There, for u ∈ H0, our “stream function” is to satisfy{

curl3 ψ = u in Ω,

ψ = 0 on ∂Ω.

We have, however, complete freedom to choose the divergence. Hence, if p is any scalar field
for which ∇p = 0 on ∂Ω (for instance, any p ∈ H2

0 (Ω)) then we also have{
curl3(ψ +∇p) = u in Ω,

ψ +∇p = 0 on ∂Ω,

so ψ +∇p is also a stream function.
This kind of argument also leads to the perhaps more familiar formulation of a 3D stream

function in Proposition 7.1.

We can use Theorem 1.1 to obtain the more classical versions of 3D stream functions or
vector potentials of Propositions 7.1 and 7.2 (cf., Theorems 3.5 and 3.6 Chapter I of [18] or
Theorem 3.12 and 3.17 of [1]).
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Proposition 7.1. Let u ∈ H0 for d = 3. There exists a vector potential ψ ∈ H for which
curl3 ψ = u. The vector potential is unique up to the addition of an arbitrary element in Hc;
or, equivalently, the vector potential is unique if we require it to lie in H0. If ∂Ω is C1,1 then
ψ ∈ H ∩H1(Ω)3.

Proof. First, we show existence. Let ψ be the 3D stream function given by Theorem 1.1 and
let p be the unique (up to an additive constant) solution to the Neumann problem,{

∆p = −divψ in Ω,

∇p · n = 0 on ∂Ω.
(7.1)

If ∂Ω is Lipschitz, we can only conclude that p ∈ H1(Ω) so ∇p ∈ L2(Ω)3, but if ∂Ω is C1,1

then p ∈ H2(Ω) so ∇p ∈ H1(Ω)3. Letting ψ = ψ +∇p, we see that
curl3 ψ = u in Ω,

divψ = 0 in Ω,

ψ · n = 0 on ∂Ω.

(7.2)

Hence, ψ ∈ H with curl3 ψ = u, as required, with ψ ∈ H ∩H1(Ω)3 if ∂Ω is C1,1.
Adding any element of Hc to ψ clearly yields another vector potential for u, and the

difference of any two vector potentials for u lies in H and is curl-free; that is, it lies in Hc.
This proves the uniqueness statement. □

Remark. The proof of Proposition 7.1 can be stated more succinctly as

ψ = PH0ψ.

Viewed this way, we need only show that curl3 maps (H1(Ω))3 onto H to obtain ψ and, from
it, ψ, avoiding, in this way, the need for the full strength of Theorem 1.1.

The need for a more regular boundary in Proposition 7.1 arose from the need to obtain a
classical solution to an elliptic problem, an issue we avoided in the proof of Theorem 1.1.

Define the space,

H̃ := {ψ ∈ L2(Ω)3 : divψ = 0, curlψ ∈ L2(Ω)3, ψ × n = 0 on ∂Ω}
with the norm ∥ψ∥

H̃
:= ∥ψ∥+ ∥curlψ∥. That ψ×n makes sense in terms of a trace is shown

in Theorem 2.11 of [18]. Also let

H̃c := {ψ ∈ H̃ : curlψ = 0}.

Proposition 7.2. Let u ∈ H0 for d = 3. There exists a vector potential ψ ∈ H̃ for which

curl3 ψ = u. The vector potential is unique up to the addition of an arbitrary element in H̃c.

If ∂Ω is C1,1 then ψ ∈ H̃ ∩H1(Ω)3.

Proof. The proof is the same as that of Proposition 7.1, but using the boundary condition
p = 0 on ∂Ω in (7.1), noting that then ∇p × n = 0. As in (7.2), this gives curl3 ψ = u and

divψ = 0 but with ψ×n = ψ×n+∇p×n = 0 on ∂Ω. Adding any element of H̃c to ψ clearly
yields another vector potential for u, and the difference of any two vector potentials for u lies

in H̃ and is curl-free; that is, it lies in H̃c. This proves the uniqueness statement. □

Suppose that Ω ⊆ R3 has a finite number of boundary components Γ0, · · · ,ΓN . Then the
vector potential ψ of Proposition 7.2 is unique if one imposes the condition

∫
Γi
ψ · n = 0 for

all i. This is shown in Theorem 3.6 Chapter I of [18] and 3.17 of [1]. The idea, in essence, is
to use the boundary condition p = ci on Γi instead of p = 0 on ∂Ω in (7.1), and show that,
fixing c0 = 0, there exists a unique choice of the ci such that

∫
Γi
∇p · n = −

∫
Γi
ψ · n for all

i. See, for instance, the argument on pages 49-50 of [18].
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Remark 7.3. The boundary condition ψ×n = 0 in the definition of H̃ corresponds to An = 0
via the bijection given by (4.2). This suggests that Proposition 7.2 has a natural higher-
dimensional formulation. Indeed for smooth boundaries it does, as follows from Theorem
3.1.1 of [27], in which ψ becomes a co-closed 2-form.

8. A Biot-Savart kernel?

The Biot-Savart law is the classical method for obtaining a vector field in, say H0 ∩H1(Ω)d,
having a given vorticity in L2(Ω). But the existence of an integral representation for this
law, that is, of a Biot-Savart kernel, for a bounded domain is a largely open question: the
existence for all of Rd and for a bounded domain in R2 is quite classical, but only recently,
in [15], has a kernel for a 3D bounded domain been obtained, and that was for domains
with smooth boundary. In dimensions higher than 3 a kernel has not been obtained even for
smooth domains. (Also, see the introductory comments in [15].)

To give a feeling for why obtaining a Biot-Savart kernel, even for smooth boundaries, is
so difficult, let us examine an obvious approach that does not work. Start, following Section
1.3 of [13], with the Biot-Savart law for all of Rd, which employs the fundamental solution
Ed to the Laplacian in all of Rd (so ∆Ed ∗ f = f). We then define the vector-valued kernel
Kd = ∇Ed. Then if, say, B ∈ (L1 ∩ L∞)(Rd)d×d is antisymmetric, then defining the vector

field u by ui := Kj
d ∗B

i
j , we will have u ∈ Ḣ1(Rd), u divergence-free, with curlu = B.

Now let G(x, y) = Ed(x− y) +H(x, y) be the Green’s function for the Dirichlet Laplacian
on Ω. The obvious thing to try is to set KΩ(x, y) := ∇xG(x, y) = Kd(x, y) + ∇xH(x, y).
Then, operating formally, if B ∈ L2(Ω)d×d is antisymmetric, let

ϕ =

∫
Ω
G(x, y)B(y) dy, ui = (div ϕ)i =

∫
Ω
Kj

Ω(x, y)B
i
j(y) dy.

Since G(x, ·) = 0 for x ∈ ∂Ω, we see that ϕ ∈ X0, so by Proposition 4.5, u ∈ H0. And
∆ϕ = B, since G is the fundamental solution to the Laplacian. In 2D, ∆ϕ = curl div ϕ, and
one can verify that ϕ is the antisymmetric matrix form of the usual scalar 2D stream function,
and in fact KΩ this is the Biot-Savart kernel. In higher dimension, however, ∆ ̸= curl div, so
KΩ is not the Biot-Savart kernel. Nor is there a clear way to correct this deficiency.

We can show, however, the conditional result in Theorem 8.1: a Biot-Savart kernel exists
if and only if a kernel for the stream function exists, and there is a duality between them.

Theorem 8.1. We say that K ∈ L1(Ω2)d is a kernel for the Biot-Savart law on Ω if for all
antisymmetric B ∈ C(Ω)d×d,

ui(x) =

∫
Ω
Kj(x, y)Bi

j(y) dy (8.1)

lies in H0 with curlu = B. We say that T ∈ L1(Ω2)d is a kernel for the stream function on
Ω if for all v ∈ H0 ∩ C∞(Ω)d,

Ai
j(y) =

∫
Ω
Tj(x, y)v

i(x) dx−
∫
Ω
Ti(x, y)v

j(x) dx (8.2)

lies in X0 with divA = v. A kernel K exists if and only if a kernel T exists, and in such a
case, we can set K = T .

Proof. Assume that T exists. Let v ∈ H0 ∩ C∞(Ω)d and let A be as given in (8.2). Let
u ∈ H0 ∩ C∞(Ω)d with curlu = B. Then, applying Fubini’s theorem,

(2u, v) = 2(u,divA) = −2(∇u,A) = −(∇u,A)− ((∇u)T , AT )

= −(∇u,A) + ((∇u)T , A) = −(curlu,A) = −(B,A)
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=

∫
Ω

∫
Ω
Bi

j(y)

[
Ti(x, y)v

j(x) dx−
∫
Ω
Tj(x, y)v

i(x) dx

]
dy

=

∫
Ω

∫
Ω
Bi

j(y)Ti(x, y)v
j(x) dx−

∫
Ω

∫
Ω
Bi

j(y)Tj(x, y)v
i(x) dx dy

=

∫
Ω

∫
Ω
Bi

j(y)Ti(x, y)v
j(x) dx−

∫
Ω

∫
Ω
Bj

i (y)Ti(x, y)v
j(x) dx dy

= 2

∫
Ω

∫
Ω
Bi

j(y)Ti(x, y)v
j(x) dx dy = (2w, v),

where

w(x) =

∫
Ω
Ti(x, y)B

i
j(y) dy.

Since H0 ∩ C∞(Ω)d is dense in H0 it follows that we must have u = w. Examining (8.1),
then, we see that we can set K = T .

To show that the existence of K implies the existence of T , we reverse the order of the
integrations by parts. □

9. A further decomposition of H in 3D

In 3D, we have two types of stream functions for any u ∈ H0: that given by Theorem 1.1
and the more classical one given by Proposition 7.1. The former lacks the divergence-free
condition, but, like 2D stream functions, vanishes entirely on the boundary, which eliminates
many boundary terms when integrating by parts. The latter is only tangential to the bound-
ary, but is divergence-free, a condition whose main usefulness is that curl23 ψ = −∆ψ for such
stream functions, so that curl3 u = −∆ψ, as for 2D stream functions.4 Hence, each form has
one and only one of these two key features of 2D stream functions.

Note that any element of V qualifies as a stream function of both types, as it is both
divergence-free and vanishes on (and so is normal to) the boundary. Hence, it has both key
features of 2D stream functions. Thus, it is natural to consider what elements of H are
created from such a stream function; that is, to look at the space, curl3 V ⊆ H0.

Another motivation for considering this space is that solutions to the Navier-Stokes equa-
tions with no-slip boundary conditions lie in V , and hence their curl lies in curlV . In the
vorticity formulation of the Navier-Stokes equations this is particularly important, since the
velocity is recovered from the vorticity (curl of the velocity) via the Biot-Savart law. Hence,
there may be utility in having some understanding of curlV as a subspace of H0; this is the
purpose of Proposition 9.1.

Remark. An analog of Propositions 9.1 and 9.2 holds for all dimensions, if we define curl
to be the antisymmetric gradient, curlu := (∇u− (∇u)T )/2.

Proposition 9.1. We have curl3 V
⊥ = (curl3 V )⊥, giving the orthogonal decomposition,

H0 = curl3(V ⊕ V ⊥) = curl3 V ⊕ curl3 V
⊥,

or, to be more explicit,

H0 = curl3(V ⊕H1
0 (Ω)3 V

⊥) = curl3 V ⊕H curl3 V
⊥.

Also,

curl3 V
⊥ ⊆ {curl3 u : u ∈ H0,∆u = 0}, (9.1)

with equality if Ω is simply connected.

4If, in 2D, ∇⊥ is defined as ∇ rotated clockwise 90◦; we have used the counterclockwise convention, which
gives curlu = ∆ψ.
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Proof. Assume first that ∂Ω is C1,1. Suppose that w ∈ (curl3 V )⊥ as a subspace of H0. By
Proposition 7.1, w = curl3 ψ, where ψ ∈ H0 ∩H1. Then for any v ∈ V , we must have

0 = (curl3 v, w) = (v, curl3w)H1
0 ,H

−1 = (v, curl23 ψ)H1
0 ,H

−1 = −(v,∆ψ)H1
0 ,H

−1

= (∇v,∇ψ) = (v, ψ)H1
0 (Ω)3 .

Because v = 0 on ∂Ω, no boundary integrals appear in the above calculations when applying
Lemmas 2.2 and 2.3. We conclude that ψ ∈ V ⊥, so w = curl3 ψ ∈ curl3 V

⊥, and hence that
(curl3 V )⊥ ⊆ curl3 V

⊥.
We now show the opposite inclusion. To see this, write arbitrary elements in curl3 V ,

curl3 V
⊥ as curl3 u, curl3 z, where u ∈ V , z ∈ V ⊥. Then, applying Lemma 2.3,

(curl3 u, curl3 z) = (u, curl23 z) = −(u,∆z +∇ div z) = −(u,∇(q + div z)) = 0,

where we applied Proposition 2.7 to know that ∆z = ∇q for some q ∈ L2(Ω). This shows that
curl3 z, which we know lies in curl3 V

⊥, also lies in (curlV )⊥, so that curl3 V
⊥ ⊆ (curl3 V )⊥

and thus, in fact, that curl3 V
⊥ = (curl3 V )⊥.

If ∂Ω is only Lipschitz continuous, we make the same argument, but starting with w ∈
(curl3 V )⊥ ∩H1 and applying the density of H ∩H1 in H at the end of the argument.

Moreover, it follows that if w ∈ (curl3 V )⊥ then w = curl3 z, where ∆z = ∇q for some
q ∈ L2(Ω), since z ∈ V ⊥. But then ∆w = curl3∆z = 0, giving (9.1).

Now assume that Ω is simply connected and that v ∈ H = H0 is harmonic. Then v =
curl3 ψv for some v ∈ H1

0 (Ω)
3, so ∆v = curl3∆ψv = 0 in H−2(Ω), so we know by Poincaré’s

lemma (see Proposition 11.1) that ∆ψv is a gradient, and hence ψv ∈ V ⊥. That is, v ∈ H
harmonic implies that v = curl3 ψv ∈ curl3 V

⊥, giving equality in (9.1). □

We have also the following 2D version of Proposition 9.1:

Proposition 9.2. Defining the scalar curl on two-dimensional vector fields,

curl2 u := ∂1u
2 − ∂2u

1,

we have curl2 V
⊥ = (curl2 V )⊥, giving the orthogonal decomposition,

L2(Ω) = curl2(V ⊕ V ⊥) = curl2 V ⊕ curl2 V
⊥,

or, to be more explicit,

L2(Ω) = curl2(V ⊕H1
0 (Ω)2 V

⊥) = curl2 V ⊕L2 curl2 V
⊥.

Also,

curl2 V
⊥ ⊆ {curl2 u : u ∈ H0,∆u = 0}, (9.2)

with equality if Ω is simply connected.

Proof. The proof parallels that of Proposition 9.1, and in the calculations below, we can take
care of the required regularity of the integrations and pairings in the same manner as in that
proof, so we supress those details.

Suppose that φ ∈ (curl2 V )⊥ as a subspace of L2(Ω). Then for any v ∈ V , we must have

0 = (curl2 v, φ) = −(div v⊥, φ) = (v⊥,∇φ)

By Lemma 2.11, div maps H1
0 (Ω) onto L

2(Ω) and hence, so too, does curl2, by the identity,
curl2 u = −div u⊥. Then φ = curl2 ψ, where ψ ∈ H0. Using the identity,

∇ curl2 ψ = (∂1(∂1ψ
2 − ∂2ψ

1), ∂2(∂1ψ
2 − ∂2ψ

1)) = (∂21ψ
2 − ∂2∂1ψ

1, ∂1∂2ψ
2 − ∂22ψ

1)

= (∂21ψ
2 + ∂22ψ

2,−∂21ψ1 − ∂22ψ
1) = −∆ψ⊥,
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which holds because divψ = 0, for any v ∈ V , we must have

0 = (v⊥,∇ curl2 ψ) = −(v⊥,∆ψ⊥) = −(v,∆ψ) = (∇v,∇ψ) = (v, ψ)H1
0 (Ω)2 .

This implies that ψ ∈ V ⊥, so φ = curl2 ψ ∈ curl2 V
⊥. Hence, (curl2 V )⊥ ⊆ curl2 V

⊥.
To show the opposite inclusion, write arbitrary elements in curl2 V , curl2 V

⊥ as curl2 u,
curl2 z, where u ∈ V , z ∈ V ⊥. Then,

(curl2 u, curl2 z) = (div u⊥, div z⊥) = −(u⊥,∇ div z⊥) = (u⊥,∇ curl2 z)

= −(u⊥,∆z⊥) = −(u,∆z) = −(u,∇q) = 0,

where we applied Proposition 2.7 to know that ∆z = ∇q for some q ∈ L2(Ω). This implies
that curl2 z ∈ (curlV )⊥, giving curl2 V

⊥ ⊆ (curl2 V )⊥ and hence curl2 V
⊥ = (curl2 V )⊥.

The remainder of the proof follows that of Proposition 9.1. □

10. An alternate characterization of H and ∆V

Proposition 10.1 shows that H0 is the space of minimizers of the L2 norm over all vector
fields in L2 having a given H−1 vorticity. This gives a characterization of H0 without a priori
assuming either the divergence-free condition or the no-penetration condition.

Proposition 10.1. Let u be a vector field in L2(Ω). There exists a unique minimizer u ∈
L2(Ω) to

min{∥w∥L2 : w ∈ L2(Ω)d, curlw = curlu}.
Moreover, u = PH0u, where PH0 is orthogonal projection onto the space H0 defined in Sec-
tion 4. When Ω is simply connected, u = PHu, where PH is the classical Leray projector of
vector fields in L2(Ω) onto H. (The equalities curlw = curlu and div u = 0 are as elements
of H−1.)

Proof. This is an immediate consequence of the decomposition, L2(Ω)d = H0 ⊕ Hc ⊕ G,
where G is the space of gradients in L2(Ω)d, since elements of Hc and G both have vanishing
curl. □

More interesting is the analogous statement for ∆V as a subspace of H−1(Ω)d:

Proposition 10.2. Add the assumption that Ω is simply connected. Let u ∈ H−1(Ω)d. There
exists a unique minimizer u ∈ H−1(Ω)d to

min{∥w∥H−1 : w ∈ H−1(Ω)d, curlw = curlu}.
Moreover, u is in the image of ∆ applied to V ; in particular, div u = 0. (The equalities
curlw = curlu and div u = 0 are as elements of H−2.)

Proof. By Proposition 2.10, we can uniquely write u = ∆v +∇q for some v ∈ V , q ∈ L2/R,
where L2/R is the set of all functions in L2(Ω) having mean zero. We will directly show that
u exists and that, in fact, u = ∆v.

First, let us characterize all possible candidates for our desired minimizer. So let

w ∈ S := {w ∈ H−1(Ω)d : curlw = curlu}
be arbitrary. Applying Poincaré’s lemma (see Proposition 11.1) to u− w, we see that u and
w differ by a gradient. Hence, we seek a minimizer u of the form

u = ∆v +∇q

for some q ∈ L2/R. It is only in establishing this form for the minimizer that we use Ω being
simply connected. (Note that this would not follow simply from Proposition 2.10, which
would only give u = ∆v +∇q with curl∆v = curl∆v.)
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What we must show is that choosing q = 0 produces the minimizer. Toward this end, first
let us determine ∥∆v∥H−1 by pairing it with an arbitrary φ ∈ H1

0 (Ω)
d. By Proposition 2.13,

(∆v, φ) = (∆v, PV φ) = −(∇v,∇PV φ).

Hence,

(∆v, φ) = −(∇v,∇PV φ) ≤ ∥∇v∥ ∥∇PV φ∥ = ∥v∥V ∥PV φ∥V ≤ ∥v∥V ∥φ∥V .

It follows that ∥∆v∥H−1 ≤ ∥v∥V . Choosing φ = −v, we see that equality is achieved. Hence,

∥∆v∥H−1 = ∥v∥V = ∥v∥H1
0
.

Now assume that ∇q ̸= 0. We will show that there exists φ ∈ H1
0 (Ω)

d for which

|(u, φ)|
∥φ∥H1

0

> ∥v∥V ,

from which it will follow that u = ∆v is the desired unique minimizer.
By Proposition 2.7, we can write any φ ∈ H1

0 (Ω)
d in the form φ = PV φ+z. We will choose

φ so that PV φ = −v, giving φ = −v + z, leaving z ∈ V ⊥ and z alone to be freely chosen.
Then,

(u, φ) = (∆v +∇q,−v + z) = −(∆v, v) + (∆v, z)− (∇q,−v) + (∇q, z)
= (∇v,∇v)− (∇v,∇z)− 0− (q,div z) = (∇v,∇v) + 0− 0− (q,div z)

= ∥v∥2V − (q,div z),

where (2.5) gave us (∇v,∇z) = 0. Hence,

∥u∥H−1 ≥ sup
z∈V ⊥

∥v∥2V − (q,div z)

∥−v + z∥V
= sup

z∈V ⊥

∥v∥2V − (q,div z)√
∥v∥2V + ∥z∥2V

,

where we used the orthogonality of the projection operator, PV .
Now, given any a > 0, we can choose (za, ra) so that it is a weak solution to

−∆za +∇ra = 0 in Ω,

div za = −aq in Ω,

za = 0 on Ω.

This is uniquely solvable for za ∈ H−1, ra ∈ L2/R by Exercise IV.1.1 of [16], the same result
we reference in the proof of Proposition 2.7, because the compatibility condition,∫

Ω
(−aq) = −a

∫
Ω
q = 0 =

∫
∂Ω
za

is satisfied. Noting that za = az1, we have ∥za∥V = a ∥z1∥V . Thus, setting z = za in our
estimate on ∥u∥H−1 , it follows that

∥u∥H−1 ≥ sup
a>0

∥v∥2V + a ∥q∥2√
∥v∥2V + a2 ∥z1∥2V

.

At this point, q and hence z1 are fixed, but we are free to choose any a > 0 so that

a ∥q∥2 > a2 ∥z1∥2V ;

that is, so that

a <
∥q∥2

∥z1∥2V
.
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This allows us to conclude that ∥u∥H−1 > ∥v∥V . Or, more explicitly,

∥u∥H−1 ≥
∥v∥2V + a ∥q∥2√
∥v∥2V + a2 ∥z1∥2V

> ∥v∥V = ∥∆v∥H−1 .

□

To be yet more explicit in the bound from below of ∥u∥H−1 , we can use the classical
estimate on solutions to the Stokes problem, which for z1 gives

∥z1∥V ≤ C0 ∥q∥ .

(See, for instance, Exercise IV.1.1 of [16].) Then,

∥u∥H−1 ≥
∥v∥2V + a ∥q∥2√
∥v∥2V + C2

0a
2 ∥q∥2

for any a < C−1
0 . Using elementary Calculus, the resulting maximal lower bound occurs

when a = C−2
0 , giving

∥u∥H−1 ≥
∥v∥2V + C−2

0 ∥q∥2√
∥v∥2V + C−2

0 ∥q∥2
=

√
∥v∥2V + C−2

0 ∥q∥2.

11. Application: A simple proof of Poincaré’s Lemma

Proposition 11.1 is a version of Poincaré’s Lemma, which we prove as a corollary of de Rham’s
lemma, Proposition 2.6, along with Theorem 5.2.

Proposition 11.1. Adding the assumption that Ω is simply connected, let f be a vector field
in H−1(Ω)d. Then curl f = 0 in H−2(Ω) if and only if f = ∇q for some unique q ∈ L2

0(Ω).

Proof. The reverse implication is immediate. For the forward implication, fix f ∈ (H−1)d and
let v ∈ V ⊆ H = H0 be arbitrary. By Theorem 5.2, v = divA for some A ∈ Y0 ∩H2

0 (Ω)
d×d.

Then,

(f, v)H−1,H1
0
= (f, divA)H−1,H1

0
= −(∇f,A)H−2,H2

0
= (∇f,AT )H−2,H2

0
,

since A is antisymmetric. But also,

−(∇f,A)H−2,H2
0
= −(∇f − (∇f)T , A)H−2,H2

0
− ((∇f)T , A)H−2,H2

0

= −((∇f)T , A)H−2,H2
0
= −(∇f,AT )H−2,H2

0
,

since curl f = 0. We conclude that (f, v)H−1,H1
0
= 0 and hence from Proposition 2.6 that

f = ∇q for some q ∈ L2(Ω). If q is another such element of L2(Ω) then ∇(q − q) = 0 in
H−1(Ω) so they must differ by a constant. This gives the uniqueness of q ∈ L2

0(Ω).
5 □

Remark 11.2. For other relatively simple proofs of Proposition 11.1, see Theorem 2.1 of
[14] (also see Theorem 3.1 of [24]). There is a short, clear, and simple proof of the result in
[14] given by Kesavan in [23]. He uses a solution to the stationary Stokes problem and, most
important, uses a Lemma of Lions, which states that if q ∈ D′(Ω) with ∇q ∈ H−1(Ω) then
q ∈ L2(Ω), whose proof for Lipschitz domains is due to Amrouche and Girault [3]. Also, see
the historical comments in [2].

5Ultimately, this relies upon the divergence operator mapping H1
0 (Ω)

d onto L2(Ω), itself a non-trivial result.
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Remark 11.3. The decomposition in Proposition 2.10 is not sufficient to prove Proposi-
tion 11.1. To see this, observe that by Proposition 2.10, we have f = ∆v + ∆z for some
v ∈ V , z ∈ V ⊥. Then

curl f = ∆curl v +∆curl z = ∆curl v,

since ∆curl z = curl∆z = − curl∇q = 0 as elements of H−2(Ω). Assuming curl f = 0 it
follows that curl(∆v) = ∆curl v = 0. But this only shows that it is sufficient to establish
Proposition 11.1 for f ∈ ∆V , our near proxy for V ′ (see Remark 2.15).

12. A constructive approach

In this section, we give a more constructive, somewhat geometric proof of Theorem 1.1.
We will need, however, a key fact, described in Remark 12.2, not firmly established in the
literature concerning smooth manifolds embedded in Rd having Lipschitz boundaries. Hence,
this approach should be considered incomplete (though it would be complete for smooth
boundaries).

Our starting point is Proposition 4.5, which we can use to obtain important information
about any element of H0:

Corollary 12.1. Let u ∈ H0 and let C be any generator of Hd−2(Ω
C , ∂ΩC ;R). If Σ is any

(d− 1)-cycle in Ω for which ∂Σ = C then∫
Σ
u · n = 0.

Proof. Let (ψn) be a sequence in X0 with un := divψn → u in H, the existence of such a
sequence being assured by Proposition 4.5. Then, using that for a (d−1)-form, ∗δ = ∗∗d∗ =
(−1)dd∗ and applying Stokes’s theorem,∫

Σ
un · n =

∫
Σ
∗ξun =

∫
Σ
∗ξ divψn =

∫
Σ
∗δθψn = (−1)d

∫
Σ
d ∗ θψn = (−1)d

∫
C
∗θψn = 0.

In the first step, we used Lemma A.10. In the last step, we used that ψn, and so θψn and
∗θψn, vanish on the boundary. (See Remark 12.2.)

We will apply the analog of Lemma 2.2 for Σ, where now E(Ω) = E(Σ). Since un and u

are divergence-free, observe that un → u in E(Σ) so un · n → u · n in H− 1
2 (C), from which

the result follows. □

Remark 12.2 (Difficulty in the proof of Corollary 12.1). Being a Lipschitz domain in Rd,
Ω is also a topological manifold, and so singular homology makes sense for it. However, for
integration, we need to have some degree of smoothness to the chains or cycles over which we
are integrating. In particular, while the generator C of Hd−2(Ω

C , ∂ΩC ;R) will have Lipschitz
regularity, we have no inherent regularity at all of the (d − 1)-cycle Σ for which ∂Σ = C.
Lipschitz regularity of C is sufficient, but the lack of regularity of Σ is an obstacle.

Alternate proof of Theorem 1.1. In 2D, any A ∈ H0 would be of the form

A =

(
0 −ψ
ψ 0

)
, (12.1)

so then divA = (−∂2ψ, ∂1ψ) = ∇⊥ψ = u. Hence, ψ is the classical 2D stream function for
u ∈ H0 (so also A is unique, since we require it to vanish on the boundary.)

In 3D, making the bijection in (4.2), we see that

u = (∂2ψ
3 − ∂3ψ

2, ∂1ψ
3 − ∂3ψ

1, ∂1ψ
2 − ∂2ψ

1) = curl3 ψ.

Hence if the general result for d ≥ 3 holds, we obtain the 3D result.
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So assume now that d ≥ 3. We will establish the expression for H0 following as closely as
possible the 3D argument in [9].

Assume that u ∈ H0 and let E0u be u extended by zero to all of Rd. Then E0u ∈ L2(Rd)
and div E0u = 0 still holds in the sense of distributions, so E0u ∈ H(Rd). Let G be the
fundamental solution to the Laplacian in Rd, so ∆G ∗ f = f , and define the antisymmetric
matrix-valued function ψ by

ψi
j := ∂jG ∗ E0ui − ∂iG ∗ E0uj .

(Formally, ψ = G ∗ (curl E0u).) Then

(divψ)i = ∂jjG ∗ E0ui − ∂iG ∗ ∂jE0uj = ∆G ∗ E0ui − ∂iG ∗ (div E0u) = E0ui.

These calculations are as convolutions of E0u ∈ E ′(Rd), the space of compactly supported
distributions, with derivatives of G ∈ D′(Rd), the space of distributions. Or the convolution
defining ψ can be viewed as the convolution of the L1

loc-function ∂iG with the compactly
supported E0uj , and the expression for divψ can be verified by a standard limiting argument.
Hence, E0u = divψ: this is a form of the Biot-Savart law (see, for example, Chapter 1 of
[12]).

Moreover, for any k,

∂kψ
i
j := ∂k∂jG ∗ E0ui − ∂k∂iG ∗ E0uj .

This calculation holds as the convolution of an element in E ′(Rd) with an element of D′(Rd),
but in that form, ∂k∂jG∗ is not a Calderon-Zygmund operator. A more careful, but standard,
argument (see, for instance, Proposition 6.1 of [4]) would give that

∂k∂jG ∗ E0ui(x) =
δjk
d

E0ui(x) + p. v.

∫
∂k∂jG(x− y) E0ui(y) dy.

The principal value integrals are Calderon-Zygmund operators applied to E0ui, so each term
on the right-hand side lies in L2(Rd). Hence, ∂kψ

i
j ∈ L2(Rd) so ψ ∈ H1(Rd)d×d.

Nonetheless, ψ does not satisfy the boundary condition, ψ = 0 on ∂Ω. To correct for this,
let us first consider the 3D approach taken in [9], using the bijection Q given by (4.2).

In the language of the 3D curl, we have curl3Q
−1ψ = E0u on R3. In particular, curl3Q

−1ψ =
0 on U := R3 \ Ω. Let γ be any simple closed curve that is a generator of H1(Ω

C , ∂ΩC ;R)
that generate Hd−1(Ω, ∂Ω;R), the (d− 1)-dimensional real homology class of Ω relative to

its boundary
and let Σ be a smooth surface in Ω whose boundary is γ. Then by Stokes’s theorem, and

using that Q−1ψ ∈ H1(R3) so its trace on ∂Ω is well-defined,∫
γ
Q−1ψ · ds =

∫
Σi

curl3Q
−1ψ · n =

∫
Σi

u · n = 0, (12.2)

the last equality following from Corollary 12.1 since u ∈ H0. It follows that ψ = ∇p on U (by
the classical, 3D version of Lemma A.9) for some p ∈ H2(U) (since ∇p = ψ ∈ H1(R2)d×d).
Extend p to lie in H2(Rd) using Theorem 5’ p. 181 of [29] (and a cutoff function inside
Ω). Let N = Q∇p. Then A := ψ − N ∈ H1

0 (Ω)
d×d and is antisymmetric, and divA =

div(ψ −N) = divψ = u.
In higher dimension, the argument is similar, though now we need to use the language of

differential forms. In Appendix A, we define a bijection θ that maps ψ to a (d− 2)-form on
Ω, and a bijection ξ that maps vector fields on Ω to d− 1 forms on Ω with the property that
dθ = ξ div. Then dθψ = ξ(E0u), which vanishes on U := Rd \ Ω; that is, θψ is closed on U .

We now show that, in fact, θψ is exact on U . Let C be any generator of Hd−2(Ω
C , ∂ΩC ;R)

and let Σ be a (d− 1)-cycle whose boundary is C. Now, although ψ does not vanish on ∂Ω,
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we still have divψ = u on Ω, and so can integrate just as in the proof of Corollary 12.1,
though now we do so in reverse order:∫

C
∗θψ = (−1)d

∫
Σ
d ∗ θψ =

∫
Σ
∗δ divψ =

∫
Σ
∗ξ divψ =

∫
Σ
ξu =

∫
Σ
u · n = 0. (12.3)

The vanishing of the final integral follows from Corollary 12.1 since u ∈ H0.
It follows from Lemma A.9 that ∗θψ is exact on U . Thus, ∗θψ = dp for some 0-form

p ∈ H2(U). We then extend p to H2(Rd), and set A = ψ − θ−1dp, where we used that ∗∗ is
the identity when applied to a (d− 2)-form.

Although A is not unique, we have constructed it in an unambiguous way (that depended
only upon our choice of extension operator from H2(U) to H2(Rd)). Hence, the operator
S : H0 → X0, Su = A, is well-defined, and ∥Su∥X0

≤ C ∥u∥H . □

Remark 12.3. Rather than extending p into Ω using an extension operator, as we did in
the proof of Theorem 1.1, which requires only (in fact, less than) Lipschitz regularity of the
boundary, the authors of [9], working specifically in 3D, solve a biharmonic equation on Ω to
obtain the equivalent of what we have called N in the proof of Theorem 1.1. This requires
a C1,1 boundary to know that N ∈ H1(Ω), but gives that div v in Lemma 4.4 is harmonic
on Ω. Assuming that u ∈ H0 vanishes to order m on the boundary, they use a solution
of a higher-order polyharmonic equation with higher-regularity boundaries, to obtain higher
regularity of A. We will consider, in Theorem 12.5, only the one additional derivative of
regularity gained by assuming that u ∈ V (but without adding additional regularity on the
boundary), as velocity fields vanishing to higher order on the boundary are not common in
fluid mechanics applications.

Remark 12.4. In the proof of Proposition 7.1, we used the stream function of Theorem 1.1
to obtain the classical stream function. In light of Remark A.4 and the way we integrated in
(12.3), we could have reversed this, obtaining the stream function of Theorem 1.1 from that
of Proposition 7.1.

Theorem 12.5 gives the regularity of the stream function that results if we assume that u
is in V .

Theorem 12.5. Define the space,

X2
0 := X0 ∩H2(Ω)d×d with the H2(Ω)d×d-norm.

The operator S defined in Theorem 1.1 maps V ∩H0 continuously into X2
0 .

Proof. We follow the proof of Theorem 1.1, letting u ∈ V ∩ H0. Because u ∈ H1
0 (Ω)

d,
E0u ∈ H1(Rd)d. Hence,

∇ψi
j := ∂jG ∗ ∇E0ui − ∂iG ∗ ∇E0uj ,

where we have convolutions of an L1
loc function with a compactly supported L∞ function;

thus, we can treat the convolutions in either of the two ways we treated them in the proof of
Theorem 1.1. It follows as in the remainder of that proof that A ∈ H2(Ω) and the operator
S is continuous from V ∩H0 into X2

0 . □

Finally, we have the following simple but useful bound in Lemma 12.6, a generalization of
sorts of Corollary 3.2 of [21]:

Lemma 12.6. Assume that ∂Ω is Ck for some k ∈ (1,∞]. Let X be any function space
embedded in H that contains Ck(Ω). For any u ∈ X,

∥u∥X ≤ ∥PH0u∥X + C(X) ∥u∥H .
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Proof. Since Hc is finite dimensional, it has some orthonormal basis w1, . . . , wN , and one can
show by elliptic regularity theory that, in fact, each wj ∈ Ck(Ω). Hence, Hcu =

∑
j(u,wj)wj

with ∑
j

(u,wj)
2 = ∥Hcu∥2 ≤ ∥u∥2 .

It follows that

∥u∥X ≤ ∥PH0u∥X + ∥PHcu∥X ≤ ∥PH0u∥X +

n∑
j=1

|(u,wj)| ∥wj∥X

≤ ∥PH0u∥X + C(X) ∥u∥H .

□

Appendix A. Differential forms point of view

We have been treating Ω as an open subset of Rd. We wish now to also treat it as an oriented
manifold with boundary: more specifically, as a ∂-manifold, as given in Definition 1.2 of
[27]. We write Ak(Hj(Ω)) for the space of k-forms on Ω having coefficients in Hj(Ω). We
identify a vector field v ∈ Hj(Ω)d ∼= TΩ(Ω) with a 1-form in A1(Hj(Ω)) the usual way by
the bijection,

ξ(v1, . . . , vd) = v1dx1 + · · ·+ vddxd.

Defining

X := {antisymmetric A ∈ H1(Ω)d×d},

we define the bijection,

θ : X → A2(H1(Ω)),

θA = (−1)d
∑
j>i

Ai
jdxi ∧ dxj .

Here, δ is the codifferential operator, defined by

δ : Ak(Hj(Ω)) → Ak−1(Hj(Ω)),

δω = (−1)d(k+1)+1 ∗ d(∗ω),

where ∗ is the Hodge dual operator.
We will use the notation,

dxI(i) = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 · · · ∧ · · · dxd,

and similarly, dxI(i,j), i ̸= j, is the wedge product of dx1∧· · ·∧dxd with dxi and dxj excluded.
Since we are working in flat space, ∗ : A2(Hj(Ω)) → Ad−2(Hj(Ω)) can be defined by

requiring that

∗(dxi1 ∧ dxik) = (−1)ndxj1 ∧ dxjd−k
,

where i1 < · · · < ik, j1 < · · · < jd−k, {i1, . . . , ik} ∪ {j1, . . . , jd−k} = {1, . . . , d} and n is the
sign of the permutation, (i1, . . . , ik, j1, . . . , jd−k). It follows, in particular, that for i < j,

∗(dxi ∧ dxj) = (−1)i+jdxI(i,j).

Similarly, we can define ∗ : A1(Hj(Ω)) → Ad−1(Hj(Ω)) by requiring that

∗dxj = (−1)j−1dxI(j).
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Observe that for j > i,

∗dxI(i) = (−1)i−1dxi,

d dxI(i) = (−1)i−1dx1 ∧ · · · ∧ dxd,
dxI(i,j) = (−1)i−1dxI(j) − (−1)j−1dxI(i),

dxi ∧ dxI(i,j) = (−1)i−1 dxI(j),

dxj ∧ dxI(i,j) = (−1)j dxI(i).

(A.1)

For instance, the wedge product in the fourth identity involves i−1 transpositions while that
in the fifth identity involves j − 2 transpositions and (−1)j−2 = (−1)j .

Lemma A.1. For all A ∈ X,

δ(θA) = ξ divA for all A ∈ X. (A.2)

Proof. Let A ∈ X. We see, then, that

δ(θA) = (−1)d(2+1)+1(−1)d ∗ d
∑
j>i

Ai
j ∗ (dxi ∧ dxj) = − ∗ d

∑
j>i

(−1)i+jAi
jdxI(i,j)

= − ∗
∑
j>i

(−1)i+j
[
(−1)i−1∂iA

i
jdxI(j) + (−1)j∂jA

i
jdxI(i)

]
= − ∗

∑
j>i

[
(−1)j−1∂iA

i
jdxI(j) + (−1)i∂jA

i
jdxI(i)

]

= − ∗

∑
j<i

(−1)i−1∂jA
j
idxI(i) +

∑
j>i

(−1)i∂jA
i
jdxI(i),


where we used (A.1).

But, again using (A.1), ∗dxI(i) = (−1)i−1dxi, so

δ(θA) = −

∑
j<i

∂jA
j
idxi −

∑
j>i

∂jA
i
jdxi

 .
On the other hand,

ξ divA = ξ
∑
i

∑
j

∂jA
i
jei =

∑
i

∑
j

∂jA
i
j dxi =

∑
j<i

∂jA
i
j dxi +

∑
j>i

∂jA
i
j dxi

= −
∑
j<i

∂jA
j
i dxi +

∑
j>i

∂jA
i
j dxi,

since A is antisymmetric as a d× d matrix. This gives (A.2). □

We have, then, the bijections,

ξ : L2(Ω)d → A1(L2(Ω)), θ : X → A2(H1(Ω)),

so that the diagram,

X A2(H1(Ω))

L2(Ω)d A1(L2(Ω))

H−1(Ω) A0(H−1(Ω)),

θ

divcurl δd

ξ

div∇ δd
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is commutative6; that is, so that (A.2) holds.
Theorem 2.4.2 of [27] gives the Hodge-Morrey decomposition of forms in L2, which for

k-forms is

Ak(L2(Ω)) = Ek(Ω)⊕ Ck(Ω)⊕Hk(Ω),

where

Ek(Ω) := {dα : α ∈ Ak−1(Ω), tα = 0},

Ck(Ω) := {δβ : β ∈ Ak+1(Ω), nβ = 0},

Hk(Ω) := {λ ∈ Ak(L2(Ω)) : dλ = 0, δλ = 0},
where t, n give the tangential and normal components of a form on the boundary. It is
important to note that such components vanishing do not (necessarily) directly transfer to
what happens to the corresponding vector field or matrix under the mappings θ and ξ we
have defined. Rather, for a k-form ω, tω is defined by its action on vector fields by

tω(X1, . . . , Xk) := ω(X
||
1 , . . . , X

||
k ),

where ω(X
||
1 , . . . , X

||
k ) are the components of the vector fields X1, . . . , Xk parallel to (tangent

to) the boundary. Then

nω(X1, . . . , Xk) := ω(X1, . . . , Xk)− tω(X1, . . . , Xk).

The Hodge-Morrey decomposition is a full decomposition of k-forms in L2; we are interested
in the subspace of those 1-forms in L2 corresponding to divergence-free vector fields tangential
to the boundary. That is, we wish to calculate

ξ
(
ξ−1(A1(L2(Ω))) ∩H

)
.

Since in our correspondence, div of an L2 vector field corresponds to δ of a 1-form, we
should first determine the subspaces of the Hodge-Morrey decomposition whose codifferential
vanishes, and whose normal components–when translated to vector fields—vanish:

E1
σ,n(Ω) := {dα : α ∈ A0(Ω), tα = 0, δdα = 0, (ξ−1dα) · n = 0},

C1
σ,n(Ω) := {δβ : β ∈ A2(Ω), nβ = 0, δ2β = 0, (ξ−1δβ) · n = 0},

H1
σ,n(Ω) := {λ ∈ A1(L2(Ω)) : dλ = 0, δλ = 0, (ξ−1λ) · n = 0}.

Lemma A.2. C1
σ,n(Ω) = C1(Ω), E1

σ,n(Ω) = {0}.
Proof. Let dα ∈ E1

σ,n(Ω), and let u = ξ−1dα. Now,

dα =

d∑
i=1

∂iαdxi = ξ∇α,

where we are treating α interchangeably as a 0-form and as a scalar-valued function. Then,
using (A.1),

δdα = (−1)2d+1 ∗ d ∗ dα = −
d∑

i=1

∗d ∗ (∂iαdxi).

But,

∗d∗(∂iαdxi) = ∗d(∂iα ∗ dxi) = ∗d(∂iα(−1)i−1dxI(i)) = (−1)i−1 ∗ d(∂iαdxI(i))
= (−1)i−1 ∗ (−1)i−1∂iiαdx1 ∧ · · · ∧ dxd = ∂iiα ∗ (dx1 ∧ · · · ∧ dxd) = ∂iiα.

6The solid lines indicate the maps that commute; the dashed lines indicate maps in the reverse direction that
are not the inverses of those in the solid lines
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Hence,

δdα = −
d∑

i=1

∂iiα = −∆α = 0.

This agrees with div u = div∇α = ∆α = 0.
Since also we require that u · n = (ξ−1dα) · n = 0, we have ∆h = 0 with ∇h · n = 0, and

we conclude that h is constant on Ω. But then u = ∇h ≡ 0, and we find that E1
σ,n(Ω) = {0}.

Now let δβ ∈ C1
σ,n(Ω). Then Then δ2β = 0 automatically and hence poses no additional

restriction. So let β be any form in A2(Ω) for which nβ = 0. Then by Proposition 1.2.6 of
[27], n(δβ) = δ(nβ) = 0. But δβ is a 1-form, so β =

∑
i v

idxi for some vi ∈ L2(Ω). So let n
be the unit normal vector field and extend it, via the collar theorem, into Ω. Then

n(δβ) = (δβ)(n)− ω(n||) = (δβ)(n) =
∑
i

vini = ξ−1(δβ) · n.

That is, ξ−1(δβ) · n = 0 also poses no additional restriction, and we see that C1
σ,n(Ω) =

C1(Ω). □

We have the immediate corollary:

Corollary A.3. H0 = ξ−1(C1(Ω)).

Remark A.4. Corollary A.3 can be viewed as the differenential forms analog of Proposi-
tion 7.1 in any dimension:

ξ(H0) = δ{β ∈ A2(Ω): nβ = 0}.
Here, β is the stream function whose normal component vanishes on the boundary and δ is
playing the role of the curl operator.

Remark A.5. Similar reasoning shows that also H0 = (∗ξ)−1Ed−1(Ω).

In fact, using the tools developed in Chapter 3 of [27], we can obtain the differential form
equivalent of Theorem 1.1 in fairly short order:

Theorem A.6. Let M be a ∂-manifold with C∞ boundary. Define

H̃0 := {α ∈ A1(Ω): nα = 0,

∫
M
α ∧ ∗λ = 0 for all λ ∈ H1

N (Ω)},

where

H1
N (Ω) := {λ ∈ A1(L2(Ω)) : dλ = 0, δλ = 0, nλ = 0}.

Then

H̃0 = δ{β ∈ A2(Ω): β|∂M = 0}.

Proof. Given α ∈ H̃0, it is always possible, by Corollary 3.3.4 of [27], to solve the boundary
value problem, {

δβ = α on M,

β|∂M = 0 on ∂M.

□

Remark A.7. In Theorem A.6, we are using H̃0 as a convenient proxy for H0 as given by
Remark A.4. Better would be to see it as equivalent to the homology-based version of H0

given in Section 12. Exploring these issues would take us too far afield, however.
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Remark A.8. We could also have proved Theorem A.6 by first establishing that the form
of H0 as given by Remark A.4 holds. Then, letting β ∈ H0, we could “correct” its boundary
value by subtracting from it the solution to{

δγ = 0 on M,

γ|∂M = β on ∂M,

which we also can solve by applying Corollary 3.3.4 of [27]. This much less direct approach is
in sympathy with the “corrector” argument we made in the proof of Theorem 1.1 (involving
(12.3)). In fact, we could have used Corollary 3.3.4 of [27] in the proof of Theorem 1.1 to
correct the boundary value without resorting to knowledge of the domain exterior to Ω. We
wished, however, to obtain a result for Lipschitz boundaries and to, as much as possible, keep
the argument in the language of “flat space.”

The following two lemmas were used in Section 12. Lemma A.9 gives a convenient test for
the exactness of a closed k-form on a manifold with boundary. It follows from Lemma 3.2.1
with Theorem 3.2.3 of [27]), along with a remark following the statement of Corollary 3.2.4
of [27]. Lemma A.10 relates integration of a d − 1 form and a classical integral of a vector
field.

Lemma A.9. A closed k-form α, 0 ≤ k ≤ d, on a manifold with boundary is exact if and
only if ∫

C
α = 0

for any k-cycle C in the manifold. It suffices to only consider k-cycles that are generators of
Hk(M,∂M ;R).

Lemma A.10. Let Σ be a (d− 1)-cycle (or more generally a (d− 1)-chain), in Rd, and also
write Σ for the corresponding subset of Rd. Then for any divergence-free vector field on Rd,∫

Σ
u · n =

∫
Σ
u · dS =

∫
Σ
∗ξu.

The first two integrals are different ways to write the classical “surface” integral, while the
last integral is the integration of a (d− 1)-form.

Proof. This is a standard calculation. See, for instance, the example on page 169-170 in [19],
which is worked out explicitly for d = 3. □

Appendix B. A characterization H0 in 2D and 3D

In this section we outline the characterization of H0 that is more commonly used in 2D and
3D. The characterization applies to all dimensions d ≥ 2, but the topological issues for d ≥ 4
become more complex. Since our purpose is to be motivational, we will content ourselves
with being a little imprecise about some of our arguments.

Let Γ1, . . . ,ΓN+1, be the N + 1 components of ∂Ω with ΓN+1 the boundary of the un-
bounded component of ΩC . Let Σ1, . . . ,ΣN be pairwise disjoint Lipschitz regular (d − 1)-
submanifolds of Ω that generate Hd−1(Ω, ∂Ω;R), the (d−1)-dimensional real homology class
of Ω relative to its boundary. For a vector field v ∈ H, the internal flux across Σi is the value
of ∫

Σi

v · n.
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Because v is divergence-free and tangential to the boundary, it is easy to see that the internal
fluxes do not depend upon the specific choices of the Σi.

In 2D, each Σi is a curve from one boundary component to another, its boundary being two
points, one on one boundary component the other on another boundary component. In 3D,
each Σi is a surface whose boundary is a curve lying in a single component of the boundary.
In 4D, each Σi is a 3-manifold, whose boundary is a 2-manifold that lies in one component
of the boundary. The deepest fact about homology that we will use is the following:

Lemma B.1. {∂Σ1, . . . , ∂ΣN} is a complete set of generators for Hd−2(∂Ω
C ;R), an homology

group on the boundary of Ω. Because of this, it is also a complete set of generators for
Hd−2(Ω

C , ∂ΩC ;R).

Proposition B.2 gives a direct characterization of H0. We prove it using ideas from Ap-
pendix I of [30].

Proposition B.2. H0 = {v ∈ H : all internal fluxes are zero}.

Proof. Let H̃0 = {v ∈ H : all internal fluxes are zero}. Let Ω̇ be the simply connected open
subset of Ω having a Lipschitz boundary that is produced by cutting along (that is, removing)

each Σi. (We know that Ω̇ is simply connected, for otherwise we would obtain an additional

generator for Hd−1(Ω, ∂Ω;R).) Let h ∈ Hc. Then on Ω̇, h is curl-free (closed when viewed

as a 1-form) and so is exact; hence, h = ∇p for some p ∈ H1(Ω̇). Of necessity, the jump [p]i
across each Σi is constant along Σi. (Or, we can view p as multi-valued on Ω with v = ∇p.)

Now let v ∈ H be arbitrary. Then

(h, v) =

∫
Ω
h · v =

∫
Ω̇
∇p · v = −

∫
Ω̇
p div v +

∫
∂Ω̇
p(v · n)

=

∫
∂Ω
p(v · n) +

∑
i

∫
Σi

p(v · n) =
∑
i

[p]i

∫
Σi

v · n.

This will vanish if and only if v ∈ H̃0. We conclude that H0 := H⊥
c = H̃0. □
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[7] M. E. Bogovskĭi. Solution of the first boundary value problem for an equation of continuity of an incom-
pressible medium. Dokl. Akad. Nauk SSSR, 248(5):1037–1040, 1979. 3, 7, 8, 14
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