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This document was essentially complete in February 2003, though signif-
icant changes were made in September 2003. It was re-compiled on March

28, 2011 to add active links and to deal with an issue with Lemma 6.1.

These are notes for a talk in the Junior Geometry seminar at UT Austin
on Oseledec’s multiplicative ergodic theorem given in Fall 2002. The purpose
of the notes is to insure that I know, or at least am convinced that I think
I know, what I am talking about. They contain far more material than the
talks themselves, constituting a complete proof of the discrete-time version
of the multiplicative ergodic theorem. Perhaps sometime in the future I will
work through the argument required to adapt that proof to the continuous-
time version of the theorem.

To motivate the theorem, I start with a discussion of Lyapunov expo-
nents, whose existence follows from an application of the continuous-time
multiplicative ergodic theorem to the differential map on the tangent bundle
of a compact Riemannian manifold. Since the intended audience for the talk
was geometers, I felt this motivation was needed.

I then give a proof of the multiplicative ergodic theorem that closely
follows [1], though I have filled in quite a large number of details.
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Geometric Setting

1. Geometric Setting

Our setting is a (smooth) compact Riemannian manifold M of dimension d,
on which we have a probability measure, ρ—i.e., ρ(M) = 1. This is not a
talk on measure theory, so it is adequate to think, if we wish, of the measure
as being the volume induced by the Riemannian metric on our manifold
normalized so that the manifold has unit volume.

Throughout, we let ϕ : R×M →M be a flow on M . We will write ϕt(x)
or ϕ(t, x), depending on whether we wish to view t as a parameter and x
as an argument or to view ϕ as a function on R ×M . Notice that we are
assuming completeness of the trajectories of ϕ.

We will also assume that ϕ is measure-preserving, which we can think of
as volume-preserving.

Let us review the definition of a flow. If X is a vector field, which we canWe could allow X to
be time-varying. view as a map from the manifold to the tangent space at each point, then

we would like to solve the differential equation,

d

dt
(ϕ(t, x)) = X(ϕ(t, x)),

ϕ(0, x) = x.

Only in special circumstances can we do this globally, but because a manifold
is locally diffeomorphic to R

n, we can always do it locally.
In any case, we will do nothing with the vector field X, and just take the

flow ϕ as given. For each value of t, then, ϕt is a diffeomorphism. Because ϕ
is measure-preserving, det dϕt = 1 for all t or det dϕt = −1 for all t, det dϕt

being the Jacobian which appears in the change of variables formula for a
volume integral. But ϕ0 is the identity, so det dϕt = 1 for all t.

A very intuitive physical model is the flow of an incompressible fluid
(whether perfect or not). In fact, in a sense, this is the only physical model.

An example of a measure-preserving flow on a compact manifold is the ge-
odesic flow on the unit tangent bundle of a compact d-dimensional manifold.
The unit tangent bundle is compact because the manifold is compact and
Sd−1 is compact. (The geodesic flow is on the unit tangent bundle to the
manifold, not on the manifold itself. The flow can also be viewed, though,
as being on the tangent bundle, which is not compact, and so does not serve
as an example.)

Now associate to a flow ϕ a cocycle T , which we define as follows:

Definition. Let π : E → M be a vector bundle over M where π−1(x) ≃
R

m for all x ∈ M . Let {T t} be a family of bundle maps from E to E
parameterized by time t ∈ R such that the following diagram commutes:

E
T t

−−−−→ E

π





y





y

π

M −−−−→
ϕt

M
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Geometric Setting

Write T t
x for the map from the fiber over x to the fiber over ϕt(x). If we look

at local trivializations about x and about ϕt(x), we can write, for u ∈ TxM ,

T t
x : π−1(x) → π−1(ϕt(x)),

(x, u) 7→ (ϕt(x), T
t
xu).

Here we are using T t
x both for the map on the fiber and for the map on This is a convenience

that has a dark side.the vector spaces in the local trivializations. It should be clear from context
which map we are referring to.

The collection {T t}t∈R is called a (linear skew-product) cocyle over ϕ if
the properties we list below are satisfied. Observe, though, that the first
component of T t

x as a fiber map is ϕt(x), which satisfies all these properties
as well, so the properties apply to both our views of T t

x. These properties
are:

(1) T 0
x = identity for all x ∈M.

(2) T s+t
x = T t

ϕs(x)T
s
x for all s, t ≥ 0.

(3) T : R × E → E is measurable.

Comment: We will need to assume that the local trivializations in our vec-
tor bundle are isometries on fibers—that is, preserve length and so the inner
product. The inner product on the fibers is derived from the Riemannian
metric.

The prototypical example of a cocycle, and the one we will use to illus-
trate the geometric meaning of the multiplicative ergodic theorem, is the
differential map of the tangent bundle to itself, T t := dϕt, where

dϕt : TM → TM,

dϕt(x, u) = (ϕt(x), (dϕt)xu).

Then

T t
x = (dϕt)x,

the Jacobian of the diffeomorphism ϕt. {T t} satisfies (1) because ϕ0 is the
identity and thus so is its Jacobian. It satisfies (3) because of the smoothness
of ϕ. It satisfies the critical defining condition, (2), because of the chain rule
for differentials:

T t
ϕ(s,x)T

s
x = (dϕt)ϕ(s,x)(dϕs)x

= (d(ϕt ◦ ϕs))x

= (dϕs+t)x

= T s+t
x .

Because the flow is measure-preserving and is the identity at time zero,
detT t

x = 1 for all t and x.
3



Geometric Setting

Consider the discrete-time version of this example with a time step of 1.
Let x and y be two nearby points in M sharing a common coordinate chart,
(U,ψ), where U is an open subset of M and ψ : U → R

m. If u = ψ(x) −
ψ(y), then (Dϕ1)xu is a vector Tϕ1(x)M that measures the approximate
displacement of ϕ1(y) from ϕ1(x) in a chart around ϕ1(x). (dϕn)xu =
(Dϕn

1 )xu, then, approximates the displacement after time n, and ‖(dϕn)xu‖
measures how far the two nearby points x and y have moved apart—using the
inner product, on TxM in all cases, induced from the Riemannian metric—
after time 1. Of course, as n increases, we will have to insure that y is closer
and closer to x to insure an accurate approximation.

To try to understand how ‖(dϕn)xu‖ might vary with time, we consider
the simplest possible example in which (Dϕ1)x is equal to the constant
matrix A for all x (and, necessarily, detA = 1). Then

(dϕn)xu = (dϕn
1 )xu

= (dϕ1)ϕn−1(x)(dϕ1)ϕn−2(x) · · · (dϕ1)xu

= AA · · ·Au = Anu.

Suppose u is an eigenvector of A with corresponding eigenvalue, µ. Then
(dϕn)xu = µnu, so

‖(dϕn)xu‖ = |µ|n ‖u‖ .

At every time step, the vector expands (or contracts) by a factor of |µ|; or,
equivalently, the vector has a constant relative rate of expansion of |µ|. (It
is a rate because the time unit is 1.)

In general, we will not have a constant rate of expansion. Even in this
simple example where (dϕ1)x = A, the rate is not constant in directions
other than those of the eigenvectors. And when (dϕn)x is not constant
over space, we would not expect any direction to show constant expansion
(though it is still possible). What we are interested in knowing is the mean,
long-term rate of expansion. The mean we will choose to use is the geometricThe arithmetic mean

is bounded below by
the geometric mean.

mean, simply because it is more workable in this context.
The geometric mean rate of expansion after n time steps is given by

(‖(dϕ1)xu‖
‖u‖

‖(dϕ2)xu‖
‖(dϕ1)xu‖

· · · ‖(dϕn)xu‖
‖(dϕn−1)xu‖

)1/n

=

(‖(dϕn)xu‖
‖u‖

)1/n

.

Because (dϕn)x is always nonsingular, we never get division by zero.
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It is actually the logarithm of the geometric mean rate of expansion (or,
equivalently, the arithmetic mean of the logarithms), in the limit as n ap-
proaches infinity, that is traditionally used:

λu : = lim
n→∞

log

[

(‖(dϕn)xu‖
‖u‖

)1/n
]

= lim
n→∞

1

n
(log ‖(dϕn)xu‖ − log ‖u‖)

= lim
n→∞

1

n
log ‖(dϕn)xu‖ .

These limits are called Lyapunov, or characteristic, exponents. Notice that
they depend upon the direction of u but not upon its length. (This is true
even before taking the limit since (dϕn)x is linear.)

We have been taking limits over n an integer, but we would get the same
result if we took limits over t a positive real number. For if t ∈ R, write
t = n+ s with 0 ≤ s < 1, and again by the chain rule,

(dϕt)x = (dϕs)ϕn(x)(dϕn)xu.

But (dϕs)ϕn(x) is a linear operator with a norm uniformly bounded in the
interval s ∈ [0, 1], so

lim
n→∞

1

n
log ‖(dϕn)xu‖ = lim

t→∞

1

t
log ‖(dϕt)xu‖ ,

the first limit being over the integers, the second over the reals, so the same
limit defines the average rate of growth for both discrete and continuous
time.

We have no good reason to expect that these limits exist, but the mul-
tiplicative ergodic theorem will tell us that they do almost everywhere. It
also gives us some information about the limits.
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The Multiplicative Ergodic Theorem

2. The Multiplicative Ergodic Theorem

Theorem 2.1 (Discrete-time Multiplicative Ergodic Theorem). Let T be a
measurable function from M to the space of all real m ×m matrices, such
that

log+ ‖T (·)‖ ∈ L1(M,ρ).

Let τ : M →M be a measure-preserving map and let

T n
x = Tτn−1(x) · · ·Tτ(x)Tx.

Then there is a Γ ⊆ M with ρ(Γ) = 1 and such that T (Γ) ⊆ Γ, and the
following holds for all x ∈ Γ:

(1) Λx := limn→∞((T n
x )∗T n

x )1/2n exists.

(2) Let expλ
(1)
x < · · · < expλ

(s)
x be the eigenvalues of Λx, where s =

s(x), the λ
(r)
x are real, and λ

(1)
x can be −∞, and U

(1)
x , . . . , U

(s)
x the

corresponding eigenspaces. Let m
(r)
x = dimU

(r)
x . The functions x 7→

λ
(r)
x and x 7→ m

(r)
x are τ -invariant. Let V

(0)
x = {0} and V

(r)
x =

U
(1)
x ⊕ · · · ⊕ U

(r)
x for r = 1, . . . , s. Then for u ∈ V

(r)
x \ V (r−1)

x ,
1 ≤ r ≤ s,

lim
n→∞

1

n
log ‖T n

x u‖ = λ(r)
x .

Comment: The norm on matrices we use in this theorem and throughout
is the operator norm in Euclidean space, which is identical in value to the
spectral norm, as we will show in Lemma 5.2. A critical property of this norm
is that it is a true matrix norm—that is, it is submultiplicative (‖AB‖ ≤
‖A‖ ‖B‖).

Comment: By τ -invariant, we mean that a function f on M satisfies
f(τ(x)) = f(x). Applying this relation repeatedly, it follows that the func-
tion is constant on the forward orbit of the point x under τ . If τ is invertible,
then the function is the same on the entire orbit, forward and backward.

We prove Theorem 2.1 in the next section, but our real goal is the continuous-
time version of the theorem, the proof of which requires an adaptation to
flows and cocycles of the proof of the discrete-time version. This is not
worked out in Ruelle, though he says it is “easily adapted,” and I have not
worked it out. But the statement of the theorem is as follows:

Theorem 2.2 (Continuous-time Multiplicative Ergodic Theorem). Let T
be a cocyle over the measure-preserving flow ϕ on a compact manifold M as
6



The Multiplicative Ergodic Theorem

we described above, and assume that the functions

g =

(

x 7→ sup
0≤t≤1

log+
∥

∥T t
x

∥

∥

)

and

h =

(

x 7→ sup
0≤t≤1

log+
∥

∥

∥
T 1−t

ϕ(t,x)

∥

∥

∥

)

are . in L1(M,ρ), where the norm on Vx is the operator norm.

Our prototypical
example satisfies
these conditions
because of the
compactness of M

and of [0, 1]

Then there is a Γ ⊆ M with ρ(Γ) = 1 and such that ϕtΓ ⊆ Γ for all Ruelle never states
ρ(Γ) = 1, but I
believe that is just an
oversight.

t ≥ 0, and the following holds for all x ∈ Γ:

(1) Λx := limt→∞((T t
x)∗T t

x)1/2t exists (* is the adjoint operator).

(2) Let expλ
(1)
x < · · · < expλ

(s)
x be the eigenvalues of Λx, where s =

s(x), the λ
(r)
x are real, and λ

(1)
x can be −∞, and U

(1)
x , . . . , U

(s)
x the

corresponding eigenspaces. Let m
(r)
x = dimU

(r)
x . The functions x 7→

λ
(r)
x and x 7→ m

(r)
x are ϕt-invariant (for all t). Let V

(0)
x = {0} and

V
(r)
x = U

(1)
x ⊕ · · ·⊕U

(r)
x for r = 1, . . . , s. Then for u ∈ V (r)

x \V (r−1)
x ,

1 ≤ r ≤ s,

lim
t→∞

1

t
log

∥

∥T t
xu

∥

∥ = λ(r)
x .

Comment: The subspaces {V (r)
x }s

r=0 are nested as

{0} = V (0)
x ⊆ · · · ⊆ V (s)

x = R
m,

forming what is called a filtration. Because of Theorem 2.2 and the ordering
of the eigenvalues,

V (r)
x = {u ∈ R

m : lim
t→∞

1

t
log

∥

∥T t
xu

∥

∥ ≤ λ(r)
x },

for r = 1, . . . , s.

Comment: As a corollary, if T t
x is invertible for all t and x, then This is essentially

Remark 1.8 page 34
of [1]T t

xV
(r)
x = V

(r)
ϕ(t,x),

for all r, t, x. It does not follow, however, that

T t
xU

(r)
x = U

(r)
ϕ(t,x),

for all r, t, x.

Comment: If ϕ is ergodic (so the only measurable subsets of M that are
mapped into themselves by ϕt(x) for almost all t and x are M and the empty

set) then the functions s(x) and λ
(r)
x are constant almost everywhere.

Comment: When m = 1 the matrices are real numbers and

Λx = lim
t→∞

((T t
x)∗T t

x)1/2t = lim
t→∞

(
∣

∣T t
x

∣

∣)1/t,
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The Multiplicative Ergodic Theorem

so

log Λx = lim
t→∞

1

t
log T t

x,

which exists by the “ordinary” (Birkhoff’s) ergodic theorem. Thus, the
multiplicative ergodic theorem is a generalization of the ordinary ergodic
theorem.

Comment: The measure that we use to define “almost everywhere” needn’t
be Lebesgue measure—we could apply the theorem to a flow that preserves
some other measure while not preserving volume. Thus, we could in principle
start with a non-volume preserving flow, find a measure that preserves it, and
then say something about the long-term behavior of the flow. Unfortunately,
it is usually hard to determine a nontrivial measure that is preserved by a
flow, and the measure will often be singular with respect to the volume
(Lebesgue) measure, and thus possibly of less physical or geometric interest.
This kind of thing is done, however, in dynamical systems.

Comment: When applied to our prototypical example, the {λ(r)
x } corre-

spond to the limits we defined earlier as λu and are called Lyapunov (vari-
ants, Liapunov, Ljapunov) or characteristic exponents.

Comment: Ruelle states that any norm on the tangent spaces in part (2)
of the theorem will produce the same result. I haven’t chased down the
details, but this makes some intuitive sense since a change in norm should
(more-or-less) only introduce a multiplicative constant, which will become
an additive constant after taking the log and thus average to zero. This also
means that the conclusion of the theorem is independent of our choice of
Riemannian metric. This I need to think about.

Comment: If we want the measure ρ to be volume on a Riemannian mani-
fold then the manifold must be compact to be able to normalize the volume
to 1 as required. As we observed above, compactness also insures that the
conditions on the functions g and h in the statement of Theorem 2.2 hold,
though compactness is sufficient but not necessary.

If the measure is a probability measure other than volume, I do not believe
that the manifold needs to be compact. In [4], compactness is not assumed
in this theorem, and the proof follows along the same lines.
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Proof of the Discrete-Time Multiplicative Ergodic Theorem

3. Proof of the Discrete-Time Multiplicative Ergodic Theorem

Our proof of Theorem 2.1 uses the following extension of the classical (Birkhoff’s)
ergodic theorem made by Kingman in 1968.

Theorem 3.1 (Kingman’s Subadditive Ergodic Theorem, 1968). Let τ :
M → M be a measurable map preserving ρ-measure, and let {fn}n>0 be
a sequence of measurable functions, fn : M → R ∪ {−∞}, satisfying the
conditions:

(1) integrability: f+
1 ∈ L1(M,ρ);

(2) subadditivity: fk+n ≤ fk + fn ◦ τk almost everywhere.

Then there exists a τ -invariant measurable function f : M → R ∪ {−∞}
such that

(a) f+ ∈ L1(M,ρ),

(b) lim
n→∞

1

n
fn = f a.e., and

(c) lim
n→∞

1

n

∫

fn(x) dρ = inf
n

1

n

∫

fn(x) dρ =

∫

f(x) dρ.

Comment: Birkhoff’s ergodic theorem can be seen as a special case of
Kingman’s theorem by applying Kingman’s theorem to fn(x) = g(x) +
g(τ(x)) + · · · + g(τn−1(x)), where g is a measurable function in L1(M,ρ).
The main conclusion (which we use below) is that if gk(x) = g(τk(x)), then

lim
n→∞

1

n

n
∑

k=1

gk(x)

exists and is finite for almost all x.

We will use the following corollary of Theorem 3.1, which is a version of
the Furstenberg-Keston theorem (which historically came before Kingman’s
subadditive theorem).

Corollary 3.2 (Furstenberg-Keston, 1960). Let τ : M → M be a measur-
able map preserving ρ-measure, and let T be a measurable function from M
to the space of all m × m real matrices such that log+ ‖T (·)‖ ∈ L1(M,ρ).
Let

T n
x = Tτn−1(x) · · ·Tτ(x)Tx,

as in Theorem 2.1.
9



Proof of the Discrete-Time Multiplicative Ergodic Theorem

Then there exists a τ -invariant measurable function χ : M → R ∪ {−∞}
such that

(a) χ+ ∈ L1(M,ρ),

(b) lim
n→∞

1

n
log ‖T n

x ‖ = χ(x) for almost all x, and

(c) lim
n→∞

1

n

∫

log ‖T n
x ‖ dρ = inf

n

1

n

∫

log ‖T n
x ‖ dρ =

∫

χ(x) dρ.

Proof : Let fn(x) = log ‖T n
x ‖. Then

fk+n(x) = log ‖T k+n
x ‖

= log ‖Tτk+n−1(x) · · ·Tτk(x)Tτk−1(x) · · ·Tτ(x)Tx‖

≤ log
(

‖Tτk+n−1(x) · · · Tτk(x)‖‖Tτk−1(x) · · ·Tτ(x)Tx‖
)

= log ‖Tτk+n−1(x) · · ·Tτk(x)‖ + log ‖Tτk−1(x) · · ·Tτ(x)Tx‖
= log ‖T n

τk(x)‖ + log ‖T k
x ‖

= fk + fn ◦ τk,

where we used the fact that the spectral (operator) norm is a matrix norm—
‖AB‖ ≤ ‖A‖‖B‖ for all A,B. The corollary then follows immediately from
applying Theorem 3.1. �

Definition (Exterior power of a matrix (or operator)). Let A be an m×m
real matrix, let 1 ≤ q ≤ m, and let {v1, . . . , vm} be a basis for R

m endowed
with the Euclidean metric. Then

{

vi1 ∧ · · · ∧ viq : i1 < · · · < iq
}

is a basis for ∧q
R

m. We define A∧q to be a real
(

m
q

)

×
(

m
q

)

matrix whose

value is defined by its action on each basis vector of ∧q
R

m as follows:This action defines
A∧q as a linear map
from ∧

q
R

mto ∧
q
R

m. A∧q(vi1 ∧ · · · ∧ viq) = Avi1 ∧ · · · ∧Aviq .

By linearity it follows that

A∧q(x1 ∧ · · · ∧ xq) = Ax1 ∧ · · · ∧Axq

for any vectors x1, . . . , xq ∈ R
m.

∧q
R

m is called the q-fold exterior power of R
m and A∧q the q-fold exterior

power of A.

Lemma 3.3. For any A,B real m×m matrices and c ∈ R,

(AB)∧q = (A∧q)(B∧q),

(A∧q)−1 = (A−1)
∧q
,

(cA)∧q = cqA∧q.

10



Proof of the Discrete-Time Multiplicative Ergodic Theorem

Proof : The first and third properties are almost immediate from the defi-
nition of A∧q. The second property follows from showing that (A−1)

∧q
acts

on a basic element of ∧q
R

m the same as (A∧q)−1 does. �

We can also define an inner product on ∧q
R

m by

〈u1 ∧ · · · ∧ uq, w1 ∧ · · · ∧wq〉 = det(〈ui, wj〉)qi,j=1.

Properties such as orthogonality of matrices are preserved under the oper- A∧q is written ∧
qA in

[4].ator ∧q : R
m → ∧q

R
m. This operator is discussed at greater length in [4] p.

118-120.
We are now in a position to give the proof of the discrete-time multiplica-

tive ergodic theorem, although we refer to a key result, which we call the
“Fundamental Lemma,” that will take all of the remaining sections to prove.

Proof of Theorem 2.1: Let fn = log+ ‖T (τn−1x)‖, n = 1, 2, . . . . By
assumption, fn ∈ L1(M,ρ), so by Birkhoff’s ergodic theorem (see the com-
ment following Theorem 3.1), there is a measurable function f on M such
that

1

n

n
∑

k=1

fk(x) → f(x)

for x in some Γ1 ⊆M such that τΓ1 ⊆ Γ1 and ρ(Γ1) = 1. But,

1

n

n
∑

k=1

fk(x) =

(

n− 1

n

)(

1

n− 1

) n−1
∑

k=1

fk(x) +
1

n
fn(x).

Taking the limit as n→ ∞ of both sides, we conclude that

1

n
fn(x) =

1

n
log+ ‖T (τn−1x)‖ → 0

for all x ∈ Γ1.
By Lemma 3.3,

(T∧q)nx = T∧q
τn−1(x)

· · · T∧q
τ(x)T

∧q
x = (Tτn−1(x) · · ·Tτ(x)Tx)∧q

= (T n
x )∧q,

so we can apply Corollary 3.2 to T∧q to conclude that there is also a Γ2 ⊆M
such that τΓ2 ⊆ Γ2 and ρ(Γ2) = 1, and, for q = 1, . . . ,m,

lim
n→∞

1

n
log ‖(T n

x )∧q‖ = lim
n→∞

1

n
log ‖(T∧q)nx‖

exists and is a τ -invariant function of x.
Let Γ = Γ1 ∩ Γ2. Then Theorem 2.1 follows from the Fundamental

Lemma—Lemma 4.1—applied to Tn = T (τn−1x). �
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The Fundamental Lemma

4. The Fundamental Lemma

The following lemma is the key to the proof of the multiplicative ergodic
theorem. We state the lemma now, and in the remaining sections prove it.

Lemma 4.1 (Fundamental Lemma). Let {Tn}n>0 be a sequence of realThis is Proposition
1.3 of [1]. m×m matrices such that

lim sup
n→∞

1

n
log ‖Tn‖ ≤ 0.

We write
T n = Tn · · ·T2T1,

and assume that the limits,

(T n)∧q is defined in
the previous section.

lim
n→∞

1

n
log

∥

∥(T n)∧q
∥

∥ ,

exist for q = 1, . . . ,m. Then:

(1) Λ := limn→∞((T n)∗T n)1/2n exists (* is matrix transposition).
(2) Let expλ(1) < · · · < expλ(s) be the eigenvalues of Λ, where the λ(r)

are real and λ(1) can be −∞, and U (1), . . . , U (s) the corresponding

eigenspaces. Let V
(0)
x = {0} and V

(r)
x = U

(1)
x ⊕ · · · ⊕ U

(r)
x for r =

1, . . . , s. Then for u ∈ V (r)
x \ V (r−1)

x , 1 ≤ r ≤ s,

lim
n→∞

1

n
log ‖T nu‖ = λ(r).

The proof of Lemma 4.1 is long and hard, and makes use of a series of
lemmas, which we present in the next section. In the section following,
we define a metric on Grassman manifolds, which we use in the proof of
Lemma 4.1. Last comes the “hard work” (to quote [4]), which appears in
a lemma that we state only after the proof of Lemma 4.1, since the lemma
only makes sense in the context of that proof.

12
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5. A Bunch of Lemmas

Most of the following lemmas are standard results with which the reader
may already be familiar. We include them because the author was only
vaguely aware of them before he discerned the need for some such results in
trying to figure out what was going on in [1].

Lemma 5.1. Let A be an m ×m real matrix, n a positive integer. Then
(A∗A)1/k exists for any positive integer k and is positive-definite and self-
adjoint.

Proof : A∗A is self-adjoint since (A∗A)∗ = A∗A. It is also positive-definite,
because if v is an eigenvector of A∗A with eigenvalue µ, then

µ = 〈A∗Av, v〉 = 〈Av,Av〉 ≥ 0.

By the spectral theorem, which states that any self-adjoint matrix has
an orthonormal basis (consisting of eigenvectors of the matrix), there is a
unitary matrix U (unitary means U∗ = U−1) and diagonal matrix D such Since A∗A is real, U

can be assumed to be
orthogonal.

that A∗A = UDU−1. Since the diagonal of D contains the eigenvalues of
A∗A, which are nonnegative,

√
D exists and is a diagonal matrix whose

diagonal entries are the non-negative square roots of those of A∗A. Then

(U
√
DU−1)2 = U

√
DU−1U

√
DU−1 = UDU−1 = A∗A,

so U
√
DU−1 provides the square root of A∗A. This argument extends to

any k-th root, so UD1/kU−1 = (A∗A)1/k.

Also, (A∗A)1/k is self-adjoint, since

((A∗A)1/k)∗ = (UD1/kU−1)∗ = (U−1)∗(D1/k)∗U∗

= (U∗)∗(D1/k)U−1 = UD1/kU−1 = (A∗A)1/k,

where we used the fact that D1/k is diagonal and real and so self-adjoint.
D1/k also contains only nonnegative values along the diagonal and so all the
eigenvalues of (A∗A)1/k are non-negative. That is, (A∗A)1/k is self-adjoint
and positive-definite. �

Lemma 5.2. Let A be an m×m real matrix, which we view as a linear map
from R

m to itself endowed with the Euclidean metric. Then ‖A‖ is equal to

the largest eigenvalue of
√
A∗A (the so-called spectral norm).

Comment: Remember that we have defined the norm to be the operator
norm, sup‖v‖=1 ‖Av‖, where each norm in the supremum is assumed to be
the Euclidean norm.

13
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Proof : Let v be any vector in R
m. Then

‖Av‖2 = 〈Av,Av〉 = 〈A∗Av, v〉 =
〈√

A∗A
√
A∗Av, v

〉

=
〈√

A∗Av,
√
A∗Av

〉

= ‖
√
A∗Av‖2,

so ‖Av‖ = ‖
√
A ∗ Av‖, where we used Lemma 5.1 to conclude that

√
A∗A

exists and is self-adjoint. Therefore,

‖Av‖ = sup
‖v‖=1

‖Av‖ = sup
‖v‖=1

‖
√
A∗Av‖.

Since
√
A∗A is self-adjoint,

√
A∗A = UDU−1 for some orthogonal matrix,

U , where D is diagonal and contains the eigenvalues of
√
A∗A along its

diagonal. Since an orthogonal matrix preserves norms, ‖
√
A∗Av‖ = ‖Dv‖

for all v ∈ R
m. But D is diagonal, so it is easy to see that sup‖v‖=1 ‖Dv‖

occurs for the eigenvector corresponding to the largest eigenvalue of
√
A∗A,

which is also the value of the supremum. (Because
√
A∗A is positive-definite,

this eigenvalue is positive.) �

We will use the following corollary of Lemma 5.2 :

Corollary 5.3. Let A be an m×m real matrix. Then

‖A‖ = ‖
√
A∗A‖.

Proof : By Lemma 5.2, ‖A‖ equals the largest eigenvalue of
√
A∗A. By the

same lemma, ‖
√
A∗A‖ equals the largest eigenvalue of

√

(
√
A∗A)∗

√
A∗A.

But by Lemma 5.1,
√
A∗A is self-adjoint, so

√

(
√
A∗A)∗

√
A∗A =

√√
A∗A

√
A∗A =

√
A∗A,

so, in fact, these two norms are equal. �

Lemma 5.4. Let {x1, . . . , xm} be a complete set of eigenvectors of A with
corresponding, not necessarily distinct, eigenvalues, {µ1, . . . , µm}. Then
{

xi1 ∧ · · · ∧ xiq : i1 < · · · < iq
}

is a complete set of eigenvectors for A∧q with
eigenvalues

{

µi1 · · ·µiq : i1 < · · · < iq
}

.

Proof : This follows from

A∧q(xi1 ∧ · · · ∧ xiq) = Ax1 ∧ · · · ∧Axq

= µi1xi1 ∧ · · · ∧ µiqxiq

= µi1 · · ·µiq(xi1 ∧ · · · ∧ xiq).

�

14
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Lemma 5.5. Let A be an m×m real matrix and q ∈ [1,m] be an integer.
Then

∥

∥A∧q
∥

∥ = σm · · · σm−q+1,

where σm, . . . , σ1 are the eigenvalues of
√
A∗A arranged so that σ1 ≤ · · · σm.

Proof : Let x1, . . . , xq be any vectors in R
m. Then

(
√
A∗A)∧q(

√
A∗A)∧q [x1 ∧ · · · ∧ xq]

= (
√
A∗A)∧q

[√
A∗Ax1 ∧ · · · ∧

√
A∗Axq

]

= A∗Ax1 ∧ · · · ∧A∗Axq

= A∗A [x1 ∧ · · · ∧ xq] .

This means that (
√
A∗A)∧q acts the same on a basic element of ∧k

R
m as

√

(A∗A)∧q does, so the two are equal. But
√

(A∗A)∧q =
√

(A∗)∧qA∧q

by Lemma 3.3. Therefore, ‖A∧q‖, which equals the maximum eigenvalue

of
√

(A∗)∧qA∧q, also equals the maximum eigenvalue of (
√
A∗A)∧q. By

Lemma 5.4, the eigenvalues of
√

(A∗A)∧q form the set

{σi1 ∧ · · · ∧ σiq : i1 < · · · < iq}.
The maximum of these eigenvalues is σm · · · σm−q+1. �

Lemma 5.6. Let u ∈ R
m and V,W be subspaces of R

m. Then

‖Proj(u,W )‖ ≤ ‖Proj(u, V )‖ + ‖Proj(Proj(u, V ⊥),W )‖,
where Proj(u,W ) is the projection of u onto the subspace W .

Proof : u = Proj(u, V ) + Proj(u, V ⊥), so

‖Proj(u,W )‖ = ‖Proj(Proj(u, V ) + Proj(u, V ⊥),W )‖
≤ ‖Proj(Proj(u, V ),W )‖ + ‖Proj(Proj(u, V ⊥),W )‖
≤ ‖Proj(u, V )‖ + ‖Proj(Proj(u, V ⊥),W )‖.

�
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6. Grassman Manifolds

We will cast the proof of the Fundamental Lemma that appears in [1] as a
statement about the convergence of a sequence of subspaces in a Grassman
manifold, something that Ruelle is doing in [1] without ever stating it. To do
this, we need to define a metric on Grassman manifolds that is compatible
with Ruelle’s proof. I don’t have a decent reference on Grassman manifolds
so I am making this up as I go.

Define the Grassman manifold, Grm
n , to be the set of all linear subspaces of

dimension n, 0 ≤ n ≤ m, of the Euclidean space R
m. Grm

n is diffeomorphic
to Grn−m

n once a suitable differentiable structure is put on the spaces. We,
however, need only deal with a metric structure for the spaces.

Define

d : Grm
n × Grm

n → R
≥0,

d(U, V ) = max{|〈u, v⊥〉| : u ∈ U, v⊥ ∈ V ⊥, ‖u‖ = ‖v⊥‖ = 1}.
We use d for the function regardless of the value of n, since there is no real

v⊥ is just a mnemonic
device—the ⊥ is not
some kind of
operator.

possibility of confusion about the domain of the function.

Lemma 6.1. For all subspaces U, V ∈ Grm
n ,

d(U, V ) = d(U⊥, V ⊥).

Proof : My original proof for this is nonsense, so until I can come up with
a clean proof, here is a geometric argument. The geometric interpretation
of the metric is that d(U, V ) = |sin θ|, where θ is the angle formed between
the two subspaces, U and V . This is clearly the same as the angle formed
between their orthogonal complements in R

m. �

Lemma 6.2. The function, d, defined above is a metric on Grm
n .

Proof : If U = V , then clearly d(U, V ) = 0. If d(U, V ) = 0, then for all
u ∈ U and v⊥ ∈ V ⊥, 〈u, v⊥〉 = 0, so V ⊥ ⊇ U⊥. But dimU = dimV so
V ⊥ = U⊥ and hence U = V . That is, d(U, V ) = 0 ⇔ U = V .

By Lemma 6.1,

d(U, V ) = d(U⊥, V ⊥)

= max{|〈u⊥, v〉| : u⊥ ∈ U⊥, v ∈ (V ⊥)⊥, ‖u⊥‖ = ‖v‖ = 1}
= max{|〈v, u⊥〉| : v ∈ V, u⊥ ∈ U⊥, ‖v‖ = ‖u⊥‖ = 1}
= d(V,U).

If A and B are subspaces of R
m and a is a vector in A, then

‖Proj(a,B⊥)‖ = max{|〈a, b⊥〉| : b⊥ ∈ B⊥, ‖b⊥‖ = 1}
≤ ‖a‖ d(A,B)

16
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and equality holds for some unit vector a in A.
Let U , V , and W be subspaces in Grm

n . Choose a unit vector u in U such
that ‖Proj(u,W⊥)‖ = d(U,W ). Applying Lemma 5.6 with W⊥ in place of
W and V ⊥ in place of V gives

d(U,W ) = ‖Proj(u,W⊥)‖
≤ ‖Proj(u, V ⊥)‖ + ‖Proj(Proj(u, (V ⊥)⊥),W⊥)‖
= ‖Proj(u, V ⊥)‖ + ‖Proj(Proj(u, V ),W⊥)‖
≤ d(U, V ) + ‖Proj(u, V )‖d(V,W )

≤ d(U, V ) + d(V,W ),

where we used the fact that Proj(u, V ) is a vector in V of norm less-than-
or-equal to 1.

Thus, the triangle inequality also holds, so d is a metric. �
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7. Proof of the Fundamental Lemma

Although it will not be clear until we examine the proof of the Fundamental
Lemma below, the subadditive ergodic theorem, essentially a classical result,
gave us the conditions needed to assure convergence of the eigenvalues of
((T n

x )∗T n
x )1/2n in Theorem 2.1. The “easy work” of the proof of Lemma 4.1

consists of showing that these conditions do, indeed, imply convergence of
the eigenvalues. The “hard work” in the proof of Lemma 4.1 consists of
showing that they also imply that the matrix itself converges.

Proof of Lemma 4.1 (The Fundamental Lemma): By Lemma 5.1, the

matrix ((T n)∗T n)1/2 exists and has nonnegative eigenvalues, which we label

t
(1)
n ≤ · · · ≤ t

(m)
n , where some eigenvalues may be repeated. By Lemma 5.5,

lim
n→∞

1

n
log

∥

∥(T n)∧q
∥

∥ = lim
n→∞

1

n
log

(

t(m)
n · · · t(m−q+1)

n

)

,

where the left-hand side exists and is finite by assumption. From the above
equality for q = 1 and q = 2, we see that

lim
n→∞

1

n
log t(m)

n and

lim
n→∞

1

n
log

(

t(m)
n t(m−1)

n

)

= lim
n→∞

(

1

n
log t(m)

n +
1

n
log t(m−1)

n

)

exist and are finite, and therefore also that

lim
n→∞

1

n
log t(m−1)

n

exists and is finite. Continuing this argument for the remaining values of q,
we conclude that each of the limits,

χ(p) := lim
n→∞

1

n
log t(p)

n ,

for p = 1, . . . ,m exists and is finite. Let λ(1) < · · · < λ(s) be the distinct
values of the χ(p), let

L(r) =

{

p ∈ {1, . . . ,m} :
1

n
log t(p)

n → λ(r)

}

,

and let U
(r)
n be the space spanned by the eigenvectors corresponding to the

eigenvalues {t(p)
n : p ∈ L(r)}. Note that dimU

(r)
n = dimU

(r)
n′ for all n, n′; let

mr be their common dimension.

At this point we know that the eigenvalues, (t
(p)
n )1/n, of ((T n)∗T n)1/2n

converge to a limit, but we do not know that ((T n)∗T n)1/2n itself converges.
The hard work of showing this is done in Lemma 8.1, the fruits of our labors

being Corollary 8.2, which states that the sequence of subspaces (U
(r)
n )∞n=1

is Cauchy in Grm
mr

. Since Grassman manifolds are complete, the subspaces

approach a limit, U (r). Knowing both the eigenspaces and the eigenvalues is
enough to uniquely determine a matrix, since it tells us where each vector in
18
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a complete set of linearly independent (eigen)vectors is mapped to, which is Or observe that the
limiting matrix is
λ(r)Imr×mr on U (r).

enough to determine a linear map and its corresponding matrix (in a given
basis). Therefore, the limiting matrix, Λ, exists.

This establishes (1) of the theorem and all of (2) except for showing that

lim
n→∞

1

n
log ‖T nu‖ = λ(r),

which we now show.
Let u ∈ V (r) \ V (r−1). Then

u = c1u1 + · · · + crur

for some constants c1, . . . , cr with ui ∈ U (i) and with cr 6= 0. By virtue

of Corollary 8.2, each ui differs little from its projection into U
(i)
n . Also, This could all be

made precise with an
epsilon-delta
argument, but I, for
one, saw enough of
that in the proof of
Lemma 8.1.

t
(i)
n ∼ enλ(i)

, so

((T n)∗T n)1/2u ∼ c1e
nλ(1)

u1 + · · · + cre
nλ(r)

ur.

Then
1

n
log ‖T nu‖ =

1

n
log ‖((T n)∗T n)1/2u‖

=
1

n
log ‖c1enλ(1)

u1 + · · · + cre
nλ(r)

ur‖

=
1

n
log(c21e

2nλ(1)
+ · · · + c2re

2nλ(r)
)1/2

=
1

2n
log(c21e

2nλ(1)
+ · · · + c2re

2nλ(r)
)

=
1

2

2c21λ
(1)e2nλ(1)

+ · · · + 2c2rλ
(r)e2nλ(r)

c21e
2nλ(1)

+ · · · + c2re
2nλ(r)

=
c21λ

(1)e−2n(λ(r)−λ(1)) + · · · + c2rλ
(r)

c21e
−2n(λ(r)−λ(1)) + · · · + c2r

→ λ(r),

where we used L’Hospital’s rule, the fact that λ(r) is the largest eigenvalue, This limit gives us the
existence of the
Lyapunov exponents.

and the fact that the U (r)’s are mutually orthogonal, being the limits of
mutually orthogonal eigenspaces. �

Notice how the subadditive ergodic theorem gave us the condition necessary
to insure the existence in the limit of the eigenvalues of ((T n)∗T n)1/2n. (This
condition being that limn→∞

1
n log ‖(T n)∧q‖ exists.) The existence of these

eigenvalues was, in turn, needed to prove the convergence of ((T n)∗T n)1/2n

(as can be seen by examining the proof of Lemma 8.1). And finally, the

existence of a limiting matrix for ((T n)∗T n)1/2n was required to prove that
the eigenvalues correspond to the possible values of the Lyapunov exponents.

So we might say that proving the existence of the limiting eigenvalues was
easy, as was proving their connection to Lyapunov exponents once the hard
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work of establishing the convergence of ((T n)∗T n)1/2n was done. But, there
was no way (it seems) to bypass the hard work even if all we were after were
the Lyapunov exponents.
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8. The Hard Work

Lemma 8.1. Given δ > 0 there is a K > 0 such that, for all k > 0,

max{|
〈

u, u′
〉

| : u ∈ U (r)
n , u′ ∈ U

(r′)
n+k, ‖u‖ = ‖u′‖ = 1}

≤ K exp(−n(|λ(r′) − λ(r)| − δ)).

Comment: Since U
(r)
n and U

(r′)
n+k needn’t have the same dimension when

r 6= r′, we cannot state this lemma in terms of our metric on Grassman
manifolds that we defined in Lemma 6.2. But we will be able to adopt this
point of view in the last lemma of this section, where we do have r = r′.

Proof : (We inherit all the internal definitions in the proof of Lemma 4.1 in
section 7.) Let

α = max{|
〈

u, u′
〉

| : u ∈ U (r)
n , u′ ∈ U (r′)

n+k, ‖u‖ = ‖u′‖ = 1}.
We can interpret α as the maximum norm of the projection of any unit

vector in U
(r)
n into U

(r′)
n+k.

Let u ∈ ⊕t≤rU
(t)
n . If vk

rr′ = Proj(u,⊕t≥r′U
(t)
n+k), the orthogonal projection

of u into ⊕t≥r′U
(t)
n+k, then

‖vk
rr′‖ = max{|

〈

u, u′
〉

| : u′ ∈ ⊕t≥r′U
(t)
n , ‖u′‖ = 1}.

If we can show that

‖vk
rr′‖ ≤ K ‖u‖ exp(−n(|λ(r′) − λ(r)| − δ)), (1)

then the theorem will follow by our interpretation of α, since vk
rr′ is the

projection of a vector from a larger space than U
(r)
n into a larger space than

U
(r′)
n+k (and where we include the factor of ‖u‖ since u is now not assumed

to be of unit length).

Without loss of generality, assume that δ < |λ(r′) − λ(r)| for all r 6= r′.
Also, let δ∗ = δ/s. Since

lim sup
n→∞

1

n
log ‖Tn‖ ≤ 0

by assumption, it follows that there is a C > 0 such that

log ‖Tn+1‖ ≤ C + n
δ∗

4
, (2)

for all n.
For n sufficiently large, t

(p)
n < exp

(

n(λ(r) + δ∗

4 )
)

for each p in
⋃

t≤r L
(t),

since λ(r) is the largest eigenvalue reached in the limit by the eigenvalues

corresponding to the space ⊕t≤rU
(t)
n . The eigenspaces are orthogonal and

the eigenvalues measure the stretching by ((T n)∗T n)1/2 of the component
of a vector lying in the eigenspace. Hence, a vector of a given length can
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be stretched by no more than a factor equal to the largest eigenvalue—the
factor that would occur if the vector lied in the eigenspace of the largest
eigenvalue. Hence,

‖T nu‖ = ‖((T n)∗T n)1/2u‖ ≤ exp

(

n(λ(r) +
δ∗

4
)

)

‖u‖,

where we used Lemma 5.2.
Similarly, for n sufficiently large, each t

(p)
n+1 in

⋃

t≥r′ L
(t) will be greater

than exp
(

(n+ 1)(λ(r′) − δ∗

4 )
)

. Also, a vector is stretched by at least as

much as would occur if the vector lied in the eigenspace of the smallest
eigenvalue. But we know that the component in the eigenspace of the small-
est eigenvalue is no larger than ‖v1

rr′‖, so

‖T n+1u‖ ≥ ‖T n+1v1
rr′‖ ≥ exp

(

(n+ 1)(λ(r′) − δ∗

4
)

)

‖v1
rr′‖.

Combining these two inequalities with Equation (2), we have

exp

(

(n+ 1)(λ(r′) − δ∗

4
)

)

‖v1
rr′‖

≤ ‖T n+1u‖ ≤ ‖Tn+1‖‖T nu‖

≤ exp

(

C + n
δ∗

4

)

exp

(

n(λ(r) +
δ∗

4
)

)

‖u‖,

so,

‖v1
rr′‖ ≤ exp

(

C − λ(r′) +
δ∗

4
− nλ(r′) + nλ(r) +

3nδ∗

4

)

‖u‖.

Assume now that n is large enough that C − λ(r′) + δ∗

4 ≤ nδ∗

4 . Then for

u ∈ ⊕t≤rU
(t)
n ,

‖Proj(u,⊕t≥r′U
(t)
n+k)‖ = ‖v1

rr′‖

≤ ‖u‖ exp
(

−n(λ(r′) − λ(r) − δ∗)
)

. (3)

We can use this inequality to bound ‖v2
r,r+1‖ by applying Lemma 5.6 with

V = ⊕t≥r+1U
(t)
n+1 and W = ⊕t≥r+1U

(t)
n+2. Then V ⊥ = ⊕t≤rU

(t)
n+1 (this is why

we needed consecutive eigenvalues) and so Lemma 5.6 gives

‖v2
r,r+1‖ ≤ ‖u‖ exp

(

−n(λ(r+1) − λ(r) − δ∗)
)

+ ‖u′‖ exp
(

−(n+ 1)(λ(r+1) − λ(r) − δ∗)
)

,
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where u′ is the projection of u into W . But ‖u′‖ ≤ ‖u‖ and, extending the
above result inductively, we have

‖vk
r,r+1‖ ≤

k−1
∑

j=0

‖u‖ exp
(

−(n+ j)(λ(r+1) − λ(r) − δ∗)
)

≤
∞
∑

j=0

‖u‖ exp
(

−(n+ j)(λ(r+1) − λ(r) − δ∗)
)

= K1‖u‖ exp
(

−(n+ j)(λ(r+1) − λ(r) − δ∗)
)

,

where

K1 =
(

1 − exp(−(λ(r+1) − λ(r) − δ∗))
)−1

.

Now let V = ⊕t≥r+2U
(t)
n+1 andW = ⊕t≥r+2U

(t)
n+2. Then V ⊥ = ⊕t≤r+1U

(t)
n+1

and applying Lemma 5.6 we conclude that

‖v2
r,r+2‖ = Proj(u,W )

≤ ‖Proj(u, V )‖ + ‖Proj(Proj(u, V ⊥),W )‖
= ‖Proj(u,⊕t≥r+2U

(t)
n+1)‖+

‖Proj(Proj(u,⊕t≤r+1U
(t)
n+1),⊕t≥r+2U

(t)
n+2)‖

= ‖v1
r,r+2‖ + ‖Proj(Proj(u,⊕t≤r+1U

(t)
n+1),⊕t≥r+2U

(t)
n+2)‖.

The vector Proj(u,⊕t≤r+1U
(t)
n+1) = v1

r,r+1 lies in ⊕t≤r+1U
(t)
n+1. Thus,

‖Proj(Proj(u,⊕t≤r+1U
(t)
n+1),⊕t≥r+2U

(t)
n+2)‖

= ‖Proj(v1
r,r+1,⊕t≥r+2U

(t)
n+2)‖.

By Equation (3),

‖Proj(v1
r,r+1,⊕t≥r+2U

(t)
n+2)‖ ≤ ‖v1

r,r+1‖ exp
(

−n(λ(r+2) − λ(r+1) − δ∗)
)

and

‖v1
r,r+1‖ ≤ ‖u‖ exp

(

−n(λ(r+1) − λ(r) − δ∗)
)

.

Therefore,

‖v2
r,r+2‖ ≤ ‖u‖ exp

(

−n(λ(r+2) − λ(r) − δ∗)
)

+ ‖u‖ exp
(

−n(λ(r+1) − λ(r) − δ∗)
)

× exp
(

−n(λ(r+2) − λ(r+1) − δ∗)
)

,

where we used Equation (3) once more.
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Extending this result inductively gives,

‖vk
r,r+2‖ ≤ ‖u‖

k−1
∑

j=0

exp
(

−(n+ j)(λ(r+2) − λ(r) − δ∗)
)

+ ‖u‖K1

k−1
∑

j=0

exp
(

−n(λ(r+1) − λ(r) − δ∗)
)

× exp
(

−(n+ j)(λ(r+2) − λ(r+1) − δ∗)
)

.

But,

exp
(

−n(λ(r+1) − λ(r) − δ∗)
)

exp
(

−(n+ j)(λ(r+2) − λ(r+1) − δ∗)
)

= exp
(

−j(λ(r+2) − λ(r+1) − δ∗)
)

exp
(

−n(λ(r+2) − λ(r+1) − 2δ∗)
)

,

so we have a sum of a geometric series and a common factor of exp(−n(λ(r+2)

−λ(r+1) − 2δ∗)), from which we conclude that

‖vk
r,r+2‖ ≤ K2 ‖u‖ exp

(

−n(λ(r+2) − λ(r) − 2δ∗)
)

,

where K2 is a constant.
Continuing the above argument inductively, we conclude that

‖vk
r,r′‖ ≤ Kr′−r ‖u‖ exp

(

−n(λ(r′) − λ(r) − (r′ − r)δ∗)
)

.

With the symmetric result for r′ < r, and taking K to be the largest of all
the constants Ki (and with the trivial result for r = r′, where K0 = 1), we
have

‖vk
r,r′‖ ≤ K ‖u‖ exp

(

−n(|λ(r′) − λ(r)| − |r′ − r|δ∗)
)

.

Since δ∗ = δ/s, |r′ − r|δ∗ < δ and Equation (1) follows, completing the
proof of the lemma. �

Corollary 8.2. The sequence of subspaces {U (r)
n }∞n=1 is a Cauchy sequence

in the metric d on the Grassman manifold Grm
l defined in Lemma 6.2, where

l is the common dimension of each U
(r)
n .

Proof : Let δ < |λ(r′) − λ(r)| for all r 6= r′. Then by Lemma 8.1,

max{|
〈

u, u′
〉

| : u ∈ U (r)
n , u′ ∈ U

(r′)
n+k, ‖u‖ = ‖u′‖ = 1}

≤ K exp(−nC),

where

C = min{|λ(r′) − λ(r)| − δ : r 6= r′} > 0.
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Since

U (r)
n

⊥
=

⋃

r′ 6=r

U (r′)
n ,

it follows that for all k > 0,

d(U (r)
n , U

(r)
n+k)

= max{|〈u, u′〉 : u ∈ U (r)
n , u′ ∈ (U

(r)
n+k)

⊥, ‖u‖ =
∥

∥u′
∥

∥ = 1|}
≤ K exp(−nC),

showing that the sequence {U (r)
n }∞n=1 is Cauchy. �
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9. Sources

My proof of Oseledec’s multiplicative ergodic theorem is from Ruelle’s paper,

[1] David Ruelle, Ergodic Theory on Differentiable Dynami-
cal Systems, IHES Publicationes Mathematiques, 50:275-320
(1979).

There are actually two sets of page numbers in [1]: my references are to the
page numbers with the lower of the two values.

The example I use to illustrate the theorem is from Ruelle’s text,

[2] David Ruelle, Chaotic Evolution of Strange Attractors,
Cambridge University Press, 1989.

This example was discussed briefly in a talk by Roman Shvydkoy earlier this
semester in the fluid mechanics seminar and was first mentioned to me by
Dr. Vishik at the beginning of this semester.

What is now called the multiplicative ergodic theorem or Oseledec’s er-
godic theorem was first proved by Oseledec in

[3] V. I. Oseledec, A multiplicative ergodic theorem, Ljapunov
characteristic numbers for dynamical systems, Trudy Moskov,
Mat. Obšč, 19 (1968).

Ruelle states that the proof of this theorem due to Oseledec is “not appro-
priate for our discussion,” and gives instead a proof he attributes to M. S.
Raghunathan, with a reference to a paper entitled A proof of Oseledec’ mul-
tiplicative ergodic theorem to appear in Israel. J. Math. I have not looked
up either Oseledec’s or Raghunathan’s papers.

Late in the process—the day before my first talk—I started looking at
the following text:

[4] Ludwig Arnold, Random Dynamical Systems, Springer-
Verlag, 1998.

Arnold gives a very detailed proof of various versions of the multiplicative
ergodic theorem. He takes the same approach as that of [1] (which he
calls the “established approach”), but states that he is “basically following
Goldsheid and Margulis in doing the hard work.” This is a reference to

[5] I. Y. Goldsheid and G. A. Margulis, Lyapunov Indices of a
product of random matrices, Russian Mathematical Surveys,
44:11-71, 1989.

Arnold also gives the reference to the published version of Raghunathan’s
proof:

[6] M. S. Raghunathan, A Proof of Oseldec’s Multiplicative
Ergodic Theorem, Israel J. Math, 32:356-362, 1979.

Ruelle gives the following reference to a paper of Kingman’s in which he
states and proves the sub-additive ergodic theorem that bears his name:
26
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[7] J. F. C. Kingman, The Ergodic Theory of Subadditive
Stochastic Processes, J. Royal Statist. Soc., B 30, 499-510,
1968.

Ruelle gives the following reference to a paper of Furstenberg and Kesten,
in which they prove our Corollary 3.2:

[8] H. Furstenberg and H. Kesten, Products of Random Ma-
trices, Ann. Math. Statist., 31 p. 457-469, 1960.

Ruelle is extremely sketchy on the details in [1] and I spent more time
than I would want to admit filling in the details. But the flow of the proof
in Ruelle is easier to see than in, say, [4], precisely because so few details are
given. The most difficult part of the proof—the proof of the Fundamental
Lemma, which contains what Arnold refers to in [4] as the “hard work”—I
almost despaired of trying to figure out since in [1] it is proved in one page
containing a series of inequalities without any explanation of where they
came from (Ruelle is working in a Grassman manifold, for example, but
never even mentions that fact). And in [4] it is proved in roughly 12 pages,
so I opted in the end to just figure out what Ruelle had written, which was
a lot more fun anyway than reading 12 pages of dense calculation.
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