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Viscous equations

The infinite Prandtl-Darcy number Darcy-Brinkman-Boussinesq
system (IPDDBB) in dimensionless form:

−ε∆vε + vε +∇pε = γT εk on (0, t∗)× Ω,
div vε = 0 on (0, t∗)× Ω,
∂tT ε + vε · ∇T ε = ∆T ε on (0, t∗)× Ω,
vε = 0, T ε = f on (0, t∗)× ∂Ω,
T ε(0) = T0 on {0} × Ω.

(1)

Ω Periodic channel, [0, 2π]d−2 × (0, 1) in Rd , d = 2, 3,
containing a porous medium

vε,T ε velocity, temperature of a fluid in Earth’s gravity
ε Brinkman-Darcy number
γ Rayleigh-Darcy number
f smooth function on the boundary
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Inviscid equations

Formally setting the Brinkman-Darcy number to zero gives the
infinite Prandtl-Darcy number Darcy-Boussinesq system (IPDDB):

v0 +∇p0 = γT 0k on (0, t∗)× Ω,
div v0 = 0 on (0, t∗)× Ω,
∂tT 0 + v0 · ∇T 0 = ∆T 0 on (0, t∗)× Ω,
v0 · n = 0, T 0 = f on (0, t∗)× ∂Ω,
T 0(0) = T0 on {0} × Ω.

(2)

The well-posedness of weak solutions to (1) is standard. The
well-posedness as well as further regularity of (2) was
established by Fabrie 1986 and Ly and Titi for slightly
different boundary conditions.

Payne and Straughan 1998 establish the vanishing viscosity
limit, showing that vε → v0 in L∞([0, t∗; L2) as ε→ 0,
bounding the rate of convergence by Cε1/2.
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Why a boundary layer expansion is possible

Both the viscous and inviscid equations are fully nonlinear,
but the nonlinearity occurs in the transport-diffusion term,
which is of the form ∂tT + v · ∇T = ∆T .

The boundary conditions are the same for the
transport-diffusion term, which results in no boundary layer
(to first order) in the temperature.

The transport-diffusion equation is coupled through the
forcing term with a linear velocity equation: a damped and
driven Stokes problem for the viscous equations or a simple
Helmholtz decomposition for the inviscid equation.

Because the different boundary conditions appear only in the
linear equation (in the velocity), the boundary layer is linear.

The nonlinearity in the transport-diffusion equation
complicates things considerably, but in the end the explicit
form of the boundary layer corrector allows us to control
everything—at least to first order.
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2D and 3D result

We will construct a boundary layer corrector, θε, such that:

Theorem (KTW)

For constants, C , depend only on T0, f , and t,∥∥vε − v0 − θε
∥∥

L∞(0,t;L2)
≤ Cε1/2,∥∥vε − v0 − θε

∥∥
L∞(0,t;H1)

≤ C ,∥∥T ε − T 0
∥∥

L∞(0,t;L2)
≤ Cε1/2,∥∥T ε − T 0

∥∥
L2(0,t;H1)

≤ Cε1/2,∥∥∇pε −∇p0
∥∥

L∞(0,t;L2)
≤ Cε1/2.

Assumptions on initial temperature are described two slides from
now.
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2D only result

Theorem (KTW)

When d = 2,∥∥T ε − T 0
∥∥

L∞(0,t;H1)
,
∥∥∂t(T ε − T 0)

∥∥
L2(0,t;L2)

≤ Cε1/4,

and ∥∥vε − v0 − θε
∥∥

L∞((0,t)×Ω)
≤ Cε1/8,∥∥T ε − T 0

∥∥
L∞((0,t)×Ω)

≤ Cε3/8.

Each of the constants, C , depends only on T0, f , and t.

The proof relies on an extension of the “anisotropic embedding
lemma” of Temam and Wang 1996.
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Compatible initial data

To construct a boundary layer corrector, we need smooth
solutions to the inviscid equations down to t = 0.

To ensure this, we assume that the initial temperature is
compatible with the boundary data, possibly because it has
been “properly prepared” by being the solution to (2) for
some positive time.

Specifically, we need that for some k ≥ 6 (when d = 3)

v0,T 0 ∈ C k([0, t∗]× Ω).

The compatibility conditions are way too lengthy to write
down explicitly, but derive from a straightforward application
of Temam 1982.
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Coordinates

Ω = [0, 2π]d−1 × (0, 1), periodic in the horizontal direction(s).

In 3D we will use coordinates (x , y , z) and in 2D (x , z) so that
z is always the vertical coordinate.

We alternately use (x1, x2, x3) or (x , y , z) as convenient.
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Heuristic derivation of boundary layer corrector

T ε = T 0 = f on the boundary, so we do not expect a
boundary layer for the temperature field.

The corrector, θε = vε − v0 with qε = pε − p0, satisfies:

−ε∆θε + θε +∇qε = ε∆v0, div θε = 0,

θε
∣∣
z=0,1

= −v0
∣∣
z=0,1

.

At z = 0, we use the stretched coordinate, Z = zε−α, and
assume that

θε(x , y , z ; t) = θ(x , y ,Z ; t), qε(x , y , z ; t) = q(x , y ,Z ; t).

Neglecting terms of order ε gives, for j = 1, d − 1,

−ε1−2α∂
2θj
∂Z 2

+ θj +
∂q

∂xj
.

Since the viscous term must be effective in the boundary
layer, we surmise that α = 1/2.
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Heuristic derivation of boundary layer corrector (cont.)

Thus,

−
∂2θj
∂Z 2

+ θj +
∂q

∂xj
= 0, j = 1, d − 1.

Then θ3 is of order ε1/2 since

div θε = ∂xθ1 + ∂yθ2 + ε−1/2∂Zθ3 = 0.

The resulting Prandtl-type equations can be solved exactly:

q0 ≡ 0,

θj = −v 0
j (x , y , 0; t)e−Z , j = 1, 2,

θ3 =
√
ε(
∂v 0

1 (x , y , 0; t)

∂x
+
∂v 0

2 (x , y , 0; t)

∂y
)(1− e−Z ).
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Heuristic derivation of boundary layer corrector (cont.)

The vertical corrector is of order
√
ε in the interior since

θ3 =
√
ε(
∂v 0

1 (x , y , 0; t)

∂x
+
∂v 0

2 (x , y , 0; t)

∂y
)(1− e−Z ).

This is as for the Stokes problem (Temam and Wang 1996).

We construct a similar corrector at the opposite boundary,
z = 1.

Since the corrector at one boundary is nonzero (though small)
at the opposite boundary, we multiply each by cutoff functions
supported near each boundary and add them together.

The resulting corrector we will continue to call θε.
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Boundary layer corrector equation

The boundary layer corrector exactly solves:
−ε∆θε + θε = fε on (0, t∗)× Ω,
div θε = 0 on (0, t∗)× Ω,
θε = −v0 on (0, t∗)× ∂Ω.

There is a long explicit expression for fε, but all we need is

‖fε‖ ≤ Cε
1
2 ,

‖∂m
t ∂

n
x f
ε‖L∞(0,t∗;L2) ≤ Cε1/2 (d = 2),∥∥∥∂m

t ∂
n
x∂

l
y f
ε
∥∥∥

L∞(0,t∗;L2)
≤ Cε1/2 (d = 3).
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Aspects of proof of uniform spatial convergence

I will now give some idea of how we prove∥∥vε − v0 − θε
∥∥

L∞((0,t)×Ω)
≤ Cε1/8.

Let

wε
v = vε − v0 − θε, w ε

T = T ε − T 0.

1 Start by proving the first theorem, which gives convergence of
the velocity, temperature, and pressure in L2 or H1 spatial
norms using a fairly standard energy argument.

2 In proving convergence of the pressure one obtains, using
estimates on the Stokes problem,

‖wε
v‖L∞(0,t∗;H2) ≤ Cε−1/2.
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3 Using the two-dimensional Agmon’s inequality gives

‖wε
v‖L∞((0,t∗)×Ω) ≤ C ‖wε

v‖
1/2
L∞(0,t∗;L2)

‖wε
v‖

1/2
L∞(0,t∗;H2)

≤ C
(
ε1/2

)1/2 (
ε−1/2

)1/2
≤ C .

4 Since v0 and θε are uniformly bounded in L∞((0, t∗)× Ω), it
follows that

‖vε‖L∞((0,t∗)×Ω) ≤ C .

5 Use this uniform bound on the viscous velocity to improve the
energy argument in the first theorem to give

‖w ε
T‖L∞(0,t;H1) , ‖∂tw ε

T‖L2(0,t;L2) ≤ Cε1/4.
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6 Use the improved temperature convergence to improve the
energy argument for velocity convergence to give

‖∂xw
ε
v‖L∞(0,t∗;L2) ≤ Cε1/4,

‖∂xw
ε
v‖L∞(0,t∗;H1) ≤ Cε−1/4.

7 Extend the anistropic embedding lemma of Temam and Wang
1996:

Theorem (Slight extension of Temam and Wang 1996)

For all u ∈ H1
0,per (Ω)

‖u‖L∞(Ω) ≤ C (‖u‖
1
2

L2 ‖∂zu‖
1
2

L2 + ‖∂zu‖1/2
L2 ‖∂xu‖1/2

L2

+ ‖u‖1/2
L2 ‖∂x∂zu‖1/2

L2 ),

where one or both sides of the inequality could be infinite.
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8 Apply the anisotropic embedding lemma to give

‖wε
v‖L∞((0,t∗)×Ω) ≤ C

[
‖wε

v‖
1/2
L∞(0,t∗;L2)

‖wε
v‖

1/2
L∞(0,t∗;H1)

+ ‖wε
v‖

1/2
L∞(0,t∗;H1)

‖∂xw
ε
v‖

1/2
L∞(0,t∗;L2)

+ ‖wε
v‖

1/2
L∞(0,t∗;L2)

‖∇∂xw
ε
v‖

1/2
L∞(0,t∗;L2)

]
≤ C

((
ε

1
2

) 1
2

+
(
ε1/4

)1/2
+
(
ε1/2ε−1/4

)1/2
)

≤ Cε1/8.
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Further problems

1 Obtain higher order correctors for vε, T ε, and pε and
determine the resulting convergence rates.

2 Extend the 2D uniform in space convergence to apply to a
bounded domain in R2 with C 2 boundary. The main issue is
the anisotropic embedding lemma, not the corrector.

3 Try to improve the 1/8 exponent in∥∥vε − v0 − θε
∥∥

L∞((0,t)×Ω)
≤ Cε1/8

to 1/2, the same scaling as in the energy norm.

4 Try to improve convergence in 3D, though uniform in space
and time convergence might not be possible.
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