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Abstract. The general class of problems we consider is the following:
Let Ω1 be a bounded domain in Rd for d ≥ 2 and let u0 be a velocity field
on all of Rd. Suppose that for all R ≥ 1 we have an operator TR that
projects u0 restricted to RΩ1 (Ω1 scaled by R) into a function space on
RΩ1 for which the solution to some initial value problem is well-posed
with TRu0 as the initial velocity. Can we show that as R → ∞ the
solution to the initial value problem on RΩ1 converges to a solution in
the whole space?

We answer this question when d = 2 for weak solutions to the Navier-
Stokes and Euler equations. For the Navier-Stokes equations we assume
the lowest regularity of u0 for which one can obtain adequate control
on the pressure. For the Euler equations we assume the lowest feasible
regularity of u0 for which uniqueness of solutions to the Euler equations
is known (thus, we allow “slightly unbounded” vorticity). In both cases,
we obtain strong convergence of the velocity and the vorticity as R → ∞

and, for the Euler equations, the flow. Our approach yields, in principle,
a bound on the rates of convergence.
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1. Introduction

The properties of the solutions to the Navier-Stokes equations (which we
refer to as (NS)) and to the Euler equations (which we refer to as (E)) are
reasonably well understood in two dimensions in the setting of a bounded
domain and in the whole space (as well as for periodic domains). It is a
natural question to ask whether the solution to (NS) or (E) in a bounded
domain approaches the solution to (NS) or (E) in the entire space as we let
the size of the bounded domain increase to infinity.

More precisely, let Ω1 be a bounded domain with a C2-boundary Γ1. For
simplicity, we assume that Ω1 is connected and simply connected. Define

ΩR := RΩ1 and ΓR := RΓ1 = ∂ΩR for R in [1,∞). (1.1)

We assume that the origin lies in the interior of Ω1, so that ΩR fills the
whole space as R → ∞. For R = ∞, we define ΩR to be R2 and ΓR to be
empty.

Let X(ΩR) be a function space for which (NS) or (E) is well-posed on ΩR.
Let u0 lie inX(R2) and suppose that TR is a “truncation” operator that maps
X(R2) to X(ΩR) in such a way that ‖u0|ΩR

− TRu
0‖X(ΩR) → 0 as R → ∞.

The question we address is the following: If uR is the solution (velocity) to
(NS) or (E) on ΩR with initial velocity TRu0 and u is the solution to (NS)
or (E) on R2, can we show that ‖u|ΩR

− uR‖L2([0,T ];X(ΩR)) → 0 as R→ ∞?

We show in Theorem 8.1 that, in fact, such convergence does occur in
X(ΩR) = H1(ΩR). For solutions to (NS) we need only assume that u0 lies
in H1(R2). For solutions to (E), though, we need a stronger assumption
on u0 to have well-posedness. We will assume that the initial velocity has
Yudovich vorticity, described in Section 2. This is a class of vorticities
introduced by Yudovich in [19] for which he showed uniqueness of solutions
to (E) in a bounded domain in Rd, d ≥ 2. This class is slightly broader
than initial vorticities lying in L∞, for which Yudovich established the same
uniqueness result in [18]. It is the natural class of initial vorticities for us
to use because it is ideally suited to the use of energy methods, and is the
largest such class for which existence and uniqueness of solutions to (E)
has been established. (For the larger class of initial vorticities defined by
Misha Vishik in [15] existence is not known. Also, this class is not as readily
amenable to the use of energy methods; see, however, [2].)

We will restrict ourselves to solutions in the whole space that have finite
energy, though this is a stronger condition than required. For instance, the
spaces Em of [1] which allow infinite energy or spaces that allow even slower
decay of the velocity at infinity can be dealt with using our techniques. The
assumption of finite energy simplifies the analysis considerably, however, in
large part because it does not require us to make significant adaptations
to the standard existence and uniqueness results for the Navier-Stokes and
Euler equations, and because it simplifies considerably the definition of the
truncation operator TR.



EXPANDING DOMAIN LIMIT IN 2D 3

Our results seem to be most closely related to those of [5] and [6], in which
the authors consider the limit as ǫ→ 0 of solutions of (E) and (NS) on the
domain external to Ωǫ = ǫΩ1, where Ω1 is a fixed simply connected domain.
In a sense, this is the opposite limit to what we consider. They start with a
smooth initial vorticity ω0 whose support is compact and does not contain
the origin. For ǫ > 0, they use as an initial velocity the unique divergence-
free vector field in ΩC

ǫ that is tangent to ∂Ωǫ, has a curl equal to ω0 in
ΩC

ǫ , and has a given fixed circulation γ. Using a weak vorticity formulation
of (E), they find, roughly speaking, that a subsequence of solutions to (E)
converges in the limit as ǫ → 0 to a solution to (E) with an additional
forcing term of γδ. (Here, δ is the Dirac delta function.) In contrast, for
(NS) they find that a subsequence converges to a solution to (NS) whose
initial vorticity is ω0 + γδ. (The smoothness of the initial vorticity is not
the critical point; their convergence argument for (E) would apply for initial
vorticities in Lp for p > 2 and even less smoothness is required for (NS), as
they note.)

The limits considered here and in [5] and [6] can be viewed as falling into
the broad class of limits of singularly perturbed domains, as considered in
detail for elliptic problems in [12].

This paper is organized as follows: In Section 2 we define Yudovich vor-
ticity and in Section 3 we define the function spaces we will use. In Section 4
we describe how we adjust the initial velocity to satisfy the boundary con-
ditions. We define a weak solution to (NS) and (E) in Section 5 and give
the basic existence, uniqueness, and regularity results for the velocity and
pressure in Section 6. We also require a uniform-in-time bound on how fast
solutions to (NS) and (E) in all of R2 vanish at infinity, which we discuss in
Section 7. Our main result, in which we establish convergence of solutions to
(NS) and (E) as R→ ∞, is given in Section 8. We include in the appendix
various lemmas we use in the body of the paper.

A few words on notation: We define the vorticity of a vector field u on
R2 by ω(u) := ∂1u

2 − ∂2u
1. By T , we always mean an arbitrary, but fixed,

positive real number representing time. The symbol C stands for a positive
constant that can hold different values on either side of an inequality, though
always has the same value on each side of an equality. The constant may
have dependence on certain parameters, such as viscosity, but will never
have any dependence on our scaling factor, R. We use the notation

∫

fg
when we sometimes should more properly write (f, g)—the pairing of f in
a function space X with an element g in the dual space of X.

2. Yudovich Vorticity

Definition 2.1. Let θ : [p0,∞) → R+ for some p0 in (1, 2). We say that θ
is admissible if the function βM : (0,∞) → [0,∞) defined, for some M > 0,
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by1

βM (x) := 2C0 inf
{

(M ǫx1−ǫ/ǫ)θ(1/ǫ) : ǫ in (0, (2 + ǫ0)
−1]
}

, (2.1)

where C0 is a fixed absolute constant and ǫ0 > 0 is fixed as in Lemma A.5,
satisfies

∫ 1

0

dx

βM (x)
= ∞. (2.2)

Because

βM (x) = 2C0M
x

M
inf
{

((x/M)−ǫ/ǫ)θ(1/ǫ) : ǫ in (0, (2 + ǫ0)
−1]
}

= Mβ1(x/M),

this definition is independent of the value of M . Also, βM is a monotonically
increasing continuous function, with limx→0+ βM (x) = 0.

Yudovich proves in [19] that for a bounded domain in Rn, if ‖ω0‖Lp ≤
θ(p) for some admissible function θ, then at most one solution to the Euler
equations exists. Because of this, we call such a vorticity, Yudovich vorticity :

Definition 2.2. We say that a vector field v has Yudovich vorticity if for
some admissible function θ : [p0,∞) → R+ with p0 in (1, 2), ‖ω(v)‖Lp ≤ θ(p)
for all p in [p0,∞).

Examples of admissible bounds on vorticity are

θ0(p) = 1, θ1(p) = log p, . . . , θm(p) = log p · log log p · · · logm p, (2.3)

where logm is log composed with itself m times. These admissible bounds
are described in [19] (see also [7].) Roughly speaking, the Lp–norm of a
Yudovich vorticity can grow in p only slightly faster than log p and still be
admissible. Such growth in the Lp–norm arises, for example, from a point
singularity of the type log log(1/ |x|).

3. Function Spaces

We will use the following function spaces:

H(ΩR) =
{

v ∈ (L2(ΩR))2 : div v = 0 in ΩR and v · n = 0 on ΓR

}

,

V (E)(ΩR) =
{

v ∈ (H1(ΩR))2 : div v = 0 in ΩR and v · n = 0 on ΓR

}

,

V (NS)(ΩR) =
{

v ∈ (H1(ΩR))2 : div v = 0 in ΩR and v = 0 on ΓR

}

.

(3.1)

We equip H(ΩR) with the L2(ΩR)-norm and V (E)(ΩR) and V (NS)(ΩR) with
the H1(ΩR)-norm.

1The definition of βM in Equation (2.1) differs from that in [7] in that it directly
incorporates the factor of p that appears in the Calderón-Zygmund inequality; in [7] this
factor is included in the equivalent of Equation (2.2).
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Our solutions to (E) at time t will lie in V (E)(ΩR), solutions to (NS) in

V (NS)(ΩR). In general, V (NS)(ΩR)  V (E)(ΩR)  H(ΩR); however, when
ΩR = R2, the first two spaces coincide, and we simply write V (R2).

Given a function θ : [p0,∞) → R+ admissible in the sense of Definition 2.1
for some p0 in (1, 2), we define the subspace

Yθ(ΩR) =
{

v ∈ V (E)(ΩR) : ‖ω(v)‖Lp ≤ Cθ(p) for all p in [p0,∞)
}

for some constant C. We define a norm on Yθ by

‖v‖Yθ(ΩR) = ‖v‖L2(ΩR) + sup
p∈[p0,∞)

‖ω(v)‖Lp(ΩR) /θ(p). (3.2)

Finally, we define the space

Y(ΩR) =
{

v ∈ Y (E)
θ (ΩR) : for some admissible θ

}

,

but place no norm on this space.

4. Truncation of the initial velocity

Definition 4.1 (“Truncation” operator). Let

Σ1 = {x ∈ Ω1 : dist(x,Γ1) < 1/2κ} ,
where κ is the maximum curvature of Γ1. Let ϕ1 in C∞(Ω1) taking values
in [0, 1] be defined so that ϕ1 = 1 on Ω1 \ Σ1 and ϕ1 = 0 on Γ1, and let
ϕR(·) = ϕ1(·/R) and ΣR = RΣ1. Let ψ be a stream function for u ∈ H(R2);
that is, u = ∇⊥ψ (ψ is unique up to the addition of a constant). Finally,
define TR : H(R2) → H(ΩR) by

TRu := ∇⊥(ϕRψR), (4.1)

where ψR = ψ − |ΣR|−1 ∫

ΣR
ψ, so that

∫

ΣR
ψR = 0 and u = ∇⊥ψR on all of

R2.

Lemma 4.2. TR : H(R2) → H(ΩR) with an operator norm that is indepen-
dent of R. For any u in H(R2),

‖u− TRu‖H(ΩR) → 0 as R→ ∞. (4.2)

TR : V (R2) → V (E)(ΩR) with an operator norm that is independent of R.
For any u in V (R2),

‖u− TRu‖H1(ΩR) → 0 as R→ ∞. (4.3)

TR : Yθ(R
2) → Yθ(ΩR) with an operator norm that is independent of R. For

any u in Yθ(R
2),

‖ω(u) − ω(TRu)‖Lp(ΩR) → 0 as R→ ∞ (4.4)

uniformly over all p in [p0,∞), p0 being as in Definition 2.2.
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If in Definition 4.1 we impose the extra condition on the cutoff function
ϕ1 that ∇ϕ1 = 0 on Γ1 then also

TR : V (R2) → V (NS)(ΩR) (4.5)

with an operator norm that is independent of R, and Equation (4.2) and
Equation (4.3) continue to hold.

Proof. Define ΣR, ϕR, and ψR as in Definition 4.1. Observe that

‖∇ϕR‖L∞(ΣR) ≤ C/R, ‖∇∇ϕR‖L∞(ΣR) ≤ C/R2,

and by Lemma A.3,

‖ψR‖Lp(ΣR) ≤ CpR‖∇ψR‖Lp(ΣR) = CpR‖u‖Lp(ΣR)

for all p in [1,∞] for some constant Cp. Thus,

‖u− TRu‖H(ΩR) = ‖u−∇⊥(ϕRψR)‖L2(ΩR) = ‖u− ϕR∇⊥ψR − ψR∇⊥ϕR‖L2(ΩR)

≤ ‖1 − ϕR‖L∞(ΣR)‖u‖L2(ΣR) + ‖∇ϕR‖L∞(ΣR)‖ψR‖L2(ΣR)

≤ ‖u‖L2(ΣR) +
C2

R
R‖u‖L2(ΣR) ≤ C‖u‖L2(ΣR).

This converges to 0 as R→ ∞ since u is in L2(R2), giving Equation (4.2).
The same calculation with the first term dropped gives

‖TRu‖H(ΩR) ≤ ‖u‖L2(ΩR) + C2‖u‖L2(ΣR) ≤ C‖u‖L2(ΩR), (4.6)

which bounds the operator norm of TR : H(R2) → H(ΩR) independently of
R.

Similarly,

‖∇u−∇TRu‖L2(ΩR) = ‖∇u−∇∇⊥(ϕRψR)‖L2(ΩR)

= ‖∇u−∇(ϕR∇⊥ψR) −∇(ψR∇⊥ϕR)‖L2(ΩR)

= ‖∇u− ϕR∇∇⊥ψR −∇ϕR ⊗∇⊥ψR −∇ψR ⊗∇⊥ϕR − ψR∇∇⊥ϕR‖L2(ΩR)

= ‖(1 − ϕR)∇u−∇ϕR ⊗∇⊥ψR −∇ψR ⊗∇⊥ϕR − ψR∇∇⊥ϕR‖L2(ΩR)

≤ ‖∇u‖L2(ΣR) + 2 ‖∇ϕR‖L∞(ΣR) ‖u‖L2(ΣR) + ‖∇∇⊥ϕR‖L∞(ΣR) ‖ψR‖L2(ΣR)

≤ ‖∇u‖L2(ΣR) +
C

R
‖u‖L2(ΣR) +

C2

R2
R‖u‖L2(ΣR) ≤ C‖u‖H1(ΣR),

which converges to zero because u is in H1(R2). This gives Equation (4.3).
The same calculation with the first term dropped gives

‖∇TRu‖L2(ΩR) ≤ ‖∇u‖L2(ΩR) + (C/R)‖u‖L2(ΣR) ≤ C‖u‖H1(ΩR).

Together with Equation (4.6), this bounds the operator norm of TR : V (R2) →
V (E)(ΩR) independently of R.

Requiring that ∇ϕ1 = 0 on Γ1 (so ∇ϕR = 0 on ΓR ) affects none of the

calculations above while ensuring that TRu lies in V (NS)(ΩR), since then
TRu = ϕR∇⊥ψR + ψR∇⊥ϕR = 0 on ΓR, giving Equation (4.5) and the
independence of the operator norm on R.
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Now assume that u lies in Yθ(R
2). Then for all p in the interval [p0,∞),

‖ω(u) − ω(TRu)‖Lp(ΩR)

= ‖ω(u) − ω(ϕR∇⊥ψR) − ω(ψR∇⊥ϕR)‖Lp(ΩR)

= ‖ω(u) − ϕRω(∇⊥ψR) + ∇ϕR · (∇⊥ψR)⊥

− ψRω(∇⊥ϕR) + ∇ψR · (∇⊥ϕR)⊥‖Lp(ΩR)

= ‖(1 − ϕR)ω(u) − 2∇ϕR · ∇ψR − ψRω(∇⊥ϕR)‖Lp(ΣR)

≤ ‖ω(u)‖Lp(ΣR) +
C

R
‖∇ψR‖Lp(ΣR) +

C

R2
‖ψR‖Lp(ΣR).

(4.7)

We wish to obtain a bound on the last term that is independent of p.
When p ≥ 2,

C

R2
‖ψR‖Lp(ΣR) ≤

C

R2
‖ψR‖L2∩L∞(ΣR)

≤ max {C2, C∞} C

R2
R‖∇ψR‖L2∩L∞(ΣR) ≤

C

R
‖u‖L2∩L∞(ΣR),

which converges to 0 because u is in L2(R2) by assumption and is in L∞(R2)
by Lemma A.4. For p in [p0, 2), let q and b be such that 1/p = 1/2 + 1/q
and 1/p0 = 1/2 + 1/b. Then

C

R2
‖ψR‖Lp(ΣR) ≤

C

R2
‖ψR‖L2(ΣR)‖1‖Lq(ΣR) ≤ CR2/q−2C2R‖u‖L2(ΣR)

= CR2/q−1‖u‖L2(ΣR).

Since q > b > 2, we have

C

R2
‖ψR‖Lp(ΣR) ≤ CR2/b−1‖u‖L2∩L∞(ΣR) ≤ CR2/b−1‖u‖L2∩L∞(R2),

an inequality that, in fact, holds for all p in [p0,∞). Similarly,

C

R
‖∇ψR‖Lp(ΣR) ≤ CR2/b−1‖u‖L2∩L∞(R2).

Then from Equation (4.7), we have

‖ω(u) − ω(TRu)‖Lp(ΩR) ≤ ‖ω(u)‖Lp(ΣR) + CR2/b−1‖u‖L2∩L∞(R2).

This converges to 0 as R→ ∞ because ω(u) is in Lp(R2), u is in L2∩L∞(R2),
and 2/b− 1 < 0, giving Equation (4.4).

A similar argument gives

‖ω(TRu)‖Lp(ΩR) ≤ ‖ω(u)‖Lp(R2) + CR2/b−1‖u‖L2∩L∞(R2).

From interpolation of Lebesgue spaces and Lemma A.4,

‖u‖L2∩L∞(R2) ≤ max
{

‖u‖L2(R2), ‖u‖L∞(R2)

}

≤ C
(

‖u‖L2(R2) + ‖ω(u)‖L4(R2)

)

≤ C ‖u‖
Yθ(R2) .
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Thus by Equation (3.2),

‖TRu‖Yθ(ΩR) ≤ ‖u‖L2(R2) + sup
p∈[p0,∞)

(

‖ω(u)‖Lp(R2) + CR2/b−1 ‖u‖
Yθ(R2)

θ(p)

)

≤ C ‖u‖
Yθ(R2) ,

showing that TR : Yθ(R
2) → Yθ(ΩR) with an operator norm that is indepen-

dent of R. �

5. Weak Solutions

Definition 5.1 (Weak Navier-Stokes Solutions). Given viscosity ν > 0 and

initial velocity u0 inH(ΩR), u in L2([0, T ];V (NS)) with ∂tu in L2([0, T ]; (V (NS))′)
is a weak solution to the Navier-Stokes equations (without forcing) if u(0) =
u0 and

(NS)

∫

ΩR

∂tu · v +

∫

ΩR

(u · ∇u) · v + ν

∫

ΩR

∇u · ∇v = 0

for almost all t in [0, T ] and for all v in V (NS)(ΩR).

For the Euler equations, existence is only known if the Lp-norm of the
initial vorticity is finite for some p in (1,∞], and uniqueness is known only
under even stronger assumptions, such as the initial velocity lying in Y (see
also [15]). This is reflected in the following definition of a weak solution to
the Euler equations.

Definition 5.2 (Weak Euler Solutions). Given an initial velocity u0 in

Y(ΩR), u in L∞([0, T ];V (E)) with ∂tu in L2([0, T ]; (V (NS))′) is a weak solu-
tion to the Euler equations (without forcing) if u(0) = u0 and

(E)

∫

ΩR

∂tu · v +

∫

ΩR

(u · ∇u) · v = 0

for almost all t in [0, T ] and for all v in V (E)(ΩR).

Given a solution to (NS), there exists a distribution p (tempered, if R =
∞) such that

∂tu+ u · ∇u+ ∇p = ν∆u, (5.1)

equality holding in the sense of distributions. This follows from a result of
Poincaré and de Rham that any distribution that is a curl-free vector is the
gradient of some scalar distribution.

Given a solution to (E), there exists a pressure p such that

∂tu+ u · ∇u+ ∇p = 0, (5.2)

but we can only interpret p as a distribution when R = ∞. Otherwise,
we must view ∂tu + u · ∇u as lying in H−1(ΩR) and p as lying in L2(ΩR).
(Equation (5.2) follows, for instance, from Remark I.1.9 p. 14 of [14].)
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In both Equation (5.1) and Equation (5.2) the pressure is unique up to
the addition of a function of time. We resolve this ambiguity for R < ∞
by requiring that

∫

ΩR
p(t) = 0 and for R = ∞ by requiring that p(t) lie in

L2(ΩR) for almost all t in [0, T ].

6. Properties of the Velocity and Pressure

Theorem 6.1. (1) Assume that u0 is in V (R2). Then there exists a unique
weak solution (u, p) to (NS) with initial velocity u0 for R = ∞ and initial
velocity TRu

0 (see Definition 4.1) for R in [1,∞), with

u ∈ L∞([0, T ];H(ΩR)), ∇u ∈ L∞([0, T ];L2(ΩR)),
u ∈ L4([0, T ];L∞(ΩR)), ∆u ∈ L2([0, T ];L2(ΩR)),
∂tu ∈ L2([0, T ];H(ΩR)), ∇p ∈ L2([0, T ];L2(ΩR)),
u ∈ L∞([0, T ];H1(ΩR)), u ∈ L2([0, T ];H2(ΩR)),

and the norms in these spaces can be bounded independently of R in [1,∞].
If R < ∞ then p is in L2([0, T ];L2(ΩR)) and if R = ∞ then p is in
L∞([0, T ];L2(R2)) and ∇p is in L4([0, T ];L2(R2)).

(2) Assume that u0 is in Yθ(R
2). Then there exists a unique weak solution

(u, p) to (E) in the sense of Definition 5.2 with initial velocity u0 for R = ∞
and initial velocity TRu

0 for R in [1,∞). The velocity u lies in L∞([0, T ];Yθ)
and is unique in that class. We have,

u ∈ L∞([0, T ];H(ΩR)), ∇u ∈ L∞([0, T ];L2(ΩR)),
u ∈ L∞([0, T ] × ΩR), u ∈ C([0, T ] × ΩR)
∂tu ∈ L∞([0, T ];H(ΩR)), ∇p ∈ L∞([0, T ];L2(ΩR)),

and the norms in these spaces and of u in L∞([0, T ];Yθ) can be bounded
independently of R in [1,∞]. The pressure p is in L∞([0, T ];H1(R2)). Also,

‖ω(t)‖Lq(ΩR) = ‖ω0‖Lq(ΩR) (6.1)

for all q in [p0,∞) (and for q = ∞ if ω0 is in L∞(ΩR)) and almost all t ≥ 0,
where p0 is as in Definition 2.2.

Furthermore, there is a bound on the modulus of continuity of u(t, x) in t
that is independent of x and a bound on the modulus of continuity of u(t, x)
in x that is independent of t, and both of these bounds are independent of
R in [1,∞]. There exists a unique flow X associated with u with bounds
on the moduli of continuity in time and in space with the same properties
just described for u. Finally, the bound, µ, on the modulus of continuity of

u(t, x) in x satisfies
∫ 1
0 ds/µ(s) = ∞.

Proof. The facts regarding solutions to (NS) in (1) are entirely classical
except perhaps for the independence of the norms on R. In that regard,
we note that no domain-dependent constants enter into the bounds on u in
L∞([0, T ];H(ΩR)) or ∇u in L2([0, T ];L2(ΩR)), as these bounds follow from
the most basic energy equality derived by multiplying Equation (5.1) by u
and integrating over ΩR. (This is true even with forcing, though then the
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domain-independent bounds grow with T .) Only the norms of u0 and ∇u0 in
L2(ΩR) enter into these bounds, and by Lemma 4.2 the truncation operator
TR is bounded in L2 and H1; hence, the bounds can be made independent
of R.

In the bounds on ∇u in L∞([0, T ];L2(ΩR)) and ∆u in L2([0, T ];L2(ΩR)),
domain-dependent constants do enter. These bounds follow by an energy
inequality derived (formally) by multiplying Equation (5.1) by Au and inte-
grating over ΩR (see, for instance, the proof of Theorem III.3.10 p. 213-214
of [14] for details). Here, A is the Stokes operator.

The proof of this energy inequality relies on two key inequalities, the first
being

C ‖∆u‖L2(ΩR) ≤ ‖Au‖L2(ΩR) ≤ ‖∆u‖L2(ΩR) . (6.2)

The constant C is independent of R because Au and ∆u scale the same way
with R. The second key inequality is Equation (A.3) applied to ∇u instead
of u, giving

‖∇u‖2
L4(ΩR) ≤ C ‖∇u‖L2(ΩR)

(

‖∇∇u‖L2(ΩR) + (1/R) ‖∇u‖L2(ΩR)

)

.

But it follows from basic elliptic regularity theory (see, for instance, Theorem
8.12 p. 176 of [4])) that

‖∇∇u‖L2(ΩR) ≤ C
(

‖∆u‖L2(ΩR) + (1/R) ‖∇u‖L2(ΩR)

)

, (6.3)

with a scaling argument to give the factor of 1/R and the independence of
C on R. Other than the additional term of (1/R) ‖∇u‖L2(ΩR), which is easy

to accommodate, the derivation of the energy inequality proceeds as usual,
giving bounds on ∇u in L∞([0, T ];H1(ΩR)), on u in L∞([0, T ];L2(ΩR)), and
on ∆u in L2([0, T ];L2(ΩR)) that are independent of R (though not of the
shape of the domain).

Because u, ∇u, and ∆u are each in L2([0, T ];L2(ΩR)) with bounds on
their norms that are independent of R, it follows from Equation (6.3) that
u is in L2([0, T ];H2(ΩR)) with a bound on its norm that is independent of
R.

The remaining bounds on u, ∂tu, and ∇p follow from these basic bounds,
and in that way we obtain independence of all the stated norms on R.

By Lemma 4.2, the operator norm of TR : Yθ(R
2) → Yθ(ΩR) is indepen-

dent of R. So too then are the bounds on the norms in (2), which derive
from the energy inequality and the transport of vorticity along the flow lines
and so involve no domain-dependent constants.

For solutions to (E) in (2), the existence, uniqueness, and regularity of u
for R < ∞ were proved in the special case of bounded initial vorticity by
Yudovich in [18]. He extended uniqueness to the case of Yudovich initial
vorticity in [19] for R < ∞; uniqueness for R = ∞ is essentially the same
(see [7]). For R in [1,∞], existence in the class Y(ΩR) follows from Theorem
4.1 p. 126 and the comment immediately preceding Remark 4.4 p. 132 of



EXPANDING DOMAIN LIMIT IN 2D 11

[10], the comment being that the Lp-norm of vorticity is independent of time
for any p for which ω0 is in Lp. For R <∞, existence can also be established
as in [17], [18] (see comment in the introduction to [19]). Uniqueness in the
class Y(ΩR) for R <∞ is established by Yudovich in [19], and his argument
extends with little change to R = ∞.

To establish the facts concerning the moduli of continuity of the velocity
and flow in the last paragraph of (2), however, it is much easier to adapt
the approach in Majda’s proof of existence and uniqueness of solutions to
(E) as elucidated on p. 311-319 of [11]. (The proof is worked out in all
of R2 but can be adapted to a bounded domain without difficulty.) The
only significant change we need make for the unbounded initial vorticities
in Yθ(ΩR) is to substitute the potential theory arguments in Lemma 6.2 for
those in [11]. �

Lemma 6.2. Let u lie in the space L∞([0, T ];Yθ(ΩR)) for R in [1,∞] and
assume that u is locally integrable in [0, T ]×ΩR. Then there exists a unique
associated flow X : [0, T ] × ΩR → ΩR. The moduli of continuity of u(t, ·)
and X(t, ·) are each bounded by a function that depends only upon the norm
of u in L∞([0, T ];Yθ(ΩR)) and upon the function θ itself (in particular, the
bound is independent of t in [0, T ].) Furthermore, if µ is the bound on the

modulus of continuity of the u in space, then
∫ t
0 ds/µ(s) = ∞.

Proof. For R = ∞ this result follows from Theorem 3.1 of [15] (or see Chap-
ter 5 of [8]). For R < ∞ it follows from Lemma 4.2 and Theorem 2 of [19]
except for the independence of the moduli of continuity on R, but this fol-
lows from a scaling argument. In both cases, the bound depends only upon
the function θ (via the function µ). �

As noted in [19], there is the somewhat surprising relationship between µ
and the function β1 of Equation (2.1) that µ(r) = (C/r)β1(r

2/4).

7. Tail of the Velocity

For our solutions to (E) and (NS) in all of R2, at any time t > 0 the velocity
u(t) and its gradient ∇u(t) lie in L2(R2) and hence vanish at infinity, though
at no specific a priori rate. In the proof of Theorem 8.1, however, we will
need the stronger property that u(t) vanishes at infinity in the L2-norm at
a rate that is bounded in L∞([0, T ]) and, for (NS), that ∇u(t) vanishes in
the L2-norm at a rate that is bounded in L2([0, T ]). The rate itself, while
unimportant to obtain convergence, will be determined by the rate at which
u0 vanishes at infinity, though will never be faster than C/R.

Lemma 7.1. Let (u, p) be a solution to (E) in all of R2 with initial velocity
in Y(R2). Then

‖u‖L∞([0,T ];L2(ΩC
R)) → 0 as R→ ∞. (7.1)
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Let (u, p) be a solution to (NS) in all of R2 with initial velocity in H(R2).
Then Equation (7.1) holds and also

‖∇u‖L2([0,T ];L2(ΩC
R)) → 0 as R→ ∞. (7.2)

Proof. The lemma follows by a standard energy argument that involves scal-
ing by R a cutoff function defined to be 0 on Ω1/2 and 1 on ΩC

1 . �

8. Main Result: Convergence of Solutions

Theorem 8.1. Let u0 be in V (R2) and let (uR, pR) be the solution to (NS)

of Definition 5.1 for R in [1,∞) with initial velocity TRu
0 in V (NS)(ΩR).

(TR is defined in Definition 4.1.) Let (u, p) be the solution to (NS) in all of
R2 with initial velocity u0. Then

‖uR − u‖L∞([0,T ];L2(ΩR)) → 0 as R→ ∞ (8.1)

and

‖∇uR −∇u‖L2([0,T ];L2(ΩR)) → 0 as R→ ∞. (8.2)

Let u0 be in Y(R2) and let (uR, pR) be the unique solution to (E) of
Definition 5.2 for R in [1,∞) with initial velocity TRu

0 in Y(ΩR). Let (u, p)
be the solution to (E) in all of R2 with initial velocity u0. Then

‖uR − u‖L∞([0,T ];L2∩L∞(ΩR)) → 0 as R→ ∞ (8.3)

and

‖∇uR −∇u‖L∞([0,T ];Lp(ΩR)) → 0 as R→ ∞ (8.4)

for all p in [p0,∞), where p0 is as in Definition 2.2. Also, if XR and X are
the flows associated to uR and u, as given by Theorem 6.1, then

‖XR −X‖L∞([0,T ]×ΩR) → 0 as R→ ∞. (8.5)

Proof. Basic energy inequality: For the first part of the proof we will
treat (NS) and (E) in a unified manner, since, formally, (E) is simply (NS)
with ν = 0. We start with a basic energy argument. Let

w = uR − u

and observe that ‖w(0)‖H1(ΩR) = ‖u0 − TRu
0‖H1(ΩR) → 0 as R → ∞ by

Lemma 4.2.
Subtracting Equation (5.1) for (u, p) from Equation (5.1) for (uR, pR), we

have, on ΩR,

∂tw + uR · ∇uR − uR · ∇u+ uR · ∇u− u · ∇u+ ∇pR −∇p = ν∆w

or

∂tw + uR · ∇w + w · ∇u+ ∇pR −∇p = ν∆w.
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Multiplying by w and integrating over space, we obtain

1

2

d

dt
‖w(t)‖2

L2(ΩR) +

∫

ΩR

(uR · ∇w) · w +

∫

ΩR

(w · ∇u) · w

+

∫

ΩR

∇(pR − p) · w = ν

∫

ΩR

∆w · w

= −ν
∫

ΩR

∇w · ∇w + ν

∫

ΓR

(∇w · n) · w

= −ν
∫

ΩR

|∇w|2 − ν

∫

ΓR

(∇w · n) · u.

In the last equality we used ν = 0 for (E) and uR = 0 on ΓR for (NS).
But,
∫

ΩR

(uR · ∇w) · w =

∫

ΩR

uj
R∂jw

iwi =
1

2

∫

ΩR

uj
R∂j |w|2 =

1

2

∫

ΩR

uR · ∇ |w|2

= −1

2

∫

ΩR

(div uR) |w|2 +
1

2

∫

ΓR

(uR · n) · |w|2 = 0,

since div uR = 0 and uR · n = 0 on ΓR (in fact, uR = 0 on ΓR for (NS)).
Thus, we have,

d

dt
‖w(t)‖2

L2(ΩR) + 2ν ‖∇w‖2
L2(ΩR)

= −2

∫

ΩR

∇(pR − p) · w − 2ν

∫

ΓR

(∇w · n) · u− 2

∫

ΩR

(w · ∇u) · w.

Integrating in time gives

‖w(t)‖2
L2(ΩR) + 2ν

∫ t

0
‖∇w‖2

L2(ΩR)

= ‖w(0)‖2
L2(ΩR) − 2

∫ t

0

∫

ΩR

∇(pR − p) · w

− 2ν

∫ t

0

∫

ΓR

(∇w · n) · u− 2

∫ t

0

∫

ΩR

(w · ∇u) · w.

(8.6)

Letting E be the extension operator of Lemma A.1, we have
∫

ΩR

∇(pR − p) · w = −
∫

ΩR

∇(pR − p) · u =

∫

ΩC
R

∇(EpR − p) · u.

The first equality follows from
∫

ΩR
∇(pR − p) · uR = 0 and the second from

∫

R2 ∇(EpR − p) · u = 0. Then,
∣

∣

∣

∣

∣

∫ t

0

∫

ΩC
R

∇p · u
∣

∣

∣

∣

∣

≤ ‖∇p‖L2([0,T ];L2(R2)) ‖u‖L2([0,T ];L2(ΩC
R)) ,

∣

∣

∣

∣

∣

∫ t

0

∫

ΩC
R

∇EpR · u
∣

∣

∣

∣

∣

≤ ‖∇EpR‖L2([0,T ];L2(R2)) ‖u‖L2([0,T ];L2(ΩC
R)) .

(8.7)
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The first integral in Equation (8.7) converges to 0 as R → ∞ by Theo-
rem 6.1 and Equation (7.1). Because

‖∇EpR‖L2(R2) ≤ C

(

‖∇pR‖L2(ΩR) +
1

R
‖pR‖L2(ΩR)

)

≤ C ‖∇pR‖L2(ΩR)

by Lemma A.1 and Lemma A.3 (recall that
∫

ΩR
pR = 0), the second integral

in Equation (8.7) converges to 0 as well.
For solutions to (NS), we extend w to all of R2 as w = EuR − u (we do

not need a divergence-free extension). Then
∫

ΓR

(∇w · n) · u = −
∫

ΩC
R

∇w · ∇u−
∫

ΩC
R

∆w · u

so
∣

∣

∣

∣

∫ t

0

∫

ΓR

(∇w · n) · u
∣

∣

∣

∣

≤ ‖∇w‖L2([0,T ];L2(R2)) ‖∇u‖L2([0,T ];L2(ΩC
R))

+ ‖∆w‖L2([0,T ];L2(R2)) ‖u‖L2([0,T ];L2(ΩC
R)) .

By Theorem 6.1, ‖∇u‖L2([0,T ];L2(R2)) ≤ C. Also,

‖∇EuR‖L2([0,T ];L2(R2)) ≤ C ‖uR‖L2([0,T ];H1(ΩR)) ≤ C

by Lemma A.1 and Theorem 6.1 so ‖∇w‖L2([0,T ];L2(R2)) ≤ C. Similar rea-

soning gives ‖∆w‖L2([0,T ];L2(R2)) ≤ C. Therefore,
∣

∣

∣

∣

∫ t

0

∫

ΓR

(∇w · n) · u
∣

∣

∣

∣

→ 0

as R → ∞ by Equation (7.1) and Equation (7.2). (It is only in this bound
that we require that u0 lie in V (R2). For the other bounds, u0 in H(R2)
would have sufficed.)

From Equation (8.6) and the estimates above, we have that

‖w(t)‖2
L2(ΩR) + 2ν

∫ t

0
‖∇w‖2

L2(ΩR) ≤ K + 2

∫ t

0

∫

ΩR

|∇u| |w|2 , (8.8)

where K → 0 as R→ ∞.
Solutions to (NS) with u0 in V : Assume that (uR, pR) and (u, p) are

solutions to (NS) with u0 in V (NS)(R2). Applying Lemma A.2, Young’s
inequality, and the inequality (A+B)2 ≤ 2(A2 +B2) to Equation (8.8), we
have

‖w(t)‖2
L2(ΩR) + 2ν

∫ t

0
‖∇w‖2

L2(ΩR) ≤ K + 2

∫ t

0
‖∇u‖L2(ΩR) ‖w‖

2
L4(ΩR)

≤ K + 23/2

∫ t

0
‖∇u‖L2(ΩR) ‖w‖L2(ΩR)

(

‖∇w‖L2(ΩR) +
1

R
‖w‖L2(ΩR)

)

≤ K + ν

∫ t

0

(

‖∇w‖2
L2(ΩR) +

1

R2
‖w‖2

L2(ΩR)

)

+ C

∫ t

0
‖∇u‖2

L2(ΩR) ‖w‖2
L2(ΩR) ,
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or,

‖w(t)‖2
L2(ΩR) + ν

∫ t

0
‖∇w‖2

L2(ΩR) ≤ K +

∫ t

0

(

C ‖∇u‖2
L2(ΩR) +

ν

R2

)

‖w‖2
L2(ΩR)

≤ K + C

∫ t

0
‖w‖2

L2(ΩR) ,

where we used Theorem 6.1 in the last inequality. Applying Gronwall’s
lemma gives Equation (8.1) and Equation (8.2).

Solutions to (E): By Lemma 4.2 and Theorem 6.1, there exists a unique
solution (uR, pR) to (E) for all R in [1,∞) and both uR and u lie in L∞(R×
ΩR) with a norm that is independent of R. Thus,

M = sup
R≥1

‖ |w|2 ‖L∞([0,T ]×ΩR) (8.9)

is finite and independent of R in [1,∞].
We now proceed as in [19] or [7]. Let s be in [0, T ], and let

A = |w(s, x)|2 , B = |∇u(s, x)| , L(s) = ‖w(s)‖2
L2 .

Then for all 1/ǫ in [2 + ǫ0,∞),
∫

ΩR

|∇u(s, x)| |w(s, x)|2 dx =

∫

ΩR

AB =

∫

ΩR

AǫA1−ǫB ≤M ǫ

∫

ΩR

A1−ǫB

≤M ǫ
∥

∥A1−ǫ
∥

∥

L1/(1−ǫ) ‖B‖L1/ǫ = M ǫ ‖A‖1−ǫ
L1 ‖B‖L1/ǫ

= M ǫL(s)1−ǫ ‖∇u(s)‖L1/ǫ ≤ CM ǫL(s)1−ǫ 1

ǫ
‖ω0‖L1/ǫ

≤ CM ǫL(s)1−ǫ 1

ǫ
θ(1/ǫ),

where θ is as in Definition 2.1. Here we used Lemma A.5 and the bounds on
the Lp-norms of the vorticity given by Equation (6.1). Since this inequality
holds for all ǫ in (0, 1/(2 + ǫ0)

−1] it follows that

2

∫

R2

|∇u(s, x)| |w(s, x)|2 dx ≤ CβM(L(s)),

with βM as in Equation (2.1). From Equation (8.8), then, we have

L(t) ≤ K + C

∫ t

0
βM (L(r)) dr. (8.10)

By Lemma A.6,
∫ L(t)

K

ds

CβM (s)
≤
∫ t

0
ds = t. (8.11)

It follows that for all t in (0, T ],
∫ 1

K

ds

βM (s)
≤ CT +

∫ 1

L(t)

ds

βM (s)
.
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Since Equation (2.2) holds, as R→ ∞ the left side becomes infinite; hence,
so must the right side. But this implies that L(t) → 0 as R→ ∞, and that
the convergence is uniform over [0, T ]: this is Equation (8.1). It also follows
from Equation (8.11) that

∫ L(t)

K

dr

βM (r)
≤ Ct,

which can be used, in principle, to bound the rate of convergence. Also,
Equation (8.3) follows by an application of Corollary 8.4 to uR and u|ΩR

.
Vorticity for solutions to (E): We have,

‖ωR(t) − ω(t)‖Lp(ΩR) = ‖ω0(TRu
0) ◦X−1

R (t) − ω0 ◦X−1(t)‖Lp(ΩR)

≤ ‖ω0(TRu
0) ◦X−1

R (t) − ω0 ◦X−1
R (t)‖Lp(ΩR)

+ ‖ω0 ◦X−1
R (t) − ω0 ◦X−1(t)‖Lp(ΩR)

= ‖ω0(TRu
0) − ω0‖Lp(ΩR) + ‖ω0 ◦X−1

R (t) − ω0 ◦X−1(t)‖Lp(ΩR),
(8.12)

using, in the last step, that X−1
R (t) is measure-preserving and maps ΩR to

itself. The first term on the right-hand side of Equation (8.12) converges to
zero as R→ ∞ by Lemma 4.2.

This leaves the second term on the right-hand side of Equation (8.12),
which converges to zero by Lemma 8.2 if X−1

R → X−1 in L∞([0, T ] × ΩR),
which we now show.

The inverse flow X−1 is given by

X−1(t, x) = x−
∫ t

0
u(s,X−1(s, x)) ds,

and similarly for X−1
R . Then,

∣

∣X−1
R (t, x) −X−1(t, x)

∣

∣ =

∣

∣

∣

∣

∫ t

0
(uR(s,X−1

R (s, x)) − u(s,X−1(s, x))) ds

∣

∣

∣

∣

≤
∫ t

0

∣

∣uR(s,X−1
R (s, x)) − u(s,X−1

R (s, x))
∣

∣ ds

+

∫ t

0

∣

∣u(s,X−1
R (s, x)) − u(s,X−1(s, x))

∣

∣ ds.

But,
∣

∣u(s,X−1
R (s, x)) − u(s,X−1(s, x))

∣

∣ ≤ µ(
∣

∣X−1
R (s, x) −X−1(s, x)

∣

∣),

where µ is the bound on the modulus of continuity in space of u given by
Theorem 6.1. Also,

∫ t

0

∣

∣uR(s,X−1
R (s, x)) − u(s,X−1

R (s, x))
∣

∣ ds ≤ A(R)T,
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where A(R) = ‖uR − u‖L∞([0,T ]×ΩR); this converges to zero as R → ∞ by

Equation (8.3). Thus,

∣

∣X−1
R (t, x) −X−1(t, x)

∣

∣ ≤ A(R)T +

∫ t

0
µ(
∣

∣X−1
R (s, x) −X−1(s, x)

∣

∣).

Letting LR(t) =
∣

∣X−1
R (t, x) −X−1(t, x)

∣

∣, we have

LR(t) ≤ A(R)T +

∫ t

0

ds

µ(s)
.

Applying Lemma A.6 gives
∫ LR(t)

A(R)T

ds

µ(s)
= t.

Because
∫ 1
0 µ(s) ds = ∞, we conclude that X−1

R → X−1 in L∞([0, T ]×ΩR),
thus completing the demonstration of Equation (8.5). Applying Lemma A.5
for p ≥ 2 + ǫ0 and standard elliptic regularity bounds along with Equa-
tion (8.3) for p in [p0, 2 + ǫ0) gives Equation (8.4). �

We can obtain an upper bound on the rate of convergence of solutions
to (NS) in Equation (8.1) and Equation (8.2) by examining the bounds in
the proof above, in the proof of Lemma 7.1, and the proof of Lemma 4.2.
Similarly, we can obtain a bound on the rate of convergence of solutions to
(E) in Equation (8.3). For (NS), the convergence rate is controlled by the
rate of decay with R of ‖u0‖L2(ΩC

R) and ‖∇u0‖L2(ΩC
R). For solutions to (E),

the convergence rate is controlled by the rate of decay with R of ‖u0‖L2(ΩC
R)

and by the function βM of Definition 2.1. (The function βM enters into
these bounds much as in [7] or [9].)

We can also obtain a bound on the rate of convergence in Equation (8.4),
but this ultimately relies on measure-theoretic properties of ω0 that are
hard to usefully characterize let alone quantify. The rate of convergence
of the flow, however, can be determined much as for the convergence in
Equation (8.3).

We used the following lemmas in the proof of Theorem 8.1:

Lemma 8.2. Let f be in Lp(Rd), 1 ≤ p <∞, d ≥ 1 and let (Xn) and (Yn)
be sequences of measure-preserving homeomorphisms from a domain ΣR of
Rd to all of Rd with

‖Xn − Yn‖L∞(ΣR) ≤M(n)

with M(n) → 0 as n → ∞. Then there exists a nondecreasing function
N : (0,∞) → Z+ such that for all ǫ > 0 if n ≥ N(ǫ) then

‖f ◦Xn − f ◦ Yn‖Lp(ΣR) ≤ ǫ.

Furthermore, the function N depends only upon the functions f and M .
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Proof. Our proof is an adaptation of the proof that translation is continuous
in Lp(Rd) (see, for instance, Theorem 8.19 p. 134-135 of [16]). Approximate
f in Lp(Rd) by a sequence of functions (fk) that are finite linear combinations
of characteristic functions of cubes in Rd. It is easy to see that if g1 is the
characteristic function of a cube, then

‖g1 ◦Xn − g1 ◦ Yn‖Lp(ΣR) ≤ ‖g1(· +M(n)ej) − g1(·)‖Lp(ΣR) ,

and that ‖g1(· +M(n)ej) − g1(·)‖Lp(ΣR) → 0 as n → ∞. Here, ej is any

of the coordinate basis vectors. If g2 is also the characteristic function of a
cube, then

‖(g1 + g2) ◦Xn − (g1 + g2) ◦ Yn‖Lp(ΣR)

= ‖g1 ◦Xn − g1 ◦ Yn + g2 ◦Xn − g2 ◦ Yn‖Lp(ΣR)

≤ ‖g1 ◦Xn − g1 ◦ Yn‖Lp(ΣR) + ‖g2 ◦Xn − g2 ◦ Yn‖Lp(ΣR)

≤ ‖g1(· +M(n)ej) − g1(·)‖Lp(ΣR) + ‖g2(· +M(n)ej) − g2(·)‖Lp(ΣR) ,

so ‖(g1 + g2) ◦Xn − (g1 + g2) ◦ Yn‖Lp(ΣR) → 0 as n → ∞ at a rate that is

bounded in terms of M(n). We conclude then that each fk has the property
that ‖fk ◦Xn − fk ◦ Yn‖Lp(ΣR) → 0 as n → ∞ at a rate that is bounded in

terms of M(n).
Now let ǫ > 0 and choose k large enough that ‖fk − f‖Lp(R2) < ǫ/4. Then

‖f ◦Xn − f ◦ Yn‖Lp(ΣR) ≤ ‖f ◦Xn − fk ◦Xn‖Lp(ΣR)

+ ‖fk ◦Xn − fk ◦ Yn‖Lp(ΣR) + ‖fk ◦ Yn − f ◦ Yn‖Lp(ΣR)

= ‖fk ◦Xn − fk ◦ Yn‖Lp(ΣR) + ‖fk − f‖Lp(X−1
n (ΣR)) + ‖fk − f‖Lp(Y −1

n (ΣR))

≤ ‖fk ◦Xn − fk ◦ Yn‖Lp(ΣR) + 2 ‖fk − f‖Lp(Rd) .

If we choose N large enough that ‖fk ◦Xn − fk ◦ Yn‖Lp(ΣR) < ǫ/2 for all

n ≥ N , it follows that ‖f ◦Xn − f ◦ Yn‖Lp(ΣR) < ǫ for all n ≥ N . What we

have constructed is the desired map N = N(ǫ) from the properties only of
M and f . �

Lemma 8.3. Let

F(ΩR) =
{

u ∈ (C(ΩR))2 : |u(x) − u(y)| ≤ ρ(|x− y|)
}

,

where ρ is a nondecreasing continuous function with ρ(0) = 0. (That is,
F(ΩR) consists of all continuous functions on ΩR with a given common
bound on their modulus of continuity.) Then there exists a continuous func-
tion F : [0,∞) → [0,∞) with F (0) = 0 such that for all u1, u2 in F(ΩR),

‖u1 − u2‖L∞(ΩR) ≤ F (‖u1 − u2‖L2(ΩR)).

Moreover, a choice of F can be made that is independent of R in [1,∞].
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Proof. Assume first that R = ∞ and let u1, u2 be in F(ΩR). Fix x in ΩR

and let

δ = |u1(x) − u2(x)| .
Now suppose that y is in the ball B of radius a about x, where a = ρ−1(δ/4).
Then

|u1(x) − u1(y)| ≤ ρ(|x− y|) ≤ ρ(a) = δ/4

and also |u2(x) − u2(y)| ≤ δ/4. It follows that

|u1(y) − u2(y)| ≥ δ/2

for all y in B, and thus that

‖u1 − u2‖L2(R2) ≥ ‖u1 − u2‖L2(B) ≥
(
∫

B
(δ/2)2

)1/2

=

√
π

2
aδ.

Hence,

h(δ) :=

√
π

2
δρ−1(δ/4) ≤ ‖u1 − u2‖L2(R2) (8.13)

so

|u1(x) − u2(x)| = δ ≤ h−1(‖u1 − u2‖L2(R2)).

Since this is true for all x in ΩR,

‖u1 − u2‖L∞(R2) ≤ F (‖u1 − u2‖L2(R2)), (8.14)

where F = h−1, and where we note that F (0) = 0.
The only modification required for R in [1,∞) is that we must replace

the ball B with B ∩ ΩR. If B has radius

r < 1/(2κR) = R/(2κ1) = CR,

where κR is the maximum curvature of ΓR (which is necessarily positive),
then it is easy to see that Area(B ∩ ΩR) ≥ (1/4)AreaB. This has the
effect of changing the constant

√
π/2 in Equation (8.13) to

√
π/8 and gives

F (x) = h−1(x) for x in the interval [0, CR]. For x > CR, the constant in
Equation (8.13) decreases below

√
π/8 resulting in an F that increases more

rapidly than h−1. In any case, it follows that the function F that results for
R = 1 serves as an upper bound on F for all R in [1,∞]. �

Corollary 8.4. Let uj : [0, T ]×ΩR → R2, j = 1, 2, with uj(t) in F(ΩR) for
almost all t in [0, T ], where F(ΩR) is as in Lemma 8.3. Then there exists a
continuous function F : [0,∞) → [0,∞) with F (0) = 0 such that

‖u1 − u2‖L∞([0,T ]×ΩR) ≤ F (‖u1 − u2‖L∞([0,T ];L2(ΩR))).

Proof. Apply Lemma 8.3 to u1(t) and u2(t) for all t in [0, T ]. �
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Appendix A. Various Lemmas

Lemma A.1. For any R in [1,∞) there exists a single bounded linear ex-
tension operator E = ER, E : Hn,p(ΩR) → Hn,p(R2) for all n = 0, 1, . . . and
all p in [1,∞], with

‖Ef‖Hn,p(R2) ≤ Cn ‖f‖Hn,p(ΩR) , (A.1)

where the constant Cn is independent of p and R in [1,∞].
If f is in H1,p(ΩR) then

‖∇Ef‖Lp(R2) ≤ C

(

‖∇f‖Lp(ΩR) +
1

R
‖f‖Lp(ΩR)

)

(A.2)

with a constant C that is independent of p and R in [1,∞].

Proof. First define the extension operator E1 on Ω1. We can use, for in-
stance, a partition of unity and the extension operator of Theorem 5’ p.
181 of [13], since we have sufficient smoothness of the boundary. This gives
Equation (A.1) for R = 1 with independence of Cn on p. (The extension op-
erator of Theorem 5 p. 181 of [13] would suffice, except for the independence
of Cn on p.)

Now let R be in [1,∞) with f in Hn,p(ΩR), and define f in Hn,p(Ω1) by
f1(x) = f(Rx). Then define ER by ERf(x) = (E1f1)(x/R). The factor of
1/R in Equation (A.2) and the independence of Cn on R in [1,∞) follow by
scaling. �

The following is Ladyzhenskaya’s inequality and a simple consequence of
it.

Lemma A.2. For u in H1
0 (ΩR) with R in [1,∞],

‖u‖2
L4(ΩR) ≤ 21/2 ‖u‖L2(ΩR) ‖∇u‖L2(ΩR) .

For u in H1(ΩR) with R in [1,∞),

‖u‖2
L4(ΩR) ≤ C ‖u‖L2(ΩR)

(

‖∇u‖L2(ΩR) +
1

R
‖u‖L2(ΩR)

)

, (A.3)

where C is independent of R in [1,∞].

Proof. The first inequality is Ladyzhenskaya’s inequality (see, for instance,
Lemma III.3.3 p. 197 of [14]). The second inequality follows from the first,
since H1

0 (R2) = H1(R2), and from Lemma A.1:

‖u‖2
L4(ΩR) ≤ ‖Eu‖2

L4(ΩR) ≤ 21/2 ‖Eu‖L2(ΩR) ‖∇Eu‖L2(ΩR)

≤ C ‖u‖L2(ΩR)

(

‖∇u‖L2(ΩR) +
1

R
‖u‖L2(ΩR)

)

.

�
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Lemma A.3 (Poincaré’s inequality). Let U be an open bounded connected
subset of R2 with a C1-boundary, and let UR = RU . Then for all f in
H1,p(UR) with

∫

UR
f = 0,

‖f‖Lp(UR) ≤ CpR ‖∇f‖Lp(UR)

for all p in [1,∞], where Cp is independent of R.

Proof. This is classical; see, for instance, Theorem 1 p. 275 of [3]. To verify
that the scaling factor is R, assume that

‖f‖Lp(UR) ≤ Cp(R) ‖∇f‖Lp(UR) . (A.4)

Let f be in Lp(UR) and define f1 in Lp(U1) by f1(x) = f(Rx). Then the
chain rule and a change of variables gives

‖f1‖Lp(U1) = R−2/p ‖f‖Lp(UR) ,

while

‖∇f1‖Lp(U1) = R1−2/p ‖∇f‖Lp(UR) .

Multiplying both sides of Equation (A.4) by R−2/p gives

‖f1‖Lp(U1) ≤ Cp(R)R−1 ‖∇f‖Lp(UR) .

Since this is true for all f in Lp(UR) it follows that Cp(1) ≤ Cp(R)R−1.
Interchanging the roles of UR and U1 it follows that Cp(R) = Cp(1)R. �

Lemma A.4. Let f be a scalar- or vector-valued function in L2(R2) with
∇f in La(R2) for some a in (2,∞). Then f is in L2(R2)∩L∞(R2), and for
all b in (a,∞],

‖f‖Lb(R2) ≤ C
(

‖f‖L2(R2) + C ‖∇f‖La(R2)

)

, (A.5)

where the constant C depends on a and on b.
Let v be a divergence-free vector field in L2(R2) with vorticity ω lying in

La(R2) for some a in (2,∞). Then v is in L2(R2) ∩ L∞(R2), and for all b
in (a,∞],

‖v‖Lb(R2) ≤ C

(

‖v‖L2(R2) +
a2

a− 1
‖ω‖La(R2)

)

, (A.6)

where the constant C depends on a and on b.

Proof. This can be proven by decomposing v into low and high-frequencies
using Littlewood-Paley operators. See, for instance, Lemma 2B.1 p. 23-24
of [8]. �

The following is a result of Yudovich’s:

Lemma A.5. Fixing ǫ0 > 0, for any p in [2+ǫ0,∞) and any u in V (E)(ΩR)
(recall that ΩR is simply connected),

‖∇u‖Lp(ΩR) ≤ Cp ‖ω(u)‖Lp(ΩR) ,

with a constant C that is independent of p and of R in [1,∞].
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Proof. Let u be in V (E)(ΩR). Then ψ, the stream function for u, can be
assumed to vanish on ΓR since ΩR is simply connected. Applying Corollary
1 of [17] with the operator L = ∆ and r = 0 gives

‖∇u‖Lp(ΩR) ≤ ‖ψ‖H2,p(ΩR) ≤ C(ΩR)p ‖∆ψ‖Lp(ΩR) = C(ΩR)p ‖ω(u)‖Lp(ΩR) .

To demonstrate the independence of C(ΩR) on R, let u be an arbitrary

element of V (E)(ΩR). Then u(·) = u1(·/R) for some u1 in V (E)(Ω1). But,

‖∇u‖Lp(ΩR) = R2/p−1 ‖∇u1‖Lp(Ω1) and ‖ω(u)‖Lp(ΩR) = R2/p−1 ‖ω(u1)‖Lp(Ω1),

so C(ΩR) ≤ C(Ω1); the argument in reverse shows equality of the two con-
stants. �

The following is Osgood’s lemma (see, for instance, p. 92 of [1]). The
succinct proof is due to M. Tehranchi.

Lemma A.6 (Osgood’s lemma). Let L be a measurable nonnegative func-
tion and γ a nonnegative locally integrable function, each defined on the
domain [t0, t1]. Let µ : [0,∞) → [0,∞) be a continuous nondecreasing func-
tion, with µ(0) = 0. Let a ≥ 0, and assume that for all t in [t0, t1],

L(t) ≤ a+

∫ t

t0

γ(s)µ(L(s)) ds. (A.7)

If a > 0, then
∫ L(t)

a

ds

µ(s)
≤
∫ t

t0

γ(s) ds.

If a = 0 and
∫∞

0 ds/µ(s) = ∞, then L ≡ 0.

Proof. We have,
∫ L(t)

a

dx

µ(x)
≤
∫ a+

R t
t0

γ(u)µ(L(u)) du

a

dx

µ(x)

≤
∫ t

t0

γ(s)µ(L(s)) ds

µ(a+
∫ s
t0
γ(u)µ(L(u)) du)

≤
∫ t

t0

γ(s) ds.

The last inequality follows from Equation (A.7), since µ is nondecreasing.
�
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