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Abstract. We study vortex patches for the 2D incompressible Euler equations. Prior works
on this problem take the support of the vorticity (i.e., the vortex patch) to be a bounded
region. We instead consider the horizontally periodic setting. This includes both the case
of a periodic array of bounded vortex patches, and the case of vertically bounded vortex
layers. We develop the contour dynamics equation for the boundary of the patch in this
horizontally periodic setting, and demonstrate global C1,ε regularity of this patch boundary.
In the process of formulating the problem, we consider different notions of periodic solutions
of the 2D incompressible Euler equations, and demonstrate equivalence of these.
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1. Introduction

A 2D vortex patch is a solution to the 2D Euler equations for which the vorticity is a
constant multiplied by the characteristic function of a domain. We investigate the behavior
of vortex patches in an infinite strip periodic in one direction, topologically S1 × R, and the
corresponding behavior of the vortex patch or layer in the full plane. Our main results are
the extension of the C1,ε global regularity theory for the boundary of the vortex patch to
this case, developing and using the appropriate contour dynamics equation for this purpose.
Here, and throughout, we fix ε ∈ (0, 1).
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2 D.M. AMBROSE, F. HADADIFARD, and J. KELLIHER

1.1. The Euler equations. We can write the 2D incompressible Euler equations (without
forcing) on a domain U in vorticity form as

∂tω + u · ∇ω = 0 in R× U,

u = K[ω] in R× U,

ω(0) = ω0 in U.

(1.1)

Here, ω is the vorticity—the scalar curl of the velocity field u. The vorticity is transported by
the velocity field as in (1.1)1, and the velocity field is recovered from the vorticity field by the
constitutive law in (1.1)2 so as to be divergence-free and to satisfy any boundary conditions,
decay at infinity, or periodicity that might be demanded based, in part, upon the nature of
the domain U .

Classically, if U = R2 and the solution has sufficient decay, one uses the Biot-Savart law
as the constitutive law:

K[ω] := K ∗ ω, K(x) := ∇⊥
[
1

2π
log|x|

]
=

1

2π

x⊥

|x|2
. (1.2)

Here, K is the Biot-Savart kernel, which we note lies in L1
loc(R2), though K /∈ Lp(R2) for

any p ∈ [1,∞]. To handle solutions having insufficient spatial decay of the vorticity, we must
either find an appropriate substitute for the Biot-Savart law or avoid it entirely by using a
velocity, pressure formulation.

1.2. The plane and the cylinder. In this paper, we will consider two domains: U = R2

and U = Π, the infinite flat periodic strip, S1 × R ∼= R2/Z ∼= C/Z, which we will most often
treat in the form

Π :=
[
−1

2 ,
1
2

]
× R with

{
−1

2

}
× R identified with

{
1
2

}
× R. (1.3)

We will also find use for the same set as a subset of R2 or C without identifying its sides:

Πp :=
(
−1

2 ,
1
2

)
× R ⊆ R2. (1.4)

Suppose we have an initial vorticity ω0 = 1Ω for Ω a bounded domain in Π. We can
periodize it to obtain an initial vorticity in R2 that is periodic in x1. What results may
consist of an infinite number of disconnected domains repeated periodically, one connected,
x1-periodic domain, or a combination of each. Figure 1 displays an example of a simply
connected bounded domain in Π yielding an infinite number of copies of the domain in R2.
Figure 2 displays two examples of a non-simply connected domain in Π producing one domain
in R2 periodically repeating in x1, a so-called vortex layer.

Figure 1. Example of a periodic vortex patch in R2 and in Π

On the other hand, we could instead formulate the problem by starting with an initial
vortex patch in R2 and periodize it in x1. If we can translate the evolution of the patch in R2

to the evolution in Π and back, we can use an understanding of patch behavior in Π to gain
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Figure 2. Two examples of a periodic vortex layer in R2 and in Π

an understanding of the periodic behavior in R2. The translation back and forth between
Π and R2 is best understood in the more general setting of weak solutions to the 2D Euler
equations for bounded vorticity, which includes vortex patch data as a special case.

1.3. Three types of solutions. Toward this end, we consider three types of solution to
the 2D Euler equations. We summarize the three types of solution briefly now, giving more
complete descriptions in later sections.

Type 1 Assume that u0 ∈ L∞(R2) is divergence-free with ω0 := curlu0 ∈ L∞(R2) as
well. Obtain a bounded vorticity, bounded velocity solution to the the 2D Euler
equations on all of R2 having initial velocity u0 as done by Serfati in [37].

Type 2 Assume u0 ∈ L∞(Π) is divergence-free with ω0 := curlu0 ∈ L∞(Π) as well. Solve
the 2D Euler equations in Π, as done in [2, 20,21].

Type 3 Let ω0 ∈ L∞(R2) be compactly supported. Solve the 2D Euler equations in
vorticity form in all of R2 with initial vorticity ω0, but recovering the velocity by
applying the Biot-Savart law symmetrically to pairs of the periodically extended
copies of ω. This leads to a replacement Biot-Savart kernel, K∞.

Type 1 and Type 2 solutions are for (potentially) non-decaying velocity and vorticity,
but for Type 3 we restrict our attention to vertically decaying solutions, since our primary
application is to vortex patch data. Moreover, the convolution K∞ ∗ ω cannot be easily
defined without some decay assumption.

We will find that all three types of solution are equivalent for a large class of initial data.
Since our primary interest is in vortex patches and layers, we will keep things simple by
assuming compact support in Π. Assuming, then, that g ∈ L∞

c (R2)—the space of essentially
bounded functions with compact support—we define Per(g) on Π by

Per(g)(x) =
∑
n∈Z

g(x− (n, 0)),

noting that for each x the sum has only finitely many nonzero terms. For any measurable
function f on Π we define Rep(f) on R2 by

Rep(f)(x) := f(x1 − ⌊x1 + 1
2⌋, x2).
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Definition 1.1. Two functions g1, g2 ∈ L∞
c (R2) are equivalent, g1 ∼ g2, if Per(g1) =

Per(g2). Figure 3 depicts the support of two functions in the same equivalence class.

Figure 3. Support of two L∞
c (R2) functions in the same equivalence class

Suppose that g ∈ L∞
c (R2), and for purposes of illustration, let us treat it as the character-

istic function of a bounded domain (our primary application), whose support is depicted as
in either (a) or (b) of Figure 3. Below, we construct an initial vorticity from g and depict the
support of ω0 for each type of solution (the time-evolved vorticity being of a similar nature).

Type 1 Let ω0 = Rep(Per(g)).

Type 2 Let ω0 = Per(g).

Type 3 Let ω0 = g. The vorticity ω is transported by the flow from the single copy of g,
and so is no longer the curl of u. There are, in effect, multiple phantom copies of
g matching those of Type 1.

or

The vorticity ω0 for Type 1 and 2 do not depend upon the representative for the equivalence
class, though Type 3 does. We will find, nonetheless, that the velocity field for solutions of
Type 3 is independent of the representative.

It is mentioned in [19] that a Type 2 solution is equivalent to a Type 1 solution with periodic
velocity and pressure. Following up on this comment, we will show that all three types of
solution are equivalent. The equivalence of Type 1 and Type 2 solutions, which applies to a
larger class of initial data than we have so far discussed, will rely upon the properties of the
pressure required for uniqueness for those two types of solution. The equivalence of Type 3
and Type 2 (and so of Type 1) will rest primarily on showing that solutions of Type 2 reduce
to those of Type 3 when the vorticity has sufficient vertical decay. A side benefit of this
approach is that it will give the well-posedness of Type 3 solutions. Such a well-posedness
result could be obtained by adapting in a fairly straightforward way the approach Marchioro
and Pulvirenti take in [31,32] for the 2D Euler equations, except for subtle points regarding
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the periodicity of the pressure. It is thus more efficient to leverage the technology developed
in [2, 20,21], though it is more than is strictly needed to develop Type 3 solutions alone.

Specializing to vortex patch data, we will then show how the contour dynamics equation
(CDE) is adapted from the classical form, which allows the propagation of regularity of the
boundary of a vortex patch to be proved, adapting the argument of Bertozzi and Constantin
in [9].

1.4. Prior work. Bounded vortex patches evolving under the two-dimensional Euler equa-
tions have been well-studied, with global regularity of the boundary being established by
Chemin [15] and by Bertozzi and Constantin [9]. Regularity of the vortex patch boundary
can also be seen to follow from a more general approach studying level sets of the vorticity,
establishing striated regularity, as in the work of Chemin [16] and Serfati [36]. Regularity
of bounded vortex patches and/or striated regularity have been established for solutions of
related evolution equations as well, such as aggregation equations [8], active transport equa-
tions [6], and the surface quasi-geostrophic equation and related systems [14], [22], [29]. None
of these problems consider unbounded vortex patches as in the present work.

There are seemingly fewer papers on the evolution of vortex layers. An equation similar to
our version of the contour dynamics equation for the motion of the patch/layer boundary was
developed in [33], and was subsequently used in [24] for the study of complex singularities in
vortex layers. (We mention that the version of the contour dynamics equation developed in
the present work lends itself to the study of global regularity.) Atassi, Bernoff, and Lichter
study the interaction of a point vortex with a vortex layer [5]. Crowdy gives some exact
solutions of vortex layers interacting with solid boundaries [18]. Benedetto and Pulvirenti
have shown that vortex layers rigorously approximate vortex sheets in analytic function
spaces [7]. Caflisch, Sammartino, and collaborators have considered vortex layers which are
not sharp fronts in a series of papers [11], [12], [13], considering how such flows behave in the
zero viscosity limit and how such flows may approximate vortex sheets, which represent a more
singular vorticity configuration. In these works, they take the vorticity to be exponentially
decaying (in the vertical direction) away from a core region, rather than being an indicator
function as in the present work. Despite the difference there are similarities to the present
work, such as the development of velocity integrals similar to the spatially periodic contour
dynamics equation we develop for the periodic patch/layer problem. Further background on
vortex layers may be found in [23].

While we are unaware of other works on the global regularity of unbounded vortex patches
for the two-dimensional Euler equations, the situation is different for the quasi-geostrophic
equation. Rodrigo developed existence theory for a patch which is spatially periodic and ver-
tically unbounded in one direction (similarly to a half-space) [34], [35]. More recently Hunter,
Shu, and Zhang have studied the related front solutions of the surface quasi-geostrophic equa-
tion [25], [26], [27].

1.5. Organization of this paper. We will find many of our calculations much more con-
venient to perform in the complex plane, yet our results are all real-valued. We describe how
to translate back and forth between these settings, largely a matter of notation, in Section 2.
In Section 3 we describe the process of symmetrizing in pairs that is behind the Type 1
solutions, which we explore in Section 4. In Section 5 we describe the results of [2,20,21] that
yield Type 2 solutions, and we use those results in Section 6 to obtain Type 3 solutions. We
show the equivalence of the three types of solution in Section 7. In Section 8 we give expres-
sions for the velocity gradient in terms of the vorticity, deferring the proofs to Appendix A.
We then specialize to vortex patch solutions for Type 1, 2, and 3 solutions, obtaining their
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contour dynamics equation in Section 9, and establishing the global-in-time propogation of
the regularity of a vortex patch boundary in Section 10.

2. Preliminaries: R2 and C

2.1. Real to complex translation. Some of our calculations will be more easily performed
using complex analysis, though the end results are all real-valued functions. For this we need
a means, and a corresponding notation, to switch back and forth between viewing points in
the plane as vectors or points in C2. For this purpose, we will use bold-face letters, such as
x or u, for quantities that are intrinsically elements of R2 or vector-valued. We define maps,{

−→ : C→ R2,
−−−→
x+ iy = (x, y)

}
and

{
←− : R2 → C,
←−−−
(x, y) = x+ iy

}
.

For a vector x = (x, y), we define

x⊥ := (−y, x).

Hence, x⊥ is x rotated 90 degrees counterclockwise.

Lemma 2.1. Let z, w ∈ C and · be the usual dot (inner) product of Euclidean vectors. Then

Re (zw) = z⃗ · w⃗,

Im (zw) = −z⃗ · w⃗⊥.
(2.1)

If a ∈ R, z ∈ C,
−→az = az⃗,

−→
iz = z⃗⊥,

←−
v⊥ = i←−v . (2.2)

Also, f is analytic in some domain U if and only if div f⃗ = curl f⃗ = 0 in U , where for any
vector field v,

divv :=
∂v1

∂x1
+

∂v2

∂x2
, curlv :=

∂v2

∂x1
− ∂v1

∂x2

are the divergence and (scalar) curl of v.

The boundary integrals we encounter will be real path integrals, but we will sometimes
find it useful to transform them to complex contour integrals as in the following lemma:

Lemma 2.2. Let γ : [a, b] → C be a Lipschitz-continuous path on which the complex-valued
function f is continuous. Let τ be the unit tangent vector in the direction of γ and n the
associated unit normal, with (n, τ ) in the standard orientation of (e1, e2). Let C = imageγ.
Then

C
∫
γ
f =

∫
C
f⃗ · τ + i

∫
C
f⃗ · n.

Here, C
∫

is a complex contour integral.

Using Lemma 2.1, it is not hard to rewrite the classical Biot-Savart law in the following
hybrid real-complex form:

Theorem 2.3. Assume that ω ∈ L1 ∩ L∞(R2). With K as in (1.2),

u(x) := K ∗ ω(x) = −
−−−−−−−−−−−−−→
i

2π

∫
R2

ω(y)
←−−−
y − x

dy (2.3)

is divergence-free with curlu = ω, and u is the unique such velocity field in L∞ ∩H1(R2).
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2.2. The cotangent.

Lemma 2.4. For any z ∈ C that is not an integer,

π cotπz =
1

z
+ 2

∞∑
n=1

z

z2 − n2
= lim

N→∞

N∑
n=−N

1

z + n
.

Proof. For the first equality see, for instance, Equation (11) in Section 5.2.1 of [3]. The second
equality then follows from

z

z2 − n2
=

z

(z − n)(z + n)
=

1

2

[
1

z − n
+

1

z + n

]
and summing in pairs, n with −n. □

Lemma 2.5. For any x,y ∈ R2,

lim
N→∞

N∑
n=−N

x+ (n, 0)

|x+ (n, 0)|2
· y = π

−−−−−→
cot(π←−x ) · y.

Proof. Letting z =←−x , w =←−y , and using (2.1)1, we have

x+ (n, 0)

|x+ (n, 0)|2
· y =

Re((z + n)w)

|z + n|2
= Re

(z + n)w

|z + n|2
= Re

w

z + n

so

lim
N→∞

N∑
n=−N

x+ (n, 0)

|x+ (n, 0)|2
· y = Re

[
w lim

N→∞

N∑
n=−N

1

z + n

]
= πRe(w cotπz)

= π
−−−−−→
cot(π←−x ) · y = π

−−−−−→
cot(π←−x ) · y,

where we again used (2.1)1. □

2.3. Useful identities. The identities in (2.4) and (2.5) are easily verifiable; (2.6) is 4.3.58
of [1].

|sin z|2 = sin2 x+ sinh2 y, (2.4)

cosh 2x = 2 sinh2 x+ 1, cos 2x = 1− 2 sin2 x, (2.5)

cot z =
sin 2x− i sinh 2y

cosh 2y − cos 2x
. (2.6)

2.4. Lifting paths and domains. We will find the need, in the proof of Theorem 9.6, to
apply Lemma 2.2 while integrating in Π and apply Cauchy’s residue theorem. This could be
done directly by introducing a version of the residue theorem for Π, which is a (flat) analytic
manifold. Alternately, we can transform integrals in Π to integrals of x1-periodic functions

in C by lifting the domain Ω in Π to a suitable domain Ω̃ in C. Our main tool for doing this
is the lifting of paths from a topological space to a covering space.

Defining

p : C→ Π, p(x1 + ix2) = x1 − ⌊x1 + 1
2⌋+ ix2,

we see that (C, p) is a covering space of Π (see Section IX.7 of [17], for instance). This will
allow us to lift a path in Π to a path in R2 or C.
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Remark 2.6. Rep(f)(x) = f(p(x)), though we do not make direct use of this.

Definition 2.7. A path in the topological space X is a continuous map from an interval I
to X. The path γ̃ in C is a lift or lifting of the path γ in Π if p ◦ γ̃ = γ.

Lemma 2.8. Let γ be a finite length continuous path in Π with initial point x0. For any
x̃0 ∈ p−1(x0), there exists a unique lifting γ̃ with initial point x̃0.

Proof. This is a classical result; see, for instance, Corollary IX.7.5 of [17]. □

This lifting allows us to relate path integrals in Π to lifted path integrals in R2 or C:

Lemma 2.9. Let γ be a Lipschitz-continuous path in Π with a lift γ̃ as given by Lemma 2.8.
For any any continuous function f on Π,∫

γ
f =

∫
γ̃
f ◦ p.

Moreover, the normal vector field n on γ lifts to itself as does τ ; that is, n(γ(α)) = n(γ̃(α))
for all α in the domain of γ (which is the same as the domain of γ̃).

Proof. Suppose that γ : [a, b]→ Π, in which case also γ̃ : [a, b]→ C with p ◦ γ̃ = γ. Then∫
γ̃
f ◦ p =

∫ b

a
f ◦ p(γ̃(α))γ̃ ′(α) dα =

∫ b

a
f(γ(α))γ ′(α) dα =

∫
γ
f.

We used that γ̃ ′(α) = γ ′(α), since locally γ̃ and γ differ by a constant (if we view γ as giving
values in Πp). This also gives that n and τ lift to themselves. □

Lemma 2.9 is not, however, the entire story when we lift the entire boundary of a domain in
Π. An immediate difficulty stems from the ambient space Π, which is topologically a cylinder,
having nontrivial fundamental (and first homology) group Z. Let us say that a closed curve
on Π wraps around the cylinder n times if it crosses {x1 = 0} (any vertical slice would do)
n times counted with sign, positive in one direction, negative in the other (arbitrarily fixing
which direction is positive).

A closed path that wraps zero times around the cylinder is homotopic to a point and lifts
to a closed path in C. A closed path that wraps around the cylinder n times, however, will
lift by Lemma 2.8 to a non-closed path in C that contains |n|+1 points of x0 +L, where we
define here and for future use,

L := {Z} × {0} , L∗ := L \ (0, 0), (2.7)

treated as subsets of R2 or of C. Since we are lifting paths that are boundary components,
they will always be closed in Π, but can wrap only 0 or ±1 times around the cylinder else
they would of necessity self-intersect.

Figure 4. Lifting of ∂Ω with base points at x1 = −1
2
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Figure 4 shows an example of a domain Ω in Π having two boundary components Γ1, Γ2

which lift to non-closed paths Γ̃1, Γ̃2. To make a domain from these paths, we could connect

Γ̃1, Γ̃2 with vertical paths at x1 = −1
2 and x1 =

1
2 , oppositely oriented, so that the four paths

together form the boundary of a lifted domain Ω̃.
Equivalently, and in a manner more easily generalizable, we cut the cylinder Π vertically1

along the line ℓ =
{
x1 = ±1

2

}
, which in effect means we view Π in the form suggested in (1.3).

For any line segment formed by ℓ∩ ∂Ω we introduce oppositely oriented paths; together, the
lifted components of ∂Ω and these paths, properly oriented, form the boundary components

of the lifted domain Ω̃.
In lifting these components and paths, however, we need to insure compatible initial points

for the paths. To do this, fix any x0 in Ω. Let y be any point in Ω and let γy be a path
connecting x0 to y. Being a domain, Ω is path-connected so this is always possible. By

Lemma 2.8, there is a unique lifting γ̃y of γy with initial point x̃0. Then Ω̃ := ∪y∈Ω γ̃y is
the desired lifting of Ω.

Lifted in this way, we have the following lemma:

Lemma 2.10. Let Ω be a bounded domain in Π and let Ω̃ be the lifted domain as described

above. Let γ be a parameterization of ∂Ω and γ̃ a parameterization of ∂Ω̃. Let f be any
continuous complex-valued function. Then

C
∫
γ
f = C

∫
γ̃
f ◦ p,

∫
∂Ω

f⃗ · τ =

∫
∂Ω̃

(f⃗ ◦ p) · τ ,
∫
∂Ω

f⃗ · n =

∫
∂Ω̃

(f⃗ ◦ p) · n.

Proof. Follows from Lemma 2.9, since the cuts introduce integrals that cancel in pairs. □

3. Periodized functions and Biot-Savart kernels

Definition 3.1. Let ω ∈ L1 ∩ L∞(R2). We say that the velocity field u is obtained by

symmetrizing in pairs (about 0) if, letting ω(n)(x) = ω(x+ (n, 0)), we have

u = Ksym[ω] := K ∗ ω +
∞∑
n=1

K ∗
(
ω(−n) + ω(n)

)
.

Definition 3.2. Let S = S(R2) be the Serfati space of bounded, divergence-free vector fields
on R2 having bounded vorticity with norm,

∥u∥S := ∥u∥L∞(R2) + ∥curlu∥L∞(R2).

We define S(Π) similarly.

Remark 3.3. As shown in (2.11) of [21], for any ω ∈ L∞(Π) there is a divergence-free
vector field u in L∞(Π) and so in S(Π) for which curlu = ω. S(R2) is very different, for
there is no known general condition on ω ∈ L∞(R2) alone that guarantees a u in L∞(R2).

Proposition 3.4. For ω ∈ L∞
c (R2), let u = Ksym[ω] as in Definition 3.1. Then u ∈ S(R2)

with curlu = curlKsym[ω] = Rep(ω). Further,

u = Ksym[ω] = K∞ ∗ ω, K∞(x) :=

−−−−−−−→
− i

2
cotπ←−x =

1

2

[−−−−→
cotπ←−x

]⊥
, (3.1)

1In pathological cases, we would have to perturb this cut to avoid producing an infinite number of boundary
components, but we will not explore this issue further.
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where we note that K∞ is periodic in x1 with period 1 as is u. We also have,

K∞(x) = K(x) +H(x), (3.2)

where H is harmonic on R2 \ L∗, where L∗ is defined in (2.7).

Proof. Applying Theorem 2.3, we have

In := K ∗
(
ω(−n) + ω(n)

)
(x) = −

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
i

2π

∫
R2

[
ω(y)

←−−−
y − x− n

]
+

[
ω(y)

←−−−
y − x+ n

]
dy,

so

←−
In = − i

2π

∫
R2

2

←−−−
y − x

(
←−−−
y − x)2 − n2

ω(y) dy.

From Definition 3.1 with Lemma 2.4, then (the compact support of ω allows us to interchange
integration and summation),

←−−
u(x) = − i

2

∫
R2

cot(π(
←−−−
y − x))ω(y) dy,

and (3.1) follows from (2.2). Since the singularity of cot(πz) at z = 0 is like 1/(πz) and ω is
compactly supported, we see that the above integral lies in L∞(R2). Since the curl of each In
is ω(−n) + ω(n) while its divergence is zero and the sum converges absolutely and uniformly,
we know that divu = 0 and curlu = Rep(ω).

But cot z = 1
z + h(z) on C \ L∗, where h is analytic. From this (3.2) follows. □

Proposition 3.5. If ω1 ∼ ω2 in L∞
c (R2) as in Definition 1.1 then K∞ ∗ ω1 = K∞ ∗ ω2.

Proof. For any ω ∈ L∞
c (R2),

K∞∗Per(ω)(x) =
∫
Π
K∞(x− y)Per(ω)(y) dy =

∫
Πp

K∞(x− y)
∑
n∈Z

ω(y − (n, 0)) dy

=

∫
Πp

∑
n∈Z

K∞(x− (y − (n, 0)))ω(y − (n, 0)) dy

=
∑
n∈Z

∫
Πp

K∞(x− (y − (n, 0)))ω(y − (n, 0)) dy =
∑
n∈Z

∫
Πp−(n,0)

K∞(x− y)ω(y) dy

=

∫
R2

K∞(x− y)ω(y) dy = K∞ ∗ ω(x).

We were able to interchange the integral and sum here because for any fixed x, the compact
support of ω makes all but a finite number of terms in the sum zero. Hence, if ω1 ∼ ω2 then
K∞ ∗ ω1 = K∞ ∗ Per(ω) = K∞ ∗ ω2. □

We will see in Section 5.1 that K∞ also serves as the Biot-Savart kernel on Π.

4. Type 1: Periodized solutions

We review here results, obtained variously in [4, 28, 37, 38], on bounded vorticity, bounded
velocity solutions to the 2D Euler equations in R2.
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Definition 4.1. Fix T > 0 and let u ∈ L∞(0, T ;S)∩C([0, T ]×R2) with vorticity ω := curlu.
We say that u is a bounded weak Eulerian solution to the Euler equations without forcing if,
on the interval [0, T ], ∂tω + u · ∇ω = 0 as a distribution on (0, T )× R2. We say that u is a
Lagrangian solution if ω(t,X(t, x)) = ω(0, x) for all (t, x) ∈ [0, T ]× R2, where X is the flow
map for u (noting that u has sufficient regularity to insure the existence of a unique classical
flow map).

Let aR be a radial cutoff function: aR(·) = a(·/R) for any R > 0, where a ∈ C∞(R2) is
radially symmetric and equal to 1 in a neighborhood of the origin. For definitiveness, we will
assume that a ≡ 1 on B1(0), a ≡ 0 on B2(0)

C , and |a| ⩽ 1 on R2.

Theorem 4.2 ( [28]). Any weak solution to the Euler equations (Eulerian or Lagrangian)
with u ∈ L∞(0, T ;S) ∩ C([0, T ] × R2) having vorticity ω with u(0) = u0, ω(0) = ω0, must
satisfy, for some U∞ ∈ C([0, T ])2, the Serfati identity,

uj(t)− (u0)j = U j
∞(t) + (aKj) ∗ (ω(t)− ω0)

−
∫ t

0

(
∇∇⊥ [(1− a)Kj

])
∗·(u⊗ u)(s) ds,

(4.1)

j = 1, 2, and the renormalized Biot-Savart law,

u(t)− u0 = U∞(t) + lim
R→∞

(aRK) ∗ (ω(t)− ω0) (4.2)

on [0, T ]× R2. Furthermore, the corresponding pressure is of the form,

p(t,x) = −U′
∞(t) · x+ q(t,x), (4.3)

where q grows sublinearly at infinity.

Theorem 4.2 characterizes solutions to the 2D Euler equations that have bounded vorticity
and bounded velocity: their existence and uniqueness under the condition that (4.1) holds is
shown, for U∞ ≡ 0, in [37] and elaborated on in [4], their extension to a general U∞ being
a simple matter. Uniqueness under the assumption of sublinear growth of the pressure is
established in [38].

Combining these results leads to the following:

Theorem 4.3. Let u0 ∈ S(R2) and set ω0 = curlu0. There exists a solution (u, p) to the 2D
Euler equations with u ∈ L∞(0, T ;S) ∩ C([0, T ] × R2) having initial velocity u0. Existence
and uniqueness hold if we require that the solution satisfy any one (and hence all) of (4.1)
through (4.3) with U∞ ≡ 0.

5. Type 2: Solutions in an infinite periodic strip

Let BUC(Π) be the space of bounded, uniformly continuous functions, noting that any vector
field in S(Π) lies in BUC(Π). Well-posedness of solutions to the Navier-Stokes equations for
initial velocity in BUC(Π) was established by Afendikov and Mielke in [2]. Building on this,
Gallay and Slijepčević in [21] (and see the comments in [19]) obtained improved bounds for
the case where the initial velocity lies in S(Π), having established properties of the pressure
in [20]. These works are for the Navier-Stokes equations, but as the authors point out,
the pertinent estimates are uniform in small viscosity and hold for solutions to the Euler
equations as well (by repeating the argument with the viscous terms missing or by using
known vanishing viscosity results).

In Theorem 5.3 we give the well-posedness result as derived from [2,20,21], but for this we
need to first explore some aspects of the analysis in these references.
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5.1. Biot-Savart kernels. The authors of [2,20,21] orient their periodic strip (infinite cylin-
der) horizontally and S1 is, in effect, parametrized from 0 to 1. Let (x′1, x

′
2) be the coordinates

for the horizontal strip of [2,20,21], while we will keep (x1, x2) for our vertical strip. Rotating
the horizontal strip 90 degrees counterclockwise induces the change of variables,

x′1 7→ x2, x′2 7→ −x1.

The Biot-Savart kernel on Π used in [2] and (2.7) of [20] is ∇⊥G, where

G(x′1, x
′
2) :=

1

4π
log
(
2 cosh(2πx′1)− 2 cos(2πx′2)

)
is the Green’s function for the Dirichlet Laplacian on Π. In (x1, x2) variables,

G(x1, x2) :=
1

4π
log (2 cosh(2πx2)− 2 cos(2πx1)) . (5.1)

Lemma 5.1. We have K∞ = ∇⊥G. Moreover, G(x) = (2π)−1 log ρ(x), where

ρ(x) :=
(
sin2(πx1) + sinh2(πx2)

) 1
2 . (5.2)

Proof. From (2.5), 2 cosh(2πx2)− 2 cos(2πx1) = 4ρ(x)2, gives our alternate expression for G
(noting that the Green’s function on Π is unique up to an additive constant). From (2.6)
and (5.1), we have

∇⊥G(x1, x2) =
1

2π

(−π sinh(2πx2), π sin(2πx1))

cosh(2πx2)− cos(2πx1)
=

1

2

−−−−−→
cot(πz)⊥, (5.3)

matching the expression for K∞ in (3.1). Here, we used (2.6). □

Lemma 5.2. The function log ρ(x) − log|x| is harmonic on R2 \ L∗, where ρ is defined in
(5.2).

Proof. Letting z =←−x , we have, using (2.4),

log ρ(x)− log|x| = 1

2
log

∣∣∣∣ρ(x)2|x|2

∣∣∣∣ = 1

2
log

∣∣∣∣sin zz
∣∣∣∣2 = log

∣∣∣∣sin zz
∣∣∣∣ = Re log

sin z

z
,

which is the real part of a function that is complex analytic on C \ L∗. □

5.2. Mean horizontal values. As observed below Lemma 2.2 of [2], although K∞ ∈
L1
loc(Π), K2

∞ ∈ L1(Π) (accounting for the different orientation of the strip). Moreover,
convolution with K1

∞ can be handled by subtracting from u2 its mean horizontal value to
give it mean value zero. We summarize here this process as described on page 1748 of [20].

If v(t) ∈ S(Π), the mean value of v2(t) along the horizontal line segment x2 = a is
independent of a ∈ R, and if (v, p) solves the Euler equations on Π then it is independent of
time as well. Hence, we can define

m2(t) = m2[v(t)] := ⟨v2(t)⟩, (5.4)

the mean value of v2(t) along any such horizontal line segment and we will have ⟨v2(t)⟩ = ⟨v20⟩.
The mean value of v1(t), however, will depend upon x2, so we write

m1(t, x2) = m1[v(t)](x2) :=

∫ 1
2

− 1
2

v1(t, x1, x2) dx1.
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Similarly, we define

⟨ω⟩(t, x2) :=
∫ 1

2

− 1
2

ω(t, x1, x2) dx1

and ω̂(t, x1, x2) := ω(t, x)− ⟨ω⟩(t, x2). Also,
⟨ω⟩(t, x2) = ⟨∂1u2 − ∂2u

1⟩(t, x2) = −⟨∂2u1⟩(t, x2) = −∂2m1(t, x2). (5.5)

A form of the Biot-Savart law given in (2.5, 2.6) of [20] (suppressing the time variable) is

v(x) =

(
−m1(x2)

m2

)
+

∫ ∞

−∞

∫ 1
2

− 1
2

K∞(x− y)ω̂(y) dy1 dy2. (5.6)

We note here that in transforming from the expression as written in [20], a velocity (v1, v2)
in (x′1, x

′
2) becomes (v2,−v1) in (x1, x2), which accounts for the minus sign in −m1(x2).

5.3. Type 2 solutions. We can now summarize the known result we need for Type 2 solu-
tions:

Theorem 5.3 ( [2,20,21]). For v0 ∈ S(Π) with ⟨v20⟩ = 0 there exists a unique solution (v, q)
to the Euler equations, 

∂tv + v · ∇v +∇q = 0 in [0,∞)×Π,

divv = 0 in [0,∞)×Π,

v(0) = v0 in Π

(5.7)

for which m2(t) ≡ 0 with v ∈ C([0,∞);BUC(Π)) ∩ L∞([0,∞);S(Π)) and pressure q ∈
W 1,∞([0,∞)×Π). The pressure is given by2

q = −(u2)2 + 2K2
∞ ∗ (ωu1).

The solutions are Eulerian in velocity and satisfy the vorticity equation. Moreover, u can be
recovered from ω by the Biot-Savart law as in (5.6).

5.4. Compactly supported vorticity. As a prelude to obtaining Type 3 solutions, let
us consider the special case of Type 2 solutions that we can obtain when the vorticity is
compactly supported in Π. First, we specialize the Biot-Savart law in (5.6) to compactly
supported vorticity.

Lemma 5.4. Let v ∈ S(Π) with ω := curlv compactly supported in Π. Then m1(−∞) +
m1(∞) ≡ m2 ≡ 0 if and only if v = K∞ ∗ ω.

Proof. Since ⟨ω⟩ = −∂2m1, we have

Ij :=

[∫ ∞

−∞

∫ 1
2

− 1
2

K∞(x− y)⟨ω⟩(y) dy1 dy2

]j

=

∫ 1
2

− 1
2

∫ ∞

−∞
Kj

∞((x− x′, y − y′))∂2m1(y
′) dy′ dx′.

Lemma 5.7, below, gives that I2 = 0.
We now consider I1. Because ω is compactly supported within some [−1/2, 1/2]×[−R0, R0],

so, too, are ⟨ω⟩ and then, by (5.5), ∂2m1. Choose φ ∈ C∞
C (R) equal to 1 on [−R,R] and

2+2K2
∞ is −∂2G in (2.8) of [20]: we have made the transformation from a horizontal to a vertical strip.
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equal to zero outside [−R+ 1, R+ 1] where we will choose R ⩾ R0 more precisely later. Let
mε

1 = ηε ∗m1, where ηε is a (compactly supported) Friedrich’s mollifier. As in [2], we treat
K1

∞ as a distribution on Π with φmε
1 a test function. Since also K1

∞ ∈ L1
loc(Π), we have, for

fixed x,

I1 = lim
ε→0

∫ 1
2

− 1
2

∫ ∞

−∞
K1

∞((x− x′, y − y′))φ(y)∂2m
ε
1(y

′) dy′ dx′

= lim
ε→0

K1
∞ ∗ (φ∂2mε

1) = lim
ε→0

K1
∞ ∗ ∂2(φmε

1)− lim
ε→0

K1
∞ ∗ (∂2φmε

1).

Now,

∂2K
1
∞ = −∂2

2G = −∆G+ ∂2
1G = −δ + ∂2

1G,

where G is the Green’s function for the Dirichlet Laplacian on Π as in (5.1) and δ is the Dirac
delta function on Π. Hence,

∂2(φm
ε
1) = mε

1(x2)−
∫ ∞

−∞

∫ 1
2

− 1
2

∂2
1G((x− x′, y − y′)) dx′mε

1(y
′) dy′ = mε

1(x2),

where the integral vanishes after integrating by parts, since G is periodic in x1. Hence,

I1 = m1(x2)− lim
ε→0

K1
∞ ∗ (∂2φmε

1),

and this equality holds regardless of our choice of R ⩾ R0. Therefore, if we can evaluate
K1

∞ ∗ (∂2φmε
1) in the limit as R→∞, it will be its common value for all R ⩾ R0.

We see from (5.3) thatK1
∞(x−y)→ ±1/2 as y2 → ±∞ and ∂2K

1
∞(x−y)→ 0 as y2 → ±∞,

so

lim
R→∞

K1
∞ ∗ (∂2φmε

1) = lim
R→∞

(∫ −R

−R−1
+

∫ R+1

R

)
∂2φK

1
∞(x− y)mε

1

= lim
R→∞

[(K∞
1 mε

1)(−R)− (K∞
1 mε

1)(R)]− lim
R→∞

(∫ −R

−R−1
+

∫ R+1

R

)
φ∂2K

1
∞(x− y)mε

1

= −1

2
lim

R→∞
[mε

1(−R) +mε
1(R)] .

We also used here that ∂2m
ε
1 = −ηε ∗ ∂2⟨ω⟩ = 0 for R ⩾ R0. Since this limit gives the value

for all R ⩾ R0, we can take ε→ 0 to conclude that

I1 = m1(x2) +
1

2
[m1(−∞) +m1(∞)] .

Returning to (5.6), then, we see that

v(t,x) =
1

2

(
m1(−∞) +m1(∞)

2m2

)
+ (K∞ ∗ ω(t)(x). (5.8)

This shows that m1(−∞) +m1(∞) ≡ 0 and m2 ≡ 0 if and only if v = K∞ ∗ ω. □

Corollary 5.5. Let ω ∈ L∞
c (Π). Then v = K∞ ∗ ω is the unique element in S(Π) for which

curlv = ω, m2[v] = 0, and m1[v](−∞) +m1[v](∞) = 0.

Proposition 5.6. Assume that ω0 ∈ L∞
c (Π), v0 = K∞ ∗ ω0, and v is a Type 2 solution as

in Theorem 5.3 with v given by (5.6). Then v(t) = K∞ ∗ ω(t) for all t.
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Proof. It follows from Lemma 5.4 that m1(0,−∞)+m1(0,∞) = 0. But as observed following
(2.11) of [20], ∂tm1 = −⟨u2ω⟩, which we note vanishes for all sufficiently large x2 because of
the compact support of ω. Hence, m1(t,−∞) + m1(t,∞) = 0 for all t. We conclude from
(5.8) that v(t) = K∞ ∗ ω(t) for all t. □

We used Lemma 5.7 in the proof of Lemma 5.4, above.

Lemma 5.7. For all y ∈ R, K1
∞(x1, x2) is even in x1 and odd in x2, while K2

∞(x1, x2) is
odd in x1 and even in x2.

Proof. This follows directly from (5.3), since ∇⊥G = K∞. □

6. Type 3: Solutions with a periodized kernel

Theorem 6.1. Let ω0 ∈ L∞
c (R2). There exists a solution µ to

∂tµ+w · ∇µ = 0 in [0,∞)× R2,

w = K∞ ∗ µ in [0,∞)× R2,

µ(0) = ω0 in R2.

Moreover, curlw = Rep(Per(µ)), and w ∈ L∞(0, T ;S)∩C([0, T ]×R2) is the unique solution
to 

∂tw +w · ∇w +∇r = 0 in [0,∞)× R2,

divw = 0 in [0,∞)× R2,

w(0) = K∞ ∗ µ(0) in R2,

(6.1)

with the uniqueness criteria being that r is periodic. Finally, r ∈ L∞([0, T ]× R2).

Proof. From Proposition 3.4 we know that K∞ ∗ ω0 ∈ L∞(R2) and is periodic in x1 with
period 1; hence, abusing notation, we can set v0 = K∞ ∗ ω0|Π and obtain by Theorem 5.3 a
unique solution (v, q) to (5.7) for which q is periodic in x1 andm2(t) ≡ 0. Since curlv0 = ω0|Π
is compactly supported and so curlv remains compactly supported for all time, we know from
Proposition 5.6 that v = K∞ ∗ curlv. So letting ζ = curlv, we see that

∂tζ + v · ∇ζ = 0 in [0,∞)×Π,

v = K∞ ∗ ζ in [0,∞)×Π,

ζ(0) = ω0 in Π.

Setting w = v, µ = ζ gives the desired solution of Type 3. Moreover, since q(t) is periodic,
we can let r = Rep(q), and we obtain a unique solution to (6.1). □

7. Three types of solution are equivalent

For certain classes of initial data, our three types of solution are equivalent. The equivalence
of Type 1 and Type 2 holds for a broader class, so we first prove it in Theorem 7.1. The
equivalence of the third type holds for initial data in L∞

c (R2), as we show in Theorem 7.2.
This includes vortex patch data, our application in Section 9.

Theorem 7.1. Let v0 ∈ S(Π) and periodize it to give u0 = Rep(v0) ∈ S(R2). Let (u, p) be
the solution of Type 1 with initial velocity u0 given by Theorem 4.3 and let (v, q) the solution
of Type 2 with initial velocity v0 given by Theorem 5.3. Then Rep(v) = u.
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Proof. We have curlv(0) = curlu0|Π, where we abuse notation somewhat. From Theorem 5.3,
we have a pressure q with q(t) ∈ L∞(Π) for which

∂tv + v · ∇v +∇q = 0 in [0,∞)×Π,

divv = 0 in [0,∞)×Π,

v(0) = v0 in Π.

(7.1)

Since Rep(v) and Rep(q) are x1-periodic with period 1, we can set ṽ = Rep(v) and
q̃ = Rep(q), and both will lie in L∞([0, T ]×R2) with curl ṽ(t) = Rep(curlv(t)). Thus, ṽ is v
periodized and curl ṽ is curlv periodized, meaning that (7.1) in effect holds on Πp translated
by (n, 0) for any integer n, so we see that

∂tṽ + ṽ · ∇ṽ +∇q̃ = 0 in [0,∞)× R2,

div ṽ = 0 in [0,∞)× R2,

ṽ(0) = u0 in R2.

(7.2)

We see that (ṽ, q̃) is a solution to the Euler equations on [0,∞)× R2. Manifestly, ṽ, curl ṽ,
and q̃ each lie in L∞([0,∞) × R2), being periodic in x1. Hence, ṽ is a bounded velocity,
bounded vorticity solution to the Euler equations on [0,∞) × R2. Because the pressure q̃
grows sublinearly it is, in fact, the (unique) Serfati solution (it satisfies the Serfati identity),
as follows from Theorem 4.3. Therefore, u = v. □

Theorem 7.2. For ω0 ∈ L∞
c (R2), let u0 = Ksym[ω0] be obtained by symmetrizing in pairs

as in Definition 3.1, and let v0 = K∞ ∗ Per(ω0). Let (u, p), (v, q) be the Type 1, 2 solutions
with initial velocity u0, v0 and let w0 be the velocity field for the Type 3 solution given by
Theorem 6.1. Then Rep(v) = u = w.

Proof. Theorem 7.1 gives Rep(v) = u, while Rep(v) = w is inherent in the proof of Theo-
rem 6.1. □

8. The velocity gradient

The following expression for ∇(K ∗ω) is classical (see, for instance, Proposition 2.20 of [30]):

Lemma 8.1. Assume that ω ∈ L∞(R2) is compactly supported and let u = K ∗ ω. Then

∇u(x) = ω(x)

(
0 −1
1 0

)
+ p. v.

∫
R2

∇K(x− y)ω(y) dy,

where we can write,

∇K(x) =
1

2π

σ(x)

|x|2
, σ(x) :=

1

|x|2

(
2x1x2 x22 − x21
x22 − x21 −2x1x2

)
.

The analog for the K∞ kernel is Lemma 8.2.

Lemma 8.2. Assume that ω ∈ L∞(R2) is compactly supported and let u = K∞ ∗ ω. Then

∇u(x) =
∑
n∈Z

ω(x+ (n, 0))

2

(
0 −1
1 0

)
+ p. v.

∫
R2

∇K∞(x− y)ω(y) dy,

where ρ is as in (5.2) and where we can write,

∇K∞(x) =
π

2

β(x)

ρ(x)2
,
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where

β(x) =
1

2ρ(x)2

(
sin(2πx1) sinh(2πx2) cos(2πx1) cosh(2πx2)− 1

cos(2πx1) cosh(2πx2)− 1 − sin(2πx1) sinh(2πx2)

)
.

Proof. The proof is given in Appendix A. □

Remark 8.3. Like σ, the matrix β is symmetric with trace zero. Near the origin, ρ(x)2 ≈
π2|x|2, and we can see that β(x) ≈ 4π2|x|2/(2π2|x|2) ≈ 2 ≈ σ(x), and so ∇K∞(x) ≈
2π/(2π2|x|2) ≈ 1/(π|x|2) ≈ ∇K(x). Also like σ, β11 and β22 integrate to zero over circles
centered at the origin, but unlike σ, neither β12 nor β21 integrate to zero.

We have the following immediate corollary of Lemma 8.2:

Corollary 8.4. Let v ∈ S(Π) with ω = curlv compactly supported and let u = K∞ ∗ ω.
Then

∇u(x) = ω(x)

2

(
0 −1
1 0

)
+ p. v.

∫
Π
∇K∞(x− y)ω(y) dy

and ∇K∞ can be written as in Lemma 8.2.

9. Contour Dynamics Equations

First we review the Contour Dynamics Equation (CDE) for a classical vortex patch—the
characteristic function of a bounded, simply connected domain evolving under the vorticity
equation for the Euler equations on all of R2—then turn to the CDE for Type 2 solutions.

In what follows we use the Lipschitz space Lip and homogeneous Lipschitz space lip. On
U ⊆ Rd for d ⩾ 1, we define their semi-norm and norm,

∥f∥lip(U) := sup
x ̸=y∈U

|f(x)− f(y)|
|x− y|

, ∥f∥Lip(U) := ∥f∥L∞(U) + ∥f∥lip(U).

9.1. Classical vortex patches. In the classical setting of a vortex patch in R2, we have
Theorems 9.1 and 9.2, as in Proposition 8.6 of [30] and the derivation of the classical CDE
that appears before it.

In what follows, ω0 is a fixed, nonzero real constant.

Theorem 9.1. Let γ : [0, 2π]→ R2 be a C1 counterclockwise3 parameterization of the bound-
ary of a bounded, simply connected domain Ω. Then

u(x) = −ω0

2π

∫ 2π

0
log|x− γ(α)|∂αγ(α) dα (9.1)

is the unique divergence-free vector field decaying at infinity for which curlu = ω01Ω.

Now let us suppose that Ω is a simply connected bounded domain in R2 with a C1,ε

boundary. Let u be the unique weak solution to the Euler equations with initial vorticity
ω0 := ω01Ω and let X be the flow map for u. Then we know that the vorticity ω(t) = ω01Ωt ,
where Ωt = X(t,Ω).

Let γ(0, ·) be a C1-regular counterclockwise parameterization of Γ = ∂Ω. Define a param-
eterization of ∂Ωt = X(t,Γ) by γ(t, ·) := X(t,γ(0, ·)). The log-Lipschitz regularity of u(t)

induces Cc(t)-regularity of the flow map X(t, ·) with c(t) ∈ (0, 1) and decreasing with time,
as in Lemma 8.2 of [30]. This is insufficient regularity to obtain a C1-parameterization of

3In [30], the patch boundary is parameterized clockwise, but (τ ,n) is in the standard (e1, e2) orientation; the
two resulting sign changes between [30] and us cancel, so there is no sign change in our expressions.
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∂Ωt, so let us suppose that our (classical) solution has u ∈ C(0, T ; lip). Then γ(t, ·) is a
C1-parameterization of ∂Ωt.

Since we assumed ∂Ω is C1,ε, we could give γ(0, ·) C1,ε-regularity, but this does not itself
ensure that γ(t, ·) is C1,ε: proving that is tantamount to establishing the propagation of
regularity of the vortex patch boundary.

Theorem 9.2. Let u(t,x) be given by (9.1) applied with γ(t, ·); that is,

u(t,x) := −ω0

2π

∫ 2π

0
log|x− γ(t, α)|∂αγ(t, α) dα.

Then u is a weak solution to the 2D Euler equations on [0, T ] × R2 with u ∈ C(0, T ;Lip)
if and only if γ is a C1([−T, T ];C([0, 2π])) ∩ C([−T, T ];C1([0, 2π])) solution to the contour
dynamics equations (CDE),

d

dt
γ(t, α) = −ω0

2π

∫ 2π

0
log|γ(t, α)− γ(t, α′)|∂α′γ(t, α′) dα′. (9.2)

Theorems 9.1 and 9.2 were expressed for simply connected domains. As pointed out on
page 330 of [30], the only difference for multiply connected domains is that the integrals in
(9.1) and (9.2) are summed over each component of the boundary.

Theorem 9.3. Theorems 9.1 and 9.2 hold for bounded, multiply connected domains if we
evaluate and sum each of the boundary integrals over each boundary component.

We view (9.2) as a form of the Euler equations applying specifically to a vortex patch: it
comes directly from (9.1), which we view as a form of the Biot-Savart law that recovers the
velocity from the vorticity, as it is encoded by γ. We work, now, to obtain replacements for
these expressions that apply to periodized vortex patches. This is a matter of deriving the
CDE for a solution to the Euler equations and showing, conversely, that any solution to the
CDE satisfies the Euler equations.

9.2. Type 2 solutions. Turning to Type 2 solutions, we make the following assumptions
on Ω:

Assumption 9.4. Assume that Ω ⊆ Π is bounded with a finite number of boundary compo-
nents, Γ1, . . . ,ΓJ , each C1,ε regular.

With Ω as in Assumption 9.4, we let u be the unique Type 2 solution having initial vorticity
ω0 := ω01Ω with m2 ≡ m1(t,−∞)+m2(t,∞) ≡ 0 given by Theorem 5.3 and Proposition 5.6
(m1, m2 are defined in Section 5.2). Set

Ωt := X(t,Ω), Γt,j := X(t,Γj),

noting that because X(t, ·) is a homeomorphism of R2 onto R2, Γt,j is the jth of the J
components of ∂Ωt. We then define a parameterization γj of Γt,j as we parameterized ∂Ωt in
Section 9.1, setting γj(t, ·) := X(t,γj(0, ·)). As in that section, a priori, we do not even know

that γj(t) has C
1 regularity for t > 0; proving that it has C1,ε regularity is the ultimate goal

(of Section 10).
We show in Theorems 9.5 and 9.6 that the analog of Theorem 9.3 holds for Type 2 solutions.

Theorem 9.5. Let Ω be as in Assumption 9.4, and for each j, let γj : [0, 2π]→ R2 be a C1

counterclockwise parameterization of the boundary component Γj. With ρ as in (5.2),

u(x) = −ω0

2π

J∑
j=1

∫ 2π

0
log ρ(x− γj(α))∂αγj(α) dα (9.3)
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is the unique divergence-free vector field in S(Π) having curl equal to ω01Ω for which m2 = 0
and m1(−∞) +m1(∞) = 0.

Proof. By Corollary 5.5, we know that u = K∞∗ω is the unique divergence-free vector field in
S(Π) having curl equal to ω01Ω for which m2 = 0 and m1(−∞)+m1(∞) = 0. Then we have,
using Lemma 5.1 and parameterizing Γt,j by arc length from 0 to ℓj , setting y(s) = γj(α(s)),

u(x) = K∞ ∗ ω(x) = ∇⊥G ∗ ω(x) = ω0

2π

∫
Ω
∇⊥ log ρ(x− y) dy

= −ω0

2π

∫
Ω
∇⊥

y log ρ(x− y) dy = −ω0

2π

J∑
j=1

∫ ℓj

0
log ρ(x− y(s))(−n2, n1) ds

= −ω0

2π

J∑
j=1

∫ ℓj

0
log ρ(x− y(s))τ (s) ds = −ω0

2π

J∑
j=1

∫ 2π

0
log ρ(x− γj(α))∂αγj(α) dα.

Here (n1, n2) = n and (−n2, n1) = τ (see Lemma 2.2), and we used that

∂αγj(α) dα =
∂αγj(α)

|∂αγj(α)|
|∂αγj(α)| dα = τ (s) ds.

From this, (9.3) follows. □

Theorem 9.6. Let u be the Type 2 solution described above and assume that each γj is in

C1([−T, T ];C([0, 2π])) ∩ C([−T, T ];C1([0, 2π])). Then

u(t,x) = −ω0

2π

J∑
j=1

∫ 2π

0
log ρ(x− γj(t, α))∂αγj(t, α) dα (9.4)

and lies in C(0, T ;Lip). Moreover, each γk satisfies the CDE,

d

dt
γk(t, α) = −

ω0

2π

J∑
j=1

∫ 2π

0
log ρ(γk(t, α)− γj(t, α

′))∂αγj(t, α) dα
′. (9.5)

Conversely, if each γk in C1([−T, T ];C([0, 2π])) ∩ C([−T, T ];C1([0, 2π])) satisfies (9.5)
then u given by (9.4) is a Type 2 solution with u ∈ C(0, T ;Lip) and m2 ≡ m1(t,−∞) +
m2(t,∞) ≡ 0.

Proof. The forward direction follows directly from Theorem 9.5.
For the converse, we parallel the proof of Proposition 8.6 of [30], which consists of two

steps: (1) Show that u given by (9.4) is divergence-free with curlu = ω01Ωt . (2) Show that
u solves the 2D Euler equations.

To prove (1), let u be given by (9.4). Reparameterizing by arc length as in the proof of
Theorem 9.5,

u(t,x) = −ω0

2π

J∑
j=1

∫ ℓj

0
log ρ(x− y(s))τ (s)ds = −ω0

2π

J∑
j=1

∫
Γt,j

log ρ(x− ·)τ .

To apply div and curl to this expression, we use that for a constant vector field w and scalar
function g, div(gw) = ∇g ·w and curl(gw) = ∇⊥g ·w. Also, letting v = (2π)−1∇⊥ log ρ(x−·)
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and f = f(x) =←−v , we see, using that τ and n are constant in x, that

curlu(t,x) = −ω0

2π

J∑
j=1

∫
Γt,j

∇⊥ log ρ(x− ·) · τ = −ω0

J∑
j=1

∫
Γt,j

f⃗ · τ = −ω0

∫
∂Ωt

f⃗ · τ ,

divu(t,x) = −ω0

2π

J∑
j=1

∫
Γt,j

∇ log ρ(x− ·) · τ =
ω0

2π

J∑
j=1

∫
Γt,j

∇⊥ log ρ(x− ·) · n

= ω0

J∑
j=1

∫
Γt,j

f⃗ · n = ω0

∫
∂Ωt

f⃗ · n.

Up to this point, we have been integrating over paths in Π treated as R2/L, but we wish

to apply Lemma 2.2, which obliges us to work in C. To do this, we lift Ωt to Ω̃t as described
in Section 2.4. Applying Lemmas 2.2 and 2.10 (writing f in place of f ◦ p by viewing f as

x1-periodic with period 1) gives for all x not lying on ∂Ω̃t (a set of measure 0),

ω0C
∫
∂Ωt

f = ω0C
∫
∂Ω̃t

f = ω0

∫
∂Ω̃t

f⃗ · τ + iω0

∫
∂Ω̃t

f⃗ · n = − curlu(t,x) + idivu(t,x).

But we see from Lemma 5.1 that v = K∞(x− ·) and that

f =
1

2

←−−−−−−−−−−−→
cot(πz)⊥ =

1

2

←−−−−−−−−−−→
icot(πz) =

1

2
icot(πz) = − i

2
cot(πz),

where we used (2.2) and the identity iz = −iz. The complex meromorphic function f has
simple poles at each point in x + L with residue (−2π)−1i. By the residue theorem, then,

summing over all points of L lying inside ∂Ω̃t—that is, lying in Ω̃t,

ω0C
∫
∂Ω̃t

f = Re

[
2πiω0

∑
ℓ∈L

Resf (ℓ)

]
= ω0Re

[
2πi

−2πi
∑
ℓ∈L

nΓt(x+ ℓ)

]
,

where nΓt(x+ ℓ) is the winding number of Γt about x+ ℓ. But Ω̃t can contain at most one
point of x + L else the lift given in Section 2.4 would map x to more than one point in C
(which would mean it is not a lift). We see, then, that

curlu(t,x) = −ω0C
∫
∂Ωt

f = −ω0C
∫
∂Ω̃t

f = ω01Ωt(x)

= ω(t,x).

We conclude that for all t ∈ [0, T ], divu = 0 and curlu = ω = ω01Ωt . Directly from (9.4),
we know that u ∈ L∞(Π) and hence u ∈ S(Π). It follows from Theorem 9.5 applied with
γj(t, ·) in place of γj for any fixed t that m2[u(t)] = 0 and m1[u(t)](−∞) +m1[u](∞) = 0.

Using (1), the proof of (2) that u solves the 2D Euler equations on the time interval [−T, T ]
proceeds just as it does in the proof of Proposition 8.6 on page 334 of [30]. □

Remark 9.7. We can view Type 2 solutions as equivalent to Type 1 or 3 solutions by virtue
of Theorem 7.2. For vortex patches it is most natural to start with an Ω ∈ Π satisfying
Assumption 9.4 and lift it to R2 as in Section 2.4 to give Ω0. It is also possible to start with
a domain in R2, and use it to obtain via the Per operator a domain in Π, but there are no
simple general conditions to guarantee that the boundary of the domain in Π is regular.
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10. Regularity of a vortex patch boundary

To prove the propagation of regularity of a vortex patch boundary for our Type 1, 2, or
3 solutions, it will be easiest to work with Type 2 solutions, the result then immediately
following for the other two types by Theorem 7.2. We will prove, in Theorem 10.1, that for
Type 2 solutions, the regularity of the boundary of a periodic vortex patch is maintained for
all time, as in the classical case.

Theorem 10.1. Let Ω be as in Assumption 9.4 and let Ωt = X(t,Ω) for a Type 2 solution.
Then ∂Ωt is C1,ε for all time. The analogous result holds for Type 1 and 3 solutions.

Proof. We describe only how the proof differs from the now classical proof as presented in
Chapter 8 of [30]. There are two main steps to the proof given in [30]: First, show local-
in-time existence of a C1,ε solution to the CDE (based on [10]) then show that the solution
extends globally in time (based on [9]).

Local-in-time C1,ε solutions: In brief, the first step is to define the function F on the
space B1,ε of closed C1,ε paths in Π by (we have translated this to Type 2 solutions) by

F (γ(β)) :=
ω0

2π

∫ 2π

0
log ρ(γ(β)− γ(α))∂αγ(α) dα.

Here, F is as defined for each boundary component separately, we suppress the sums over
each boundary component for notational simplicity. First show that F : OM → B1,ε is
Lipschitz-continuous on the open subset

OM :=
{
γ ∈ B1,ε : |γ|∗ > M−1, ∥γ ′∥L∞ < M

}
,

|γ|∗ := inf
α ̸=α′

γ(α)− γ(α′)

|α− α′|
for some M > 0. A Picard fixed point theorem (Theorem 8.3 of [30]) then assures a local-in-
time solution to the ODE,

dγ

dt
= F (γ), γ(0) = γ0 ∈ OM ,

with γ ∈ C1([−T, T ];OM ) for a T that depends upon M .
To adapt the argument in [30] to Type 2 solutions, we decompose log ρ(x) as follows. Let

φ ∈ C∞
0 (Π) be a radially symmetric cutoff function supported on B1/4(0) with φ ≡ 1 on

B1/8(0). Then

log ρ(x) = φ(x) log|x|+R(x),

R(x) := φ(x) [log ρ(x)− log|x|] + (1− φ(x)) log ρ(x).

Recall that on Π, we use coordinates in which x = (x1, x2) with −1/2 ⩽ x1 < 1/2. Because
φ(x) = 0 for |x1| > 1/4, the function φ(x) log|x| is in C∞(Π \ (0, 0)). Also, log ρ(x) is
harmonic away from the origin, so R(x) ∈ C∞(Π), as follows from Lemma 5.2. In particular,
φ(x) log|x| and R(x) are well-defined as functions on Π.

It follows that for each component of ∂Ωt,0, F = F1 + F2, where

F1(γ(β)) :=
ω0

2π

∫ 2π

0
φ(γ(β)− γ(α)) log|γ(β)− γ(α)|∂αγ(α) dα,

F2(γ(β)) :=
ω0

2π

∫ 2π

0
R(γ(β)− γ(α))∂αγ(α) dα.
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Other than the cutoff function, which introduces no real difficulties, F1 is the same expression
as in the classical setting and is estimated in B1,ε in the same manner. We note that applying
d/dβ to F1(γ(β)) leads to a singularity in the integrand at α = β. The key to estimating
F1 is treating dF1/dβ, beginning in Lemma 8.7 of [30], as a principal value integral. The
situation is no different here than in [30].

Similarly, for F2, the key is bounding dF2/dβ in Cε. This is much simpler than bounding
dF1/dβ, for we have

d

dβ
F2(γ(β)) =

ω0

2π

∫ 2π

0
∇R(γ(β)− γ(α)) · ∂βγ(β)) ∂αγ(α) dα.

Then for any α,

∥∇R(γ(β)− γ(α)) · ∂βγ(β)) ∂αγ(α)∥Cε

⩽ |∂αγ(α)|∥∇R∥Cε(Π)∥γ(β)− γ(α)∥εlip∥∂βγ(β)∥Cε(0,2π).

But, |∂αγ(α)| ⩽ ∥γ∥Lip < M and ∥γ(β)− γ(α)∥lip = ∥γ∥lip < M . Hence,∥∥∥∥ d

dβ
F2(γ(β))

∥∥∥∥
Cε(0,2π)

⩽ CM2|ω0|∥γ∥Cε .

We see, then, that the bounds in Lemma 8.10 of [30] hold, and the proof of local-in-time
existence is completed as in [30].

Global-in-time C1,ε solutions: The proof of the global existence of a C1,ε solution to the
CDE is the same as in Section 8.3.3 of [30], except that Corollary 8.4 is used to obtain ∇u.
By virtue of Proposition 3.4, the estimates differ little from those for classical vortex patches.

This completes the proof for Type 2 solutions. The result for Types 1 and 3 solutions then
follows directly, exploiting the lifting of domains described in Section 2.4. □

Appendix A. Proof of the formula for ∇u

Before giving the proof of the singular integral operator formula for ∇u of Lemma 8.2, let us
calculate ∇K∞(x) to obtain the expression for β. Letting

ξ(x) = ρ(x)2 = sin2(πx1) + sinh2(πx2),

we have ∂1ρ(x) = π sin(2πx1), ∂2ρ(x) = π sinh(2πx2). Then from Lemma 5.1, we have
G(x) = (2π)−1 log ρ(x) = (4π)−1 log ξ(x), so

K∞(x) = ∇⊥G(x) =
∇⊥ξ(x)

4πξ(x)
=

(−∂2ξ(x), ∂1ξ(x)
4πξ(x)

=
(− sinh(2πx2), sin(2πx1))

4ξ(x)
.

Remark A.1. As in Remark 8.3, near the origin, ξ(x) = ρ(x)2 ≈ π2|x|2. Hence, G(x) ≈
(1/4π) log(π2|x|2) ≈ C +(1/2π) log|x|, like the fundamental solution to the Laplacian on R2.
Then K∞(x) ≈ 2π|x|/(4ξ(x)) ≈ 2π|x|/(4π2|x|2) = 1/(2π|x|), as it is for the Biot-Savart
kernel on R2.

Taking another derivative,

∇K∞(x) =
1

4


−∂1

sinh(2πx2)

ξ(x)
−∂2

sinh(2πx2)

ξ(x)

∂1
sin(2πx1)

ξ(x)
∂2

sin(2πx1)

ξ(x)


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= − 1

4ξ(x)2

− sinh(2πx2)∂1ξ(x) − sinh(2πx2)∂2ξ(x)

sin(2πx1)∂1ξ(x) sin(2πx1)∂2ξ(x)



+
1

4ξ(x)

 0 −2π cosh(2πx2)

2π cos(2πx1) 0


= − 1

4ξ(x)2

− sinh(2πx2)π sin(2πx1) − sinh(2πx2)π sinh(2πx2)

sin(2πx1)π sin(2πx1) sin(2πx1)π sinh(2πx2)



+
1

4ξ(x)2

 0 −2π cosh(2πx2)ξ(x)

2π cos(2πx1)ξ(x) 0


=

π

4ξ(x)2

sinh(2πx2) sin(2πx1) sinh2(2πx2)

− sin2(2πx1) − sin(2πx1) sinh(2πx2)



+
π

4ξ(x)2

 0 −2 cosh(2πx2)ξ(x)

2 cos(2πx1)ξ(x) 0


=

π

2ρ(x)4

(
α11(x) α12(x)
α21(x) α22(x)

)
,

where

α11(x) = −α22(x) =
1
2 sinh(2πx2) sin(2πx1),

α12(x) =
1
2

[
sinh2(2πx2)− 2 cosh(2πx2)ξ(x)

]
,

α21(x) =
1
2

[
− sin2(2πx1) + 2 cos(2πx1)ξ(x)

]
.

Using (2.5) and cosh2 x− sinh2 x = 1, we see that

2α12(x) = sinh2(2πx2)− 2 cosh(2πx2)(sin
2(πx1) + sinh2(πx2))

= sinh2(2πx2)− 2 cosh(2πx2) sin
2(πx1)− cosh(2πx2)(cosh(2πx2)− 1)

= −1 + cosh(2πx2)(1− 2 sin2(πx1)) = cosh(2πx2) cos(2πx1)− 1,

2α21(x) = − sin2(2πx1) + 2 cos(2πx1)(sin
2(πx1) + sinh2(πx2))

= − sin2(2πx1) + cos(2πx1)(1− cos(2πx1)) + 2 cos(2πx1) sinh
2(πx2))

= −1 + cos(2πx1)(1 + 2 sinh2(πx2)) = cos(2πx1) cosh(2πx2)− 1.

Thus,

∇K∞(x) =
π

2

β(x)

ρ(x)2
,
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where

β(x) =
1

2ρ(x)2

(
sin(2πx1) sinh(2πx2) cos(2πx1) cosh(2πx2)− 1

cos(2πx1) cosh(2πx2)− 1 − sin(2πx1) sinh(2πx2)

)
,

as given in Lemma 8.2.

Proof of Lemma 8.2. Let M ∈ (H1(Ω)2×2 be arbitrary. We will show that

(∇u,M) =

(∑
n∈Z

ω(x+ (n, 0))

2

(
0 −1
1 0

)
,M

)
+

1

2π
p. v.

∫
R2

∇K∞(x− y)M(y) dy,

giving the action of ∇u ∈ H−1(R2) on any test function in H1(R2), and thus establishing
our expression for ∇u.

For any r ∈ (0, 1), we let

Ur =
⋃
n∈Z

Br(x+ (n, 0)).

Then

(∇u,M) = (u,divM) = (K∞ ∗ ω,divM) = lim
r→0

∫
UC
r

K∞ ∗ ω(x) divM(x) dx

= − lim
r→0

∫
UC
r

∇(K∞ ∗ ω)(x)M(x) dx− lim
r→0

∫
∂Ur

(∇M · n)K∞ ∗ ω dS =: I + II.

We used here that u is integrable and that the orientation of ∂U is opposite that of ∂UC .
The limit in I gives the principal value integral in our expression for ∇u. Noting that the
compact support of ω makes the sum below finite,

II =
∑
n∈Z

lim
r→0

∫
∂Br(x+(n,0))

(∇M · n)K∞ ∗ ω dS

=
∑
n∈Z

lim
r→0

∫
∂Br(x)

(∇M(·+ (n, 0)) · n)K∞ ∗ ω dS

=
∑
n∈Z

lim
r→0

∫
∂Br(x)

(∇M(·+ (n, 0)) · n)K ∗ ω dS

=
∑
n∈Z

(
ω

2

(
0 −1
1 0

)
,M(·+ (n, 0))

)
=
∑
n∈Z

(
ω(x− (n, 0))

2

(
0 −1
1 0

)
,M

)
.

We used that K∞(y) becomes K(y) in the limit of small y, and then evaluated the limit of
the boundary integral as in the classical case. □
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