Representations of modular skew group algebras

Liping Li

University of California, Riverside lipingli@math.ucr.edu

October 14, 2013

- 4 同 6 4 日 6 4 日 6

æ

Notation

A: an associative algebra over a field k with a finite complete set of primitive orthogonal idempotents E = {e_i}ⁿ_{i=1}; that is, 1_A = ∑ⁿ_{i=1} e_i.

イロン イ部ン イヨン イヨン 三日

Notation

- A: an associative algebra over a field k with a finite complete set of primitive orthogonal idempotents E = {e_i}ⁿ_{i=1}; that is, 1_A = ∑ⁿ_{i=1} e_i.
- ► G: a finite group.

Notation

- A: an associative algebra over a field k with a finite complete set of primitive orthogonal idempotents E = {e_i}ⁿ_{i=1}; that is, 1_A = ∑ⁿ_{i=1} e_i.
- ► G: a finite group.
- A group homomorphism $\rho : G \to Aut(A)$.

(日) (同) (E) (E) (E)

Notation

- A: an associative algebra over a field k with a finite complete set of primitive orthogonal idempotents E = {e_i}ⁿ_{i=1}; that is, 1_A = ∑ⁿ_{i=1} e_i.
- ► G: a finite group.
- A group homomorphism $\rho : G \to Aut(A)$.
- ► The skew group algebra AG = A ⊗_k kG as vector spaces, with multiplication determined by:

$$(a \otimes g) \cdot (b \otimes h) = ag(b) \otimes gh,$$

where $g(b) := \rho(g)(b)$.

(四) (日) (日)

Notation

- A: an associative algebra over a field k with a finite complete set of primitive orthogonal idempotents E = {e_i}ⁿ_{i=1}; that is, 1_A = ∑ⁿ_{i=1} e_i.
- ► G: a finite group.
- A group homomorphism $\rho : G \to Aut(A)$.
- ► The skew group algebra AG = A ⊗_k kG as vector spaces, with multiplication determined by:

$$(a \otimes g) \cdot (b \otimes h) = ag(b) \otimes gh,$$

where $g(b) := \rho(g)(b)$.

Examples: regular group algebras, algebra of matrices, etc.

Motivation

When |G| is invertible, it has been shown that AG and A share many properties. For instance:

1. (Reiten, Ridetmann) The global dimension gldim $AG < \infty$ if and only if gldim $A < \infty$.

(4回) (日) (日)

Motivation

When |G| is invertible, it has been shown that AG and A share many properties. For instance:

- 1. (Reiten, Ridetmann) The global dimension gldim $AG < \infty$ if and only if gldim $A < \infty$.
- 2. (Reiten, Ridetmann) For finite dimensional algebras, AG is of *finite representation types* if and only if so is A.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

When |G| is invertible, it has been shown that AG and A share many properties. For instance:

- 1. (Reiten, Ridetmann) The global dimension gldim $AG < \infty$ if and only if gldim $A < \infty$.
- 2. (Reiten, Ridetmann) For finite dimensional algebras, AG is of *finite representation types* if and only if so is A.
- 3. (Dionne, etc) AG is piecewise hereditary if so is A.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

When |G| is invertible, it has been shown that AG and A share many properties. For instance:

- 1. (Reiten, Ridetmann) The global dimension gldim $AG < \infty$ if and only if gldim $A < \infty$.
- 2. (Reiten, Ridetmann) For finite dimensional algebras, AG is of *finite representation types* if and only if so is A.
- 3. (Dionne, etc) AG is piecewise hereditary if so is A.
- 4. (Martinez) If A is graded and the action of G preserves grading, AG is Koszul if and only if so is A.

- 4 回 5 - 4 回 5 - 4 回 5

Motivation

• When G is modular, all these results fail.

イロン 不同と 不同と 不同と

Э

Motivation

- ▶ When *G* is modular, all these results fail.
- Question: For arbitrary G, under what conditions do A and AG still share these properties?

▲圖▶ ▲屋▶ ▲屋▶

æ

Induction and Restriction

• Let $H \leq G$, which also acts on A. Then AH is a subalgebra.

¹The Koszul property (4) has to be handled separately in the framework of a generalized Koszul theory. $\langle \Box \rangle \langle \Box \rangle \langle$

Induction and Restriction

- Let $H \leq G$, which also acts on A. Then AH is a subalgebra.
- We obtain two functors:

$$\uparrow_{H}^{G} = AG \otimes_{AH} - : AH \operatorname{-mod} \to AG \operatorname{-mod};$$
$$\downarrow_{H}^{G}: AG \operatorname{-mod} \to AH \operatorname{-mod}.$$

They are exact and preserve projective modules.

¹The Koszul property (4) has to be handled separately in the framework of a generalized Koszul theory.

Induction and Restriction

- Let $H \leq G$, which also acts on A. Then AH is a subalgebra.
- We obtain two functors:

$$\uparrow_{H}^{G} = AG \otimes_{AH} - : AH \operatorname{-mod} \to AG \operatorname{-mod};$$
$$\downarrow_{H}^{G} : AG \operatorname{-mod} \to AH \operatorname{-mod}.$$

They are exact and preserve projective modules.

Proposition: If AG has a property specified in (1-3)¹ above, so does AH (in particular, A). The converse statement is also true if |G : H| is invertible (or equivalently, H contains a Sylow p-subgroup of G).

¹The Koszul property (4) has to be handled separately in the framework of a generalized Koszul theory. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \equiv \langle \Box \rangle \langle \Box$

One direction: Necessity

Let S ≤ G be a Sylow p-group, where p is the characteristic of k.

<ロ> (日) (日) (日) (日) (日)

æ

One direction: Necessity

- Let S ≤ G be a Sylow p-group, where p is the characteristic of k.
- ► Assumption: The set E = {e_i}ⁿ_{i=1} is closed under the action of S. (Not always true, but very often in practice).

イロト イポト イヨト イヨト

One direction: Necessity

- Let S ≤ G be a Sylow p-group, where p is the characteristic of k.
- ► Assumption: The set E = {e_i}ⁿ_{i=1} is closed under the action of S. (Not always true, but very often in practice).
- ▶ **Proposition:** If gldim *AS* < ∞, then the action of *S* on *E* is free.

イロト イポト イヨト イヨト

One direction: Necessity

- Let S ≤ G be a Sylow p-group, where p is the characteristic of k.
- ► Assumption: The set E = {e_i}ⁿ_{i=1} is closed under the action of S. (Not always true, but very often in practice).
- ▶ **Proposition:** If gldim *AS* < ∞, then the action of *S* on *E* is free.
- ► Proposition: Suppose that p ≥ 5 and A is a finite dimensional algebra which is not local. If AS is of finite representation type, then the action of S on E is free.

소리가 소문가 소문가 소문가

One direction: Necessity

From the above propositions we conclude that if AG has a property specified in (1-3), then:

▲圖▶ ▲屋▶ ▲屋▶

æ

One direction: Necessity

- From the above propositions we conclude that if AG has a property specified in (1-3), then:
- A must have the same property; and

- 4 同 6 4 日 6 4 日 6

æ

One direction: Necessity

- From the above propositions we conclude that if AG has a property specified in (1-3), then:
- A must have the same property; and
- the action of S on E must be free.

・ 同 ト ・ ヨ ト ・ ヨ ト

One direction: Necessity

- From the above propositions we conclude that if AG has a property specified in (1-3), then:
- A must have the same property; and
- ▶ the action of *S* on *E* must be free.
- Question: Are these two conditions sufficient?

・ 同 ト ・ ヨ ト ・ ヨ ト

The other direction: Sufficiency

Suppose that the action of S on E is free. Then AS is a matrix algebra over A^S = {a ∈ A | g(a) = a, ∀g ∈ S}.

伺下 イヨト イヨト

The other direction: Sufficiency

- Suppose that the action of S on E is free. Then AS is a matrix algebra over A^S = {a ∈ A | g(a) = a, ∀g ∈ S}.
- ► Consequently, AS and A^S are Morita equivalent.

伺下 イヨト イヨト

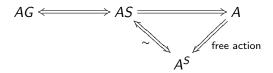
The other direction: Sufficiency

- Suppose that the action of S on E is free. Then AS is a matrix algebra over A^S = {a ∈ A | g(a) = a, ∀g ∈ S}.
- ► Consequently, AS and A^S are Morita equivalent.
- ▶ **Proposition:** If *A* has a property specified in (1-3), so does *A*^S.

- 4 同 6 4 日 6 4 日 6

The other direction: Sufficiency

- Suppose that the action of S on E is free. Then AS is a matrix algebra over A^S = {a ∈ A | g(a) = a, ∀g ∈ S}.
- ► Consequently, AS and A^S are Morita equivalent.
- ▶ **Proposition:** If *A* has a property specified in (1-3), so does *A*^S.
- Answer: Yes!



(4 回) (4 回) (4 回)

Main Theorem

Theorem: Let A, S, G, E be as above. Then:

1. gldim $AG < \infty$ if and only if gldim $A < \infty$ and S acts freely on E.

- - 4 回 ト - 4 回 ト

æ

Main Theorem

Theorem: Let A, S, G, E be as above. Then:

- 1. gldim $AG < \infty$ if and only if gldim $A < \infty$ and S acts freely on E.
- 2. If the action of S on E is free, then AG, AS, A^S, and A have the same global dimension, *finitistic dimension*, and *strong global dimension*.

- 4 同 6 4 日 6 4 日 6

Main Theorem

Theorem: Let A, S, G, E be as above. Then:

- 1. gldim $AG < \infty$ if and only if gldim $A < \infty$ and S acts freely on E.
- 2. If the action of S on E is free, then AG, AS, A^S, and A have the same global dimension, *finitistic dimension*, and *strong global dimension*.
- If p ≥ 5 and A is a finite dimensional algebra which is not local. Then AG is of finite representation type if and only if so is A, and S acts freely on E.

- 4 同 6 4 日 6 4 日 6

Transporter categories

 Let P be a finite connected poset on which every element in G acts as an automorphism. The Grothendick construction T = G ∝ P is called a *transporter category*.

向下 イヨト イヨト

Transporter categories

- Let P be a finite connected poset on which every element in G acts as an automorphism. The Grothendick construction T = G ∝ P is called a *transporter category*.
- The category algebra $k\mathcal{T}$ is a skew group algebra.

向下 イヨト イヨト

Transporter categories

- Let P be a finite connected poset on which every element in G acts as an automorphism. The Grothendick construction T = G ∝ P is called a *transporter category*.
- The category algebra $k\mathcal{T}$ is a skew group algebra.
- ► Theorem: For p ≥ 5, kT is of finite representation type if and only if P is trivial and kG is of finite representation type, or kG is semisimple and the incidence algebra kP is of finite representation type.

イロト イポト イヨト イヨト

Piecewise hereditary skew group algebras

 Let A be finite dimensional. It is *piecewise hereditary* if D^b(A-mod) is triangulated equivalent to the derived category of a hereditary abelian category.

向下 イヨト イヨト

Piecewise hereditary skew group algebras

- Let A be finite dimensional. It is *piecewise hereditary* if D^b(A-mod) is triangulated equivalent to the derived category of a hereditary abelian category.
- Theorem (Happel & Zacharia): A is piecewise hereditary if and only if it has finite strong global dimension.

・ 同 ト ・ ヨ ト ・ ヨ ト

Piecewise hereditary skew group algebras

- Let A be finite dimensional. It is *piecewise hereditary* if D^b(A-mod) is triangulated equivalent to the derived category of a hereditary abelian category.
- Theorem (Happel & Zacharia): A is piecewise hereditary if and only if it has finite strong global dimension.
- ► **Theorem:** AG is piecewise hereditary if and only if so is A, and the action of S on E is free.

・ 同 ト ・ ヨ ト ・ ヨ ト

References

- 1. L. Li, *Representations of modular skew group algebras*, to appear in Tran. Amer. Math. Soc.
- 2. L. Li, Piecewise hereditary skew group algebras, preprint.

- 4 同 6 4 日 6 4 日 6