QUADRATIC RECIPROCITY THE BIG PICTURE

It takes a lot of work to prove:
Quadratic Reciprocity (Theorem 4.9). Let p, q be odd prime numbers with $p \neq q$. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

Quadratic Reciprocity follows pretty easily from:
Eisenstein's Lemma (Lemma 4.10). Let p, q be odd prime numbers with $p \neq q$. Then

$$
\left(\frac{q}{p}\right)=(-1)^{N_{1}}, \quad\left(\frac{p}{q}\right)=(-1)^{N_{2}}
$$

where N_{1} is the number of points

$$
\left\{(i, j): 1 \leq i \leq \frac{p-1}{2}, 1 \leq j \leq \frac{q-1}{2}, i, j \in \mathbb{Z}\right\}
$$

that are below the line $y=\frac{q}{p} x$, and N_{2} is the number of such points above this line.

It's enough to prove the first of these two statements, namely $\left(\frac{p}{q}\right)=(-1)^{N_{1}}$, because the other is just the same but with the roles of p and q switched. But, to prove this first statement, we need to use two sublemmas:

Gauss' Lemma (Lemma 4.7). Let p, q be odd prime numbers with $p \neq q$. Then

$$
\left(\frac{q}{p}\right)=(-1)^{n_{1}}
$$

where n_{1} is the number of these elements:

$$
[q],[2 q], \ldots,\left[\frac{p-1}{2} q\right] \in \mathbb{Z}_{p}
$$

that equal $\left[r_{i}\right]$ with $p / 2<r_{i}<p$, and n_{2} is the number of these elements that equal $\left[s_{i}\right]$ with $0<s_{i}<p / 2$.

Baby Eisenstein's Lemma (Baby Lemma 4.10). Let p, q be odd prime numbers with $p \neq q$. Then

$$
N_{1} \equiv n_{1} \bmod 2
$$

where N_{1} and n_{1} are defined as above.

We can prove Gauss' Lemma by a calculation with the help of this sub-sublemma:
Baby Gauss' Lemma (Baby Lemma 4.7). Let p, q be odd prime numbers with $p \neq q$. Define the numbers $r_{1}, \ldots, r_{n_{1}}$ and $s_{1}, \ldots, s_{n_{2}}$ as above. Then the set of numbers

$$
\left\{p-r_{1}, \ldots, p-r_{n_{1}}, s_{1}, \ldots, s_{n_{2}}\right\}
$$

is the same as the set

$$
\left\{1,2, \ldots, \frac{p-1}{2}\right\}
$$

together with Euler's Criterion:

Euler's Criterion (Theorem 4.4). Let p be an odd prime number and let $a \in \mathbb{Z}$ have $a \not \equiv 0 \bmod p$. Then

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p
$$

Finally, to prove Euler's criterion, we used Fermat's Little Theorem and Wilson's Theorem! Nobody knows any easier way to prove Quadratic Reciprocity. This is why it's called a 'deep result'.

I think it is said that Gauss had ten different proofs for the law of quadratic reciprocity. Any good theorem should have several proofs, the more the better. For two reasons: usually, different proofs have different strengths and weaknesses, and they generalise in different directions - they are not just repetitions of each other. - Sir Michael Atiyah

