QUADRATIC RECIPROCITY
THE BIG PICTURE

It takes a lot of work to prove:

Quadratic Reciprocity (Theorem 4.9). Let p, q be odd prime numbers with $p \neq q$. Then

$$\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$$

Quadratic Reciprocity follows pretty easily from:

Eisenstein’s Lemma (Lemma 4.10). Let p, q be odd prime numbers with $p \neq q$. Then

$$\left(\frac{q}{p}\right) = (-1)^{N_1}, \quad \left(\frac{p}{q}\right) = (-1)^{N_2}$$

where N_1 is the number of points

$$\{(i, j) : 1 \leq i \leq \frac{p-1}{2}, 1 \leq j \leq \frac{q-1}{2}, i, j \in \mathbb{Z}\}$$

that are below the line $y = \frac{2}{p} x$, and N_2 is the number of such points above this line.

It’s enough to prove the first of these two statements, namely $\left(\frac{p}{q}\right) = (-1)^{N_1}$, because the other is just the same but with the roles of p and q switched. But, to prove this first statement, we need to use two sublemmas:

Gauss’ Lemma (Lemma 4.7). Let p, q be odd prime numbers with $p \neq q$. Then

$$\left(\frac{q}{p}\right) = (-1)^{n_1}$$

where n_1 is the number of these elements:

$$[q], [2q], \ldots, [\frac{p-1}{2}q] \in \mathbb{Z}_p$$

that equal $[r_i]$ with $p/2 < r_i < p$, and n_2 is the number of these elements that equal $[s_i]$ with $0 < s_i < p/2$.

Baby Eisenstein’s Lemma (Baby Lemma 4.10). Let p, q be odd prime numbers with $p \neq q$. Then

$$N_1 \equiv n_1 \mod 2$$

where N_1 and n_1 are defined as above.
We can prove Gauss’ Lemma by a calculation with the help of this sub-sublemma:

Baby Gauss’ Lemma (Baby Lemma 4.7). Let \(p, q \) be odd prime numbers with \(p \neq q \). Define the numbers \(r_1, \ldots, r_{n_1} \) and \(s_1, \ldots, s_{n_2} \) as above. Then the set of numbers

\[
\{ p - r_1, \ldots, p - r_{n_1}, s_1, \ldots, s_{n_2} \}
\]

is the same as the set

\[
\{ 1, 2, \ldots, \frac{p - 1}{2} \}
\]

together with Euler’s Criterion:

Euler’s Criterion (Theorem 4.4). Let \(p \) be an odd prime number and let \(a \in \mathbb{Z} \) have \(a \not\equiv 0 \mod p \). Then

\[
\left(\frac{a}{p} \right) \equiv a^{\frac{p-1}{2}} \mod p
\]

Finally, to prove Euler’s criterion, we used Fermat’s Little Theorem and Wilson’s Theorem! Nobody knows any easier way to prove Quadratic Reciprocity. This is why it’s called a ‘deep result’.

I think it is said that Gauss had ten different proofs for the law of quadratic reciprocity. Any good theorem should have several proofs, the more the better. For two reasons: usually, different proofs have different strengths and weaknesses, and they generalise in different directions – they are not just repetitions of each other. — Sir Michael Atiyah