QUADRATIC RECIPROCITY THE BIG PICTURE

It takes a lot of work to prove:

Quadratic Reciprocity (Theorem 4.9). Let p, q be odd prime numbers with $p \neq q$. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

Quadratic Reciprocity follows pretty easily from:

Eisenstein's Lemma (Lemma 4.10). Let p, q be odd prime numbers with $p \neq q$. Then

$$\left(\frac{q}{p}\right) = (-1)^{N_1}, \qquad \left(\frac{p}{q}\right) = (-1)^{N_2}$$

where N_1 is the number of points

$$\{(i,j): \ 1 \le i \le \frac{p-1}{2}, 1 \le j \le \frac{q-1}{2}, i, j \in \mathbb{Z}\}$$

that are below the line $y = \frac{q}{p}x$, and N_2 is the number of such points above this line.

It's enough to prove the first of these two statements, namely $\left(\frac{p}{q}\right) = (-1)^{N_1}$, because the other is just the same but with the roles of p and q switched. But, to prove this first statement, we need to use two sublemmas:

Gauss' Lemma (Lemma 4.7). Let p, q be odd prime numbers with $p \neq q$. Then

$$\left(\frac{q}{p}\right) = (-1)^{n_1}$$

where n_1 is the number of these elements:

$$[q], [2q], \ldots, [\frac{p-1}{2}q] \in \mathbb{Z}_p$$

that equal $[r_i]$ with $p/2 < r_i < p$, and n_2 is the number of these elements that equal $[s_i]$ with $0 < s_i < p/2$.

Baby Eisenstein's Lemma (Baby Lemma 4.10). Let p, q be odd prime numbers with $p \neq q$. Then

$$N_1 \equiv n_1 \bmod 2$$

where N_1 and n_1 are defined as above.

We can prove Gauss' Lemma by a calculation with the help of this sub-sublemma:

Baby Gauss' Lemma (Baby Lemma 4.7). Let p, q be odd prime numbers with $p \neq q$. Define the numbers r_1, \ldots, r_{n_1} and s_1, \ldots, s_{n_2} as above. Then the set of numbers

$$\{p-r_1,\ldots,p-r_{n_1},s_1,\ldots,s_{n_2}\}$$

is the same as the set

$$\{1,2,\ldots,\frac{p-1}{2}\}$$

together with Euler's Criterion:

Euler's Criterion (Theorem 4.4). Let p be an odd prime number and let $a \in \mathbb{Z}$ have $a \not\equiv 0 \mod p$. Then

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p$$

Finally, to prove Euler's criterion, we used Fermat's Little Theorem and Wilson's Theorem! Nobody knows any easier way to prove Quadratic Reciprocity. This is why it's called a 'deep result'.

I think it is said that Gauss had ten different proofs for the law of quadratic reciprocity. Any good theorem should have several proofs, the more the better. For two reasons: usually, different proofs have different strengths and weaknesses, and they generalise in different directions – they are not just repetitions of each other. — Sir Michael Atiyah