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Higher Gauge Theory

Ordinary gauge theory describes how point particles trans-
form as we move them along 1-dimensional paths. It is

natural to assign a group element to each path:

•

g

&&
•

since composition of paths then corresponds to multipli-

cation:

•

g

&&
•

g′

&&
•

while reversing the direction of a path corresponds to
taking inverses:

• •

g−1

xx

and the associative law makes this composite unambigu-

ous:

•

g

&&
•

g′

&&
•

g′′

&&
•

In short: the topology dictates the algebra!
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Higher gauge theory describes the parallel transport not
only of point particles, but also 1-dimensional strings.

For this we must categorify the notion of a group! A
‘2-group’ has objects:

•

g

&&
•

and also morphisms:

•

g

&&

g′

88f
��

•

We can multiply objects:

•

g

&&
•

g′

&&
•

multiply morphisms:

•

g1

&&

g′1

88f1
��

•

g2

&&

g′2

88f2
��

•

and also compose morphisms:

•

g

��g′
//

f
��

g′′

BB
f ′

��

•

Various laws should hold....

In fact, we can make this precise and categorify the whole

theory of Lie groups, Lie algebras, bundles, connections
and curvature. But for now, let’s just look at 2-groups

and Lie 2-algebras.
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2-Groups

A group is a monoid where every element has an inverse.

Let’s categorify this!

A 2-group is a monoidal category where every object x
has a ‘weak inverse’:

x⊗ y ∼= y ⊗ x ∼= I

and every morphism f has an inverse:

fg = gf = 1.

A homomorphism between 2-groups is a monoidal func-
tors. A 2-homomorphism is a monoidal natural trans-

formation. The 2-groups X and X ′ are equivalent if
there are homomorphisms

f : X → X ′ f̄ : X ′ → X

that are inverses up to 2-isomorphism:

ff̄ ∼= 1, f̄f ∼= 1.

Theorem. 2-groups are classified up to equivalence by

quadruples consisting of:

• a group G,

• an abelian group H,

• an action α of G as automorphisms of H,

• an element [a] ∈ H3(G, H).

4



Lie 2-Algebras

To categorify the concept of ‘Lie algebra’ we must first
treat the concept of ‘vector space’:

A 2-vector space L is a category for which the set of

objects and the set of morphisms are vector spaces, and
all the category operations are linear.

We can also define linear functors between 2-vector

spaces, and linear natural transformations between
these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear
functors and linear natural transformations is equivalent
to the 2-category of:

• 2-term chain complexes C1
d
−→C0,

• chain maps between these,

• chain homotopies between these.

The objects of the 2-vector space form C0. The mor-
phisms f : 0→ x form C1, with df = x.
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A Lie 2-algebra consists of:

• a 2-vector space L

equipped with:

• a functor called the bracket:

[·, ·] : L× L→ L,

bilinear and skew-symmetric as a function of objects
and morphisms,

• a natural isomorphism called the Jacobiator:

Jx,y,z : [[x, y], z]→ [x, [y, z]] + [[x, z], y],

trilinear and antisymmetric as a function of the ob-
jects x, y, z,

such that:

• the Jacobiator identity holds: the following dia-

gram commutes:

[[[w,x],y],z]

[[[w,y],x],z]+[[w,[x,y]],z] [[[w,x],z],y]+[[w,x],[y,z]]

[[[w,y],z],x]+[[w,y],[x,z]]
+[w,[[x,y],z]]+[[w,z],[x,y]]

[[w,[x,z]],y]
+[[w,x],[y,z]]+[[[w,z],x],y]

[[[w,z],y],x]+[[w,[y,z]],x]

+[[w,y],[x,z]]+[w,[[x,y],z]]+[[w,z],[x,y]]

[[[w,z],y],x]+[[w,z],[x,y]]+[[w,y],[x,z]]

+[w,[[x,z],y]]+[[w,[y,z]],x]+[w,[x,[y,z]]]

[Jw,x,y,z]

uukkkkkkkkkkkkkkkk
J[w,x],y,z

))SSSSSSSSSSSSSSSS

J[w,y],x,z+Jw,[x,y],z

��

[Jw,y,z,x]+1

��'
''

''
''
'

[Jw,x,z,y]+1

��

Jw,[x,z],y+J[w,z],x,y+Jw,x,[y,z]

����
��
��
��

[w,Jx,y,z]+1
//
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We can also define homomorphisms between Lie 2-algebras,
and 2-homomorphisms between these. The Lie 2-algebras

L and L′ are equivalent if there are homomorphisms

f : L→ L′ f̄ : L′ → L

that are inverses up to 2-isomorphism.

Theorem. Lie 2-algebras are classified up to equivalence

by quadruples consisting of:

• a Lie algebra g,

• an abelian Lie algebra (= vector space) h,

• a representation ρ of g on h,

• an element [j] ∈ H3(g, h).

Just like the classification of 2-groups, but with Lie

algebra cohomology replacing group cohomology!

Let’s use this classification to find some interesting Lie
2-algebras. Then let’s try to find the corresponding Lie

2-groups. A Lie 2-group is a 2-group where everything
in sight is smooth.
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The Lie 2-Algebra gk

Suppose g is a finite-dimensional simple Lie algebra over

R. To get a Lie 2-algebra having g as objects we need:

• a vector space h,

• a representation ρ of g on h,

• an element [j] ∈ H3(g, h).

Assume without loss of generality that ρ is irreducible.

To get Lie 2-algebras with nontrivial Jacobiator, we need
H3(g, h) 6= 0. By Whitehead’s lemma, this only happens

when h = R is the trivial representation. Then we have

H3(g, R) = R

with a nontrivial 3-cocycle given by:

ν(x, y, z) = 〈[x, y], z〉.

Using k times this to define the Jacobiator, we get a Lie

2-algebra we call gk.

In short: every simple Lie algebra g admits a 1-parameter

deformation gk in the world of Lie 2-algebras!

Do these Lie 2-algebras gk come from Lie 2-groups? We

should use the relation between Lie group cohomology
and Lie algebra cohomology. How is H3(G, U(1)) related

to H3(g, R)?
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Suppose G is a simply-connected compact simple Lie
group whose Lie algebra is g. We have

H3(G, U(1))←↩ Z ↪→ R ∼= H3(g, R)

So, for k ∈ Z we get a 2-group Gk with G as objects and

U(1) as the automorphisms of any object, with nontrivial
associator when k 6= 0.

Can Gk be made into a Lie 2-group?

Here’s the bad news:

Theorem. Unless k = 0, there is no way to give the
2-group Gk the structure of a Lie 2-group for which the

group G of objects and the group U(1) of endomorphisms
of any object are given their usual topology.

However, all is not lost. gk is equivalent to a Lie 2-
algebra that does come from a Lie 2-group! However,
this Lie 2-algebra is infinite-dimensional! This is where

loop groups enter the game....
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Theorem. For any k ∈ Z, there is a Fréchet Lie 2-group
PkG whose Lie 2-algebra Pkg is equivalent to gk.

An object of PkG is a smooth path f : [0, 2π]→ G start-
ing at the identity. A morphism from f1 to f2 is an

equivalence class of pairs (D, α) consisting of a disk D
going from f1 to f2 together with α ∈ U(1):

�

�

G

1

f1 f2D
+3

For any two such pairs (D1, α1) and (D2, α2) there is a
3-ball B whose boundary is D1 ∪D2, and the pairs are
equivalent when

exp

(
2πik

∫

B

ν

)
= α2/α1

where ν is the left-invariant closed 3-form on G with

ν(x, y, z) = 〈[x, y], z〉

and 〈·, ·〉 is the smallest invariant inner product on g such

that ν gives an integral cohomology class.

There’s an obvious way to compose morphisms in PkG,
and the resulting category inherits a Lie 2-group struc-

ture from the Lie group structure of G.
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The Role of Loop Groups

We can also describe the 2-group PkG as follows:

• An object of PkG is a smooth path in G starting at
the identity.

• Given objects f1, f2 ∈ PkG, a morphism

̂̀: f1 → f2

is an element ̂̀∈ Ω̂kG with

p(̂̀) = f2/f1

where Ω̂kG is the level-k Kac–Moody central
extension of the loop group ΩG:

1−→U(1)−→ Ω̂kG
p
−→ΩG−→ 1

Note: p(̂̀) is a loop in G. We can get such a loop with

p(̂̀) = f2/f1

from a disk D like this:

�

�

G

1

f1 f2D
+3

An element ̂̀∈ Ω̂kG is an equivalence class of pairs [D, α]
consisting of such a disk D together with α ∈ U(1).
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An Application to Topology

For any simply-connected compact simple Lie group G
there is a topological group Ĝ obtained by killing the

third homotopy group of G. When G = Spin(n), Ĝ is
called String(n).

Theorem. For any k ∈ Z, the geometric realization of
the nerve of PkG is a topological group |PkG|. We have

π3(|PkG|) ∼= Z/kZ

When k = ±1,

|PkG| ' Ĝ.

This, and the appearance of the Kac–Moody central ex-

tension of ΩG, suggest that PkG will be an especially

interesting Lie 2-group for applications of higher gauge

theory to string theory.
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