TWO OF MY FAVORITE NUMBERS:

8 ano 24

John Baez
Quantum Matter Seminar

The Clifford algebra Cliff n is the algebra over \mathbb{R} freely generated by n anticommuting square roots of -1 :

$$
e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j}
$$

In 1908, Élie Cartan showed that Cliff $n+8$ consists of 16×16 matrices with entries in Cliff $_{n}$:

$$
\operatorname{Cliff}_{n+8} \cong \mathrm{M}_{16}\left(\operatorname{Cliff}_{n}\right)
$$

8 KINDS OF CLIFFORD ALGEBRA

8 KINDS OF MATTER

The periodicity of Clifford algebras also gives Bott periodicity:

$$
\pi_{n+8}(\mathrm{O}(\infty)) \cong \pi_{n}(\mathrm{O}(\infty))
$$

$$
\begin{array}{llrl}
\pi_{0}(\mathrm{O}(\infty)) & \cong \mathbb{Z}_{2} & \text { real numbers: } & \mathbb{R} \\
\pi_{1}(\mathrm{O}(\infty)) \cong \mathbb{Z}_{2} & \text { complex numbers: } & \mathbb{C} \\
\pi_{2}(\mathrm{O}(\infty)) \cong 0 & & \\
\pi_{3}(\mathrm{O}(\infty)) \cong \mathbb{Z} & \text { quaternions: } & \mathbb{H} \\
\pi_{4}(\mathrm{O}(\infty)) \cong 0 & & \\
\pi_{5}(\mathrm{O}(\infty)) \cong 0 & & \\
\pi_{6}(\mathrm{O}(\infty)) \cong & \cong & & \\
\pi_{7}(\mathrm{O}(\infty)) \cong \mathbb{Z} & \text { octonions: } & \mathbb{O}
\end{array}
$$

The rotation group $\mathrm{SO}(n)$ acts on vectors, but its double cover also acts on spinors, which are defined using Clifford algebras.

There's a way to 'multiply' a spinor and a vector and get a spinor:

When the space of spinors and the space of vectors have the same dimension, this gives a normed division algebra!

n	vectors	spinors	normed division algebra?
1	\mathbb{R}	\mathbb{R}	YES: REAL NUMBERS
2	\mathbb{R}^{2}	\mathbb{R}^{2}	YES: COMPLEX NUMBERS
3	\mathbb{R}^{3}	\mathbb{R}^{4}	NO
4	\mathbb{R}^{4}	\mathbb{R}^{4}	YES: QUATERNIONS
5	\mathbb{R}^{5}	\mathbb{R}^{8}	NO
6	\mathbb{R}^{6}	\mathbb{R}^{8}	NO
7	\mathbb{R}^{7}	\mathbb{R}^{8}	NO
8	\mathbb{R}^{8}	\mathbb{R}^{8}	YES: OCTONIONS

Bott periodicity \Longrightarrow spinors in dimension 8 more have dimension 16 times as big.

So, we only get 4 normed division algebras.

The normed division algebras are connected to lattices!

A lattice $L \subseteq \mathbb{R}^{n}$ is integral if $v \cdot w$ is an integer for all $v, w \in L$.
A lattice $L \subseteq \mathbb{R}^{n}$ is even if $v \cdot v$ is an even number for all $v \in L$.
Any even lattice is integral.
A lattice $L \subseteq \mathbb{R}^{n}$ is unimodular if the volume of its unit cell is 1 .

Witt's Theorem. There exists an even unimodular lattice in \mathbb{R}^{n} if and only if n is a multiple of 8 .

The integers $\mathbb{Z} \subset \mathbb{R}$ are an integral unimodular lattice, but not an even lattice:

The Gaussian integers

$$
\{a+b i \mid a, b \in \mathbb{Z}\} \subset \mathbb{C} \cong \mathbb{R}^{2}
$$

are an integral unimodular lattice, but not an even lattice:

They're closed under multiplication.

The Hurwitz integral quaternions

$$
\left\{a+b i+c j+d k \mid a, b, c, d \text { all in } \mathbb{Z} \text { or all in } \mathbb{Z}+\frac{1}{2}\right\} \subset \mathbb{H} \cong \mathbb{R}^{4}
$$ are closed under multiplication.

They give an integral unimodular lattice when rescaled by $\sqrt{2}$, but not an even lattice.

The 'Cayley integral octonions'

$$
\mathbb{K} \subset \mathbb{O} \cong \mathbb{R}^{8}
$$

are closed under multiplication.

They give an integral unimodular lattice when rescaled by $\sqrt{2}$, and this is an even lattice!

To get this lattice, just pack equal-sized balls in 8 dimensions so that each touches 240 others. It's called the E_{8} lattice.

Of the Hurwitz integral quaternions

$$
\left\{a+b i+c j+d k \mid a, b, c, d \text { all in } \mathbb{Z} \text { or all in } \mathbb{Z}+\frac{1}{2}\right\} \subset \mathbb{H} \cong \mathbb{R}^{4}
$$ exactly 24 lie on the unit sphere!

8 are the vertices of a 'hyperoctahedron':

$\pm 1, \pm i, \pm j, \pm k$

Of the Hurwitz integral quaternions
$\left\{a+b i+c j+d k \mid a, b, c, d\right.$ all in \mathbb{Z} or all in $\left.\mathbb{Z}+\frac{1}{2}\right\} \subset \mathbb{H} \cong \mathbb{R}^{4}$ exactly 24 lie on the unit sphere!

16 are the vertices of a hypercube:

$$
\frac{1}{2}(\pm 1 \pm i \pm j \pm k)
$$

Of the Hurwitz integral quaternions
$\left\{a+b i+c j+d k \mid a, b, c, d\right.$ all in \mathbb{Z} or all in $\left.\mathbb{Z}+\frac{1}{2}\right\} \subset \mathbb{H} \cong \mathbb{R}^{4}$ exactly 24 lie on the unit sphere!

Together they are the vertices of the 24 -cell:

They form a group called the binary tetrahedral group.

Even better, the 16 vertices of a hypercube form the vertices of two hyperoctahedra! So the vertices of the 24 -cell can be partitioned into the vertices of 3 hyperoctahedra:

$$
24=8+8+8
$$

Rescaling the Hurwitz integral quaternions by $\sqrt{2}$, we get an integral unimodular lattice called the D_{4} lattice. This controls the representation theory of $\operatorname{Spin}(8)$, the double cover of $\mathrm{SO}(8)$.

The vertices of the 24 -cell break up into 3 sets of 8 . These give bases for the vector, left-handed spinor, and right-handed spinor representations of $\operatorname{Spin}(8)$.

Each of these representations can be seen as the octonions \mathbb{O}.

A superstring in 10 dimensions can be described by an $\mathbb{O} \oplus(\mathbb{O} \oplus \mathbb{O}$-valued field on the 2-dimensional string worldsheet.

This field transforms under rotations in 8 spatial dimensions transverse to the worldsheet via this representation of $\operatorname{Spin}(8)$:
vector \oplus left-handed spinor \oplus right-handed spinor
The 'vector' \mathbb{O} describes the motion of the string in the 8 directions transverse to the worldsheet: its bosonic degrees of freedom.

The left- and right-handed spinors, $\mathbb{O} \oplus \mathbb{O}$ describe the string's fermionic degrees of freedom.

So, we have seen the numbers 8 and 24 in superstring theory. But the number 24 also shows up starting from the simplest field theory of all!

First consider the wave equation:

$$
\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial x^{2}}=0
$$

on the cylinder of radius 1 :

$$
(t, x) \in \mathbb{R} \times S^{1} \quad \phi: \mathbb{R} \times S^{1} \rightarrow \mathbb{C}
$$

Since

$$
\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}=\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-\frac{\partial}{\partial x}\right)
$$

any solution of the wave equation
is the sum of right-moving and left-moving waves:

$$
\phi(t, x)=f(t-x)+g(t+x)
$$

Keep just the left-moving waves using this equation:

$$
\frac{\partial \phi}{\partial t}=\frac{\partial \phi}{\partial x}
$$

This is arguably the simplest field theory of all!
If we quantize this field theory on the cylinder of radius 1 , its vacuum energy is

$$
-\frac{1}{24}
$$

Why???

Discarding the constant function,

 every left-moving solution is a linear combination of waves$$
\phi_{k}(t, x)=\exp (i k(t+x))
$$

where $k=1,2,3, \ldots$. The frequency of the wave ϕ_{k} is just k.
Thus, the left-moving wave equation is isomorphic to a collection of classical harmonic oscillators, one of frequency k for each

$$
k=1,2,3, \ldots
$$

Let's use units where $\hbar=1$. Then the ground state energy of a quantum harmonic oscillator of frequency ω is $\frac{1}{2} \omega$.

When we have a bunch of oscillators, their ground state energies add. Since the left-moving wave equation is isomorphic to a collection of oscillators of frequencies $1,2,3, \ldots$, its ground state energy is apparently

$$
\frac{1}{2}(1+2+3+\cdots)=\infty
$$

We could set the ground state energy to zero.
But around 1735, Leonhard Euler gave a bizarre 'proof' that

$$
1+2+3+4+\cdots=-\frac{1}{12}
$$

This would mean the ground state energy of the quantized left-moving wave equation is

$$
\frac{1}{2}(1+2+3+\cdots)=-\frac{1}{24}
$$

Euler started with this:

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}
$$

He differentiated both sides:

$$
1+2 x+3 x^{2}+\cdots=\frac{1}{(1-x)^{2}}
$$

He set $x=-1$ and got this:

$$
1-2+3-4+\cdots=\frac{1}{4}
$$

Then Euler considered this function:

$$
\zeta(s)=1^{-s}+2^{-s}+3^{-s}+4^{-s}+\cdots
$$

He multiplied by 2^{-s} :

$$
2^{-s} \zeta(s)=2^{-s}+4^{-s}+6^{-s}+8^{-s}+\cdots
$$

Then he subtracted twice the second equation from the first:

$$
\left(1-2 \cdot 2^{-s}\right) \zeta(s)=1^{-s}-2^{-s}+3^{-s}-4^{-s}+\cdots
$$

Taking this result:

$$
\begin{gathered}
\left(1-2 \cdot 2^{-s}\right) \zeta(s)=1^{-s}-2^{-s}+3^{-s}-4^{-s}+\cdots \\
\text { and setting } s=-1, \text { he got: } \\
-3(1+2+3+4+\cdots)=1-2+3-4+\cdots
\end{gathered}
$$

Since he already knew the right-hand side equals $1 / 4$, he concluded:

$$
1+2+3+4+\cdots=-\frac{1}{12}
$$

Euler's calculation looks crazy, but now we understand it better!
The sum

$$
1^{-s}+2^{-s}+3^{-s}+4^{-s}+\cdots
$$

converges for $\operatorname{Re}(s)>1$ to an analytic function: the Riemann zeta function, $\zeta(s)$.

This function can be analytically continued to $s=-1$, and one can prove

$$
\zeta(-1)=-\frac{1}{12}
$$

Assuming Euler's calculation is right, what is the partition function of the left-moving scalar field?

For any system with energy eigenvalues E_{j}, define its partition function to be

$$
Z(\beta)=\sum_{j} e^{-\beta E_{j}}
$$

To calculate it quickly, we'll use this fact:
When we combine several sysems, we can multiply their partition functions to get the partition function of the combined system.

First: what's the partition function of a quantum harmonic oscillator?

An oscillator with frequency ω can have energies

$$
\frac{1}{2} \omega,\left(1+\frac{1}{2}\right) \omega,\left(2+\frac{1}{2}\right) \omega,\left(3+\frac{1}{2}\right) \omega, \ldots
$$

So, its partition function is:

$$
\sum_{n=0}^{\infty} e^{-\left(n+\frac{1}{2}\right) \beta \omega}=e^{-\frac{1}{2} \beta \omega} \sum_{k=0}^{\infty} e^{-n \beta \omega}=\frac{e^{-\frac{1}{2} \beta \omega}}{1-e^{-\beta \omega}}
$$

Since the left-moving scalar field is isomorphic to a collection of oscillators with frequencies $1,2,3, \ldots$, its partition function is a product:

$$
Z(\beta)=\prod_{k=1}^{\infty} \frac{e^{-\frac{1}{2} k \beta}}{1-e^{-k \beta}}=e^{-\frac{1}{2}(1+2+3+\cdots) \beta} \prod_{k=1}^{\infty} \frac{1}{1-e^{-k \beta}}
$$

According to Euler's crazy calculation, we get

$$
Z(\beta)=e^{\frac{1}{24} \beta} \prod_{k=1}^{\infty} \frac{1}{1-e^{-k \beta}}
$$

This partition function

$$
Z(\beta)=e^{\frac{1}{24} \beta} \prod_{k=1}^{\infty} \frac{1}{1-e^{-k \beta}}
$$

is essentially the reciprocal of the Dedekind eta function introduced in 1877, long before quantum field theory!

Next, let $\beta=i$. Inverse temperature is like imaginary time!

$$
Z=e^{\frac{1}{24} i t} \prod_{k=1}^{\infty} \frac{1}{1-e^{-i k t}}
$$

This converges when t is in the complex upper half-plane.

Now Z is the partition function for the torus-shaped spacetime \mathbb{C} / L where L is a lattice in \mathbb{C}.

But the torus coming from this parallelogram:

is the same as the torus coming from this one:

So: our calculation only gives a well-defined partition function for the torus \mathbb{C} / L if

$$
Z=e^{\frac{1}{24} i t} \prod_{k=1}^{\infty} \frac{1}{1-e^{-i k t}}
$$

is unchanged when we add 2π to t.
Alas, Z does change: it gets multiplied by

$$
e^{\frac{2 \pi i}{24}}
$$

But Z^{24} does not change!

So, the left-moving wave equation on \mathbb{C} / L has a well-defined partition function when the field has 24 components!

In bosonic string theory we use such a field to describe the motion of the string in the 24 directions transverse to the worldsheet.

But this partition function, Z^{24}, was famous long before string theory. Its reciprocal is called the modular discriminant Δ.

$$
\Delta=e^{-i t}\left(\prod_{k=1}^{\infty} 1-e^{-i k t}\right)^{24}
$$

Δ is the simplest 'modular form' that vanishes in the limit where the torus \mathbb{C} / L becomes infinitely skinny.

We've seen both superstrings and bosonic strings involve a 24-component field on the string worldsheet.
For superstrings the 24 components take values in $\mathbb{O} \oplus \mathbb{O} \oplus \mathbb{O}$, and are thus connected to the 24 -cell:

For bosonic strings the 24 components are connected to the modular discriminant

$$
\Delta=e^{-i t}\left(\prod_{k=1}^{\infty} 1-e^{-i k t}\right)^{24}
$$

Is this function related to the 24 -cell? Yes!

Each point t in the complex upper half-plane H gives a flat Riemannian torus:

-

But many different choices of $t \in H$ give conformally equivalent tori! If we only care about the conformal structure on the torus, we call it an elliptic curve.

Thus, the 'moduli space' of elliptic curves is a quotient of H. In fact it is $H / S L(2, \mathbb{Z})$.

But SL($2, \mathbb{Z}$) doesn't act freely on H, because there are elliptic curves with extra symmetries corresponding to the square and hexagonal lattices.
.
-
-

However, the subgroup $\Gamma(3) \subset \mathrm{SL}(2, \mathbb{Z})$ does act freely. This subgroup consists of integer matrices

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

with determinant 1 , such that each entry is congruent to the corresponding entry of

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \text { modulo } 3 .
\end{aligned}
$$

The quotient $H / \Gamma(3)$ has no 'points of greater symmetry'.

The group

$$
\mathrm{SL}(2, \mathbb{Z}) / \Gamma(3) \cong \mathrm{SL}(2, \mathbb{Z} / 3)
$$

acts on $H / \Gamma(3)$. To get the moduli space of elliptic curves from $H / \Gamma(3)$, we just need to mod out by the action of this group.

But this group $\mathrm{SL}(2, \mathbb{Z} / 3)$ has 24 elements.
In fact, it's isomorphic to our friend the binary tetrahedral group!

$$
\begin{gathered}
\pm 1, \pm i, \pm j, \pm k \\
\frac{1}{2}(\pm 1 \pm i \pm j \pm k)
\end{gathered}
$$

