

Brandon Coya
Frobenius monoids, weak bimonoids, and corelations

Circuits

To wires in a circuit we can associate a "potential" and "current" pair:

Circuits

To wires in a circuit we can associate a "potential" and "current" pair:

$$
\phi_{1}, I_{1}
$$

Circuits

To wires in a circuit we can associate a "potential" and "current" pair:

$$
\phi_{1}, I_{1}
$$

Engineers often care about pairs of wire:

$$
\frac{\phi_{1}, I_{1}}{\frac{\phi_{2}, I_{2}}{}}
$$

such that $I_{1}=-I_{2}$.

Circuits

To wires in a circuit we can associate a "potential" and "current" pair:

$$
\phi_{1}, I_{1}
$$

Engineers often care about pairs of wire:

$$
\frac{\phi_{1}, I_{1}}{\frac{\phi_{2}, I_{2}}{}}
$$

such that $I_{1}=-I_{2}$. They also care about "voltage" V where $V=\phi_{2}-\phi_{1}$.

FinCorel

Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.

FinCorel

Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.
Consider partitions P of the set $m+n$ as morphisms $f: m \rightarrow n$.

FinCorel

Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.
Consider partitions P of the set $m+n$ as morphisms $f: m \rightarrow n$.

FinCorel

Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.
Consider partitions P of the set $m+n$ as morphisms $f: m \rightarrow n$.

FinCorel

Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.
Consider partitions P of the set $m+n$ as morphisms $f: m \rightarrow n$.

FinCorel

These are also called "corelations" and they determine the category FinCorel. We can draw them as string diagrams:

FinCorel

These are also called "corelations" and they determine the category FinCorel. We can draw them as string diagrams:

Then to study pairs of wires we study the objects $2 n \in$ FinCorel.

Frobenius monoids

The object 2 can be equipped with two different Frobenius monoid structures.

Frobenius monoids

The object 2 can be equipped with two different Frobenius monoid structures.
The first Frobenius monoid arises from using the unit and counit pair:

$$
i_{2}: 0 \rightarrow 2
$$

$$
e_{2}: 2 \rightarrow 0
$$

to build a multiplication and unit:

$m_{2}: 4 \rightarrow 2$

$i_{2}: 0 \rightarrow 2$

Frobenius monoids

The morphisms:

$m_{2}: 4 \rightarrow 2$
make 2 into a monoid:

Frobenius monoids

The morphisms:

make 2 into a monoid:

Frobenius monoids

The morphisms:

make 2 into a monoid:

Frobenius monoids

The morphisms:

$$
d_{2}: 4 \rightarrow 2
$$

$$
e_{2}: 0 \rightarrow 2
$$

make 2 into a comonoid:

Frobenius monoids

The morphisms:

$$
d_{2}: 4 \rightarrow 2
$$

$$
e_{2}: 0 \rightarrow 2
$$

make 2 into a comonoid:

Frobenius monoids

The morphisms:

$d_{2}: 4 \rightarrow 2$

$$
e_{2}: 0 \rightarrow 2
$$

make 2 into a comonoid:

Frobenius monoids

Then we get that $\left(2, m_{2}, i_{2}, d_{2}, e_{2}\right)$ is an extraspecial symmetric Frobenius monoid:

Frobenius monoids

Then we get that $\left(2, m_{2}, i_{2}, d_{2}, e_{2}\right)$ is an extraspecial symmetric Frobenius monoid:

Frobenius monoids

Then we get that $\left(2, m_{2}, i_{2}, d_{2}, e_{2}\right)$ is an extraspecial symmetric Frobenius monoid:

Frobenius monoids

Then we get that $\left(2, m_{2}, i_{2}, d_{2}, e_{2}\right)$ is an extraspecial symmetric Frobenius monoid:

Frobenius monoids

We can equip 2 with a different Frobenius monoid structure via another standard construction:

$$
\mu_{2}: 4 \rightarrow 2
$$

$$
\iota_{2}: 0 \rightarrow 2
$$

Frobenius monoids

We can equip 2 with a different Frobenius monoid structure via another standard construction:

$$
\mu_{2}: 4 \rightarrow 2
$$

$$
\iota_{2}: 0 \rightarrow 2
$$

$\delta_{2}: 2 \rightarrow 4$
$\epsilon_{2}: 2 \rightarrow 0$

Frobenius monoids

We can equip 2 with a different Frobenius monoid structure via another standard construction:

$$
\mu_{2}: 4 \rightarrow 2
$$

$$
\iota_{2}: 0 \rightarrow 2
$$

$$
\delta_{2}: 2 \rightarrow 4
$$

$$
\epsilon_{2}: 2 \rightarrow 0
$$

$\left(2, \mu_{2}, \iota_{2}, \delta_{2}, \epsilon_{2}\right)$ is an extraspecial commutative Frobenius monoid.

Frobenius monoids

Frobenius monoids

Frobenius monoids

Brandon Coya Frobenius monoids, weak bimonoids, and corelations

Frobenius monoids

[^0]
Weak bimonoids

From Pastro and Street [3] we get the following.

Theorem

The following morphisms make 2 into a weak bimonoid:

$\mu_{2}: 4 \rightarrow 2$
$\iota_{2}: 0 \rightarrow 2$

$d_{2}: 2 \rightarrow 4$
$e_{2}: 2 \rightarrow 0$

Weak bimonoids

From Pastro and Street [3] we get the following.

Theorem

The following morphisms make 2 into a weak bimonoid:

Weak bimonoids

Weak bimonoids

Black box functor

Now let's assign potentials and currents to our morphisms using the "black box" functor $■$: FinCorel $\rightarrow \mathrm{LagRel}_{k}$ given by Baez and Fong [2].

Black box functor

Now let's assign potentials and currents to our morphisms using the "black box" functor $■$: FinCorel $\rightarrow \operatorname{LagRel}_{k}$ given by Baez and Fong [2].

$$
\begin{array}{r}
\left\{\left(\phi_{1}, \ldots, I_{6}\right): \phi_{1}=\phi_{5}, I_{1}=I_{5}, \phi_{4}=\phi_{6}\right. \\
\left.I_{4}=I_{6}, \phi_{2}=\phi_{3}, I_{2}+I_{3}=0\right\}
\end{array}
$$

Black box functor

Now let's assign potentials and currents to our morphisms using the "black box" functor $■$: FinCorel $\rightarrow \operatorname{LagRel}_{k}$ given by Baez and Fong [2].

$$
\begin{aligned}
& \left.\ldots, I_{6}\right): \phi_{1}=\phi_{5}, I_{1}=I_{5}, \phi_{4}=\phi_{6}, \\
& \left.I_{4}=I_{6}, \phi_{2}=\phi_{3}, I_{2}+I_{3}=0\right\}
\end{aligned}
$$

Then we impose that incoming current is opposite of outgoing current and write difference in potential as voltage.

$$
\begin{aligned}
& I=I_{1}=-I_{2}, I^{\prime}=I_{3}=-I_{4}, I^{\prime \prime}=I_{5}=-I_{6} \\
& V=\phi_{2}-\phi_{1}, V^{\prime}=\phi_{4}-\phi_{3}, V^{\prime \prime}=\phi_{6}-\phi_{5}
\end{aligned}
$$

Series and parallel junctions

This results in the space $\left\{\left(V, \ldots, I^{\prime \prime}\right): V+V^{\prime}=V^{\prime \prime}, I=I^{\prime}=I^{\prime \prime}\right\}$ and we think of the morphism m_{2} as summing voltages together while equalizing current.

Series and parallel junctions

This results in the space $\left\{\left(V, \ldots, I^{\prime \prime}\right): V+V^{\prime}=V^{\prime \prime}, I=I^{\prime}=I^{\prime \prime}\right\}$ and we think of the morphism m_{2} as summing voltages together while equalizing current.
Engineers call this a "series" junction.

Series and parallel junctions

This results in the space $\left\{\left(V, \ldots, I^{\prime \prime}\right): V+V^{\prime}=V^{\prime \prime}, I=I^{\prime}=I^{\prime \prime}\right\}$ and we think of the morphism m_{2} as summing voltages together while equalizing current.
Engineers call this a "series" junction.
Doing this with the other multiplication gives us:

so that μ_{2} equalizes voltage and sums voltage. Engineers call this a "parallel" junction.

FinCorel ${ }^{\circ}$

Now we want to look at the subcategory FinCorel ${ }^{\circ}$ of FinCorel generated by these 8 morphisms.

$m_{2}: 4 \rightarrow 2$

$\mu_{2}: 4 \rightarrow 2$

$i_{2}: 0 \rightarrow 2$

$\iota_{2}: 0 \rightarrow 2$

$d_{2}: 2 \rightarrow 4$

$\delta_{2}: 2 \rightarrow 4$

$e_{2}: 2 \rightarrow 0$

$\epsilon_{2}: 2 \rightarrow 0$

FinCorel ${ }^{\circ}$

Now we want to look at the subcategory FinCorel ${ }^{\circ}$ of FinCorel generated by these 8 morphisms.

$$
m_{2}: 4 \rightarrow 2
$$

$$
i_{2}: 0 \rightarrow 2
$$

$$
e_{2}: 2 \rightarrow 0
$$

$$
\mu_{2}: 4 \rightarrow 2
$$

$d_{2}: 2 \rightarrow 4$

$$
\iota_{2}: 0 \rightarrow 2
$$

$\delta_{2}: 2 \rightarrow 4$
$\epsilon_{2}: 2 \rightarrow 0$
and we want to assign voltage and current with a functor $F:$ FinCorel ${ }^{\circ} \rightarrow \operatorname{LagRel}_{k}$.

Then we want the following diagram:

where α comes from the relationships $V=\phi_{2}-\phi_{1}$ and $I=I_{1}=-I_{2}$.

Then we want the following diagram:

where α comes from the relationships $V=\phi_{2}-\phi_{1}$ and $I=I_{1}=-I_{2}$. However, this cannot be done.

BondGraph

Instead this led to a lot more work where we define another category which maps into $\mathrm{FinCorel}^{\circ}$ and also a subcategory of LagRel_{k}. Then we get a nice diagram: [1]

[1] J. C. Baez, B. Coya, A compositional framework for bond graphs. Available at arXiv:1710.00098
[2] J. C. Baez, B. Fong, A compositional framework for passive linear circuits. Available at arXiv:1504.05625.
[3] C. Pastro, R. Street, Weak Hopf monoids in braided monoidal categories, Algebra and Number Theory 3(2): 149-207, 2009. Available at
http://msp.org/ant/2009/3-2/ant-v3-n2-p02-s.pdf.

[^0]: Brandon Coya
 Frobenius monoids, weak bimonoids, and corelations

