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Circuits

To wires in a circuit we can associate a “potential” and “current”
pair:

φ1, I1

Engineers often care about pairs of wire:

φ2, I2

φ1, I1

such that I1 = −I2. They also care about “voltage” V where
V = φ2 − φ1.
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FinCorel

Meanwhile, there is a category that has morphisms that correspond
to circuits made of wire.

Consider partitions P of the set m + n as morphisms f ∶m→ n.

3 4

5 5

6

= 5 5
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FinCorel

These are also called “corelations” and they determine the
category FinCorel. We can draw them as string diagrams:

3 4

Then to study pairs of wires we study the objects 2n ∈ FinCorel.
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Frobenius monoids

The object 2 can be equipped with two different Frobenius monoid
structures.

The first Frobenius monoid arises from using the unit and counit
pair:

i2∶0→ 2 e2∶2→ 0

to build a multiplication and unit:

m2∶4→ 2 i2∶0→ 2
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Frobenius monoids

The morphisms:

m2∶4→ 2 i2∶0→ 2

make 2 into a monoid:

=

= =
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Frobenius monoids

Then we get that (2,m2, i2, d2, e2) is an extraspecial symmetric
Frobenius monoid:

= =

= =

=
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Frobenius monoids

We can equip 2 with a different Frobenius monoid structure via
another standard construction:

µ2∶4→ 2 ι2∶0→ 2

δ2∶2→ 4 ε2∶2→ 0

(2, µ2, ι2, δ2, ε2) is an extraspecial commutative Frobenius monoid.
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Weak bimonoids

From Pastro and Street [3] we get the following.

Theorem

The following morphisms make 2 into a weak bimonoid:

µ2∶4→ 2 ι2∶0→ 2 d2∶2→ 4 e2∶2→ 0

=
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Black box functor

Now let’s assign potentials and currents to our morphisms using
the “black box” functor ∎∶FinCorel→ LagRelk given by Baez and
Fong [2].

� ∎ //{(φ1, . . . , I6) ∶ φ1 = φ5, I1 = I5, φ4 = φ6,

I4 = I6, φ2 = φ3, I2 + I3 = 0}
Then we impose that incoming current is opposite of outgoing
current and write difference in potential as voltage.

I = I1 = −I2, I ′ = I3 = −I4, I ′′ = I5 = −I6

V = φ2 − φ1, V ′ = φ4 − φ3, V ′′ = φ6 − φ5

Brandon Coya Frobenius monoids, weak bimonoids, and corelations



Motivation
Frobenius monoids

Weak bimonoids
Conclusion

Black box functor

Now let’s assign potentials and currents to our morphisms using
the “black box” functor ∎∶FinCorel→ LagRelk given by Baez and
Fong [2].

� ∎ //{(φ1, . . . , I6) ∶ φ1 = φ5, I1 = I5, φ4 = φ6,

I4 = I6, φ2 = φ3, I2 + I3 = 0}

Then we impose that incoming current is opposite of outgoing
current and write difference in potential as voltage.

I = I1 = −I2, I ′ = I3 = −I4, I ′′ = I5 = −I6

V = φ2 − φ1, V ′ = φ4 − φ3, V ′′ = φ6 − φ5

Brandon Coya Frobenius monoids, weak bimonoids, and corelations



Motivation
Frobenius monoids

Weak bimonoids
Conclusion

Black box functor

Now let’s assign potentials and currents to our morphisms using
the “black box” functor ∎∶FinCorel→ LagRelk given by Baez and
Fong [2].

� ∎ //{(φ1, . . . , I6) ∶ φ1 = φ5, I1 = I5, φ4 = φ6,

I4 = I6, φ2 = φ3, I2 + I3 = 0}
Then we impose that incoming current is opposite of outgoing
current and write difference in potential as voltage.

I = I1 = −I2, I ′ = I3 = −I4, I ′′ = I5 = −I6

V = φ2 − φ1, V ′ = φ4 − φ3, V ′′ = φ6 − φ5
Brandon Coya Frobenius monoids, weak bimonoids, and corelations



Motivation
Frobenius monoids

Weak bimonoids
Conclusion

Series and parallel junctions

This results in the space {(V, . . . , I ′′) ∶ V + V ′ = V ′′, I = I ′ = I ′′}
and we think of the morphism m2 as summing voltages together
while equalizing current.

Engineers call this a “series” junction.
Doing this with the other multiplication gives us:

� //{(V, . . . , I ′′) ∶ I + I ′ = I ′′, V = V ′ = V ′′}

so that µ2 equalizes voltage and sums voltage. Engineers call this
a “parallel” junction.
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FinCorel○

Now we want to look at the subcategory FinCorel○ of FinCorel
generated by these 8 morphisms.

m2∶4→ 2 i2∶0→ 2 d2∶2→ 4 e2∶2→ 0

µ2∶4→ 2 ι2∶0→ 2 δ2∶2→ 4 ε2∶2→ 0

and we want to assign voltage and current with a functor
F ∶FinCorel○ → LagRelk.
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Then we want the following diagram:

FinCorel○ LagRelk

FinCorel

F

i

α

∎

where α comes from the relationships V = φ2 −φ1 and I = I1 = −I2.

However, this cannot be done.
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BondGraph

Instead this led to a lot more work where we define another
category which maps into FinCorel○ and also a subcategory of
LagRelk. Then we get a nice diagram: [1]

LagRel○k LagRelk

BondGraph

FinCorel○ FinCorel

α

i′

F

G
i

∎
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