Frobenius monoids, weak bimonoids, and corelations

Brandon Coya

November 5, 2017
To wires in a circuit we can associate a “potential” and “current” pair:
Circuits

To wires in a circuit we can associate a “potential” and “current” pair:

\[\phi_1, I_1 \]
To wires in a circuit we can associate a “potential” and “current” pair:

\[\phi_1, I_1 \]

Engineers often care about pairs of wire:

\[\phi_1, I_1 \]
\[\phi_2, I_2 \]

such that \(I_1 = -I_2 \).
To wires in a circuit we can associate a “potential” and “current” pair:

\[\phi_1, I_1 \]

Engineers often care about pairs of wire:

\[\phi_1, I_1 \]
[---------------------]
\[\phi_2, I_2 \]

such that \(I_1 = -I_2 \). They also care about “voltage” \(V \) where \(V = \phi_2 - \phi_1 \).
Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.
Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.
Consider partitions P of the set $m + n$ as morphisms $f : m \to n$.
Meanwhile, there is a category that has morphisms that correspond to circuits made of wire. Consider partitions P of the set $m + n$ as morphisms $f: m \to n$.
Meanwhile, there is a category that has morphisms that correspond to circuits made of wire. Consider partitions P of the set $m + n$ as morphisms $f : m \to n$.
Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.
Consider partitions P of the set $m + n$ as morphisms $f: m \to n$.
These are also called “corelations” and they determine the category FinCorel. We can draw them as string diagrams:
These are also called “corelations” and they determine the category \(\text{FinCorel} \). We can draw them as string diagrams:

```
\begin{ydiagram}
  3 & 4
  \end{ydiagram}
```

Then to study pairs of wires we study the objects \(2n \in \text{FinCorel} \).
Frobenius monoids

The object 2 can be equipped with two different *Frobenius monoid* structures.
Frobenius monoids

The object 2 can be equipped with two different *Frobenius monoid* structures. The first Frobenius monoid arises from using the unit and counit pair:

$$i_2: 0 \to 2 \quad e_2: 2 \to 0$$

to build a multiplication and unit:

$$m_2: 4 \to 2 \quad i_2: 0 \to 2$$
Frobenius monoids

The morphisms:

\[m_2 : 4 \to 2 \quad i_2 : 0 \to 2 \]

make 2 into a monoid:
Frobenius monoids

The morphisms:

\[m_2 : 4 \to 2 \quad \text{and} \quad i_2 : 0 \to 2 \]

make 2 into a monoid:
Frobenius monoids

The morphisms:

\[m_2 : 4 \rightarrow 2 \quad i_2 : 0 \rightarrow 2 \]

make 2 into a monoid:
Frobenius monoids

The morphisms:

\begin{align*}
 d_2 &: 4 \to 2 \\
 e_2 &: 0 \to 2
\end{align*}

make 2 into a comonoid:
Frobenius monoids

The morphisms:

\[d_2 : 4 \rightarrow 2 \]

\[e_2 : 0 \rightarrow 2 \]

make 2 into a comonoid:
The morphisms:

\[d_2: 4 \to 2 \quad \text{and} \quad e_2: 0 \to 2 \]

make 2 into a comonoid:
Frobenius monoids

Then we get that \((2, m_2, i_2, d_2, e_2)\) is an extraspecial symmetric Frobenius monoid:
Then we get that \((2, m_2, i_2, d_2, e_2)\) is an extraspecial symmetric Frobenius monoid:
Frobenius monoids

Then we get that \((2, m_2, i_2, d_2, e_2)\) is an extraspecial symmetric Frobenius monoid:
Frobenius monoids

Then we get that \((2, m_2, i_2, d_2, e_2)\) is an extraspecial symmetric Frobenius monoid:

\[
\begin{align*}
\text{Diagram 1} & = \text{Diagram 2} = \text{Diagram 3} \\
\text{Diagram 4} & = \text{Diagram 5} = \text{Diagram 6}
\end{align*}
\]
We can equip $\mathbb{2}$ with a different Frobenius monoid structure via another standard construction:

$$\mu_2 : 4 \to 2$$

$$\nu_2 : 0 \to 2$$
We can equip 2 with a different Frobenius monoid structure via another standard construction:

$\mu_2 : 4 \to 2$

$\nu_2 : 0 \to 2$

$\delta_2 : 2 \to 4$

$\epsilon_2 : 2 \to 0$
Frobenius monoids

We can equip 2 with a different Frobenius monoid structure via another standard construction:

\[
\begin{align*}
\mu_2 &: 4 \to 2 \\
\nu_2 &: 0 \to 2 \\
\delta_2 &: 2 \to 4 \\
\epsilon_2 &: 2 \to 0
\end{align*}
\]

\((2, \mu_2, \nu_2, \delta_2, \epsilon_2)\) is an extraspecial \textit{commutative} Frobenius monoid.
Frobenius monoids

Brandon Coya
Frobenius monoids, weak bimonoids, and corelations
Frobenius monoids

\[
\begin{align*}
\text{Motivation} & \quad \text{Frobenius monoids} \\
& \quad \text{Weak bimonoids} \\
& \quad \text{Conclusion}
\end{align*}
\]

Frobenius monoids, weak bimonoids, and corelations
Frobenius monoids
Frobenius monoids

Brandon Coya
Frobenius monoids, weak bimonoids, and corelations
From Pastro and Street [3] we get the following.

Theorem

The following morphisms make 2 into a weak bimonoid:

\[\mu_2 : 4 \rightarrow 2 \]
\[\nu_2 : 0 \rightarrow 2 \]
\[d_2 : 2 \rightarrow 4 \]
\[e_2 : 2 \rightarrow 0 \]
From Pastro and Street [3] we get the following.

Theorem

The following morphisms make 2 into a weak bimonoid:

- $\mu_2 : 4 \rightarrow 2$
- $\nu_2 : 0 \rightarrow 2$
- $d_2 : 2 \rightarrow 4$
- $e_2 : 2 \rightarrow 0$
Weak bimonoids
Weak bimonoids

Motivation
Frobenius monoids
Weak bimonoids
Conclusion
Now let's assign potentials and currents to our morphisms using the "black box" functor $\Box : \text{FinCorel} \to \text{LagRel}_k$ given by Baez and Fong [2].
Black box functor

Now let’s assign potentials and currents to our morphisms using
the “black box” functor \(\blacksquare : \text{FinCorel} \to \text{LagRel}_k \) given by Baez and Fong [2].

\[
\{(\phi_1, \ldots, I_6) : \phi_1 = \phi_5, I_1 = I_5, \phi_4 = \phi_6, \\
I_4 = I_6, \phi_2 = \phi_3, I_2 + I_3 = 0\}
\]
Now let’s assign potentials and currents to our morphisms using the “black box” functor $\mathbb{H} : \text{FinCorel} \to \text{LagRel}_k$ given by Baez and Fong [2].

$$\{(\phi_1, \ldots, I_6) : \phi_1 = \phi_5, I_1 = I_5, \phi_4 = \phi_6, I_4 = I_6, \phi_2 = \phi_3, I_2 + I_3 = 0\}$$

Then we impose that incoming current is opposite of outgoing current and write difference in potential as voltage.

$$I = I_1 = -I_2, I' = I_3 = -I_4, I'' = I_5 = -I_6$$

$$V = \phi_2 - \phi_1, V' = \phi_4 - \phi_3, V'' = \phi_6 - \phi_5$$
Series and parallel junctions

This results in the space $\{(V, \ldots, I'') : V + V' = V'', I = I' = I''\}$ and we think of the morphism m_2 as summing voltages together while equalizing current.
Series and parallel junctions

This results in the space \(\{(V, \ldots, I'') : V + V' = V'', I = I' = I''\} \) and we think of the morphism \(m_2 \) as summing voltages together while equalizing current. Engineers call this a “series” junction.
This results in the space $\{(V, \ldots, I'') : V + V' = V'', I = I' = I''\}$ and we think of the morphism m_2 as summing voltages together while equalizing current. Engineers call this a “series” junction.

Doing this with the other multiplication gives us:

$\{(V, \ldots, I'') : I + I' = I'', V = V' = V''\}$

so that μ_2 equalizes voltage and sums voltage. Engineers call this a “parallel” junction.
Now we want to look at the subcategory FinCorel° of FinCorel generated by these 8 morphisms.

$m_2: 4 \to 2$

$i_2: 0 \to 2$

$d_2: 2 \to 4$

$e_2: 2 \to 0$

$\mu_2: 4 \to 2$

$\nu_2: 0 \to 2$

$\delta_2: 2 \to 4$

$\epsilon_2: 2 \to 0$
Now we want to look at the subcategory FinCorel° of FinCorel generated by these 8 morphisms.

$m_2: 4 \to 2$

$i_2: 0 \to 2$

$d_2: 2 \to 4$

$e_2: 2 \to 0$

$\mu_2: 4 \to 2$

$\nu_2: 0 \to 2$

$\delta_2: 2 \to 4$

$\epsilon_2: 2 \to 0$

and we want to assign voltage and current with a functor $F: \text{FinCorel}^\circ \to \text{LagRel}_k$.
Then we want the following diagram:

\[
\begin{array}{ccc}
\text{FinCorel}^\circ & \xrightarrow{F} & \text{LagRel}_k \\
\downarrow^{\alpha} & & \downarrow \ \\
\text{FinCorel} & \xleftarrow{i} & \\
\end{array}
\]

where \(\alpha \) comes from the relationships\(V = \phi_2 - \phi_1 \) and \(I = I_1 = -I_2 \).
Then we want the following diagram:

\[
\begin{array}{ccc}
\text{FinCorel}^\circ & \overset{F}{\longrightarrow} & \text{LagRel}_k \\
\downarrow{\alpha} & & \\
\text{FinCorel} & \overset{i}{\longrightarrow} & \text{FinCorel}
\end{array}
\]

where \(\alpha \) comes from the relationships \(V = \phi_2 - \phi_1 \) and \(I = I_1 = -I_2 \). However, this cannot be done.
Instead this led to a lot more work where we define another category which maps into \(\text{FinCorel}^\circ \) and also a subcategory of \(\text{LagRel}_k \). Then we get a nice diagram: [1]
