Motivation Frobenius monoids Weak bimonoids Conclusion

To wires in a circuit we can associate a "potential" and "current" pair:

To wires in a circuit we can associate a "potential" and "current" pair:

$$\phi_1, I_1$$

To wires in a circuit we can associate a "potential" and "current" pair:

$$\phi_1, I_1$$

Engineers often care about pairs of wire:

$$\frac{\phi_1, I_1}{\phi_2, I_2}$$

such that $I_1 = -I_2$.

To wires in a circuit we can associate a "potential" and "current" pair:

$$\phi_1, I_1$$

Engineers often care about pairs of wire:

$$\phi_1, I_1$$
 ϕ_2, I_2

such that $I_1 = -I_2$. They also care about "voltage" V where $V = \phi_2 - \phi_1$.

Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.

Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.

Consider partitions P of the set m+n as morphisms $f:m \to n$.

Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.

Consider partitions P of the set m+n as morphisms $f:m\to n$.

Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.

Consider partitions P of the set m+n as morphisms $f:m\to n$.

Meanwhile, there is a category that has morphisms that correspond to circuits made of wire.

Consider partitions P of the set m+n as morphisms $f:m\to n$.

These are also called "corelations" and they determine the category FinCorel. We can draw them as string diagrams:

These are also called "corelations" and they determine the category FinCorel. We can draw them as string diagrams:

Then to study pairs of wires we study the objects $2n \in FinCorel$.

The object 2 can be equipped with two different *Frobenius monoid* structures.

The object 2 can be equipped with two different *Frobenius monoid* structures.

The first Frobenius monoid arises from using the unit and counit pair:

to build a multiplication and unit:

The morphisms:

$$m_2: 4 \to 2$$

$$i_2:0 \rightarrow 2$$

make 2 into a monoid:

The morphisms:

$$m_2: 4 \to 2$$

 $i_2:0 \rightarrow 2$

make 2 into a monoid:

The morphisms:

make 2 into a monoid:

The morphisms:

$$d_2: 4 \to 2$$

$$e_2{:}\, 0 \to 2$$

make 2 into a comonoid:

The morphisms:

$$d_2$$
: $4 \rightarrow 2$

 $e_2{:}\,0\to 2$

make 2 into a comonoid:

The morphisms:

make 2 into a comonoid:

We can equip 2 with a different Frobenius monoid structure via another standard construction:

$$\mu_2: 4 \rightarrow 2$$

$$\iota_2{:}\, 0 \to 2$$

We can equip 2 with a different Frobenius monoid structure via another standard construction:

$$\mu_2:4\to 2$$

 $\iota_2{:}\, 0 \to 2$

$$\delta_2: 2 \to 4$$

$$\epsilon_2$$
: 2 \rightarrow 0

We can equip 2 with a different Frobenius monoid structure via another standard construction:

 $(2, \mu_2, \iota_2, \delta_2, \epsilon_2)$ is an extraspecial *commutative* Frobenius monoid.

From Pastro and Street [3] we get the following.

Theorem

The following morphisms make 2 into a weak bimonoid:

$$d_2: 2 \to 4$$

$$e_2: 2 \to 0$$

From Pastro and Street [3] we get the following.

The following morphisms make 2 into a weak bimonoid:

$$\mu_2:4\to 2$$

$$\iota_2:0\to 2$$

$$d_2: 2 \to 4$$

$$e_2: 2 \to 0$$

Black box functor

Now let's assign potentials and currents to our morphisms using the "black box" functor \blacksquare : FinCorel \rightarrow LagRel_k given by Baez and Fong [2].

Black box functor

Now let's assign potentials and currents to our morphisms using the "black box" functor \blacksquare : FinCorel \rightarrow LagRel_k given by Baez and Fong [2].

Black box functor

Now let's assign potentials and currents to our morphisms using the "black box" functor \blacksquare : FinCorel \rightarrow LagRel_k given by Baez and Fong [2].

$$\{(\phi_1, \dots, I_6) : \phi_1 = \phi_5, I_1 = I_5, \phi_4 = \phi_6,$$

$$I_4 = I_6, \phi_2 = \phi_3, I_2 + I_3 = 0\}$$

Then we impose that incoming current is opposite of outgoing current and write difference in potential as voltage.

$$I = I_1 = -I_2, I' = I_3 = -I_4, I'' = I_5 = -I_6$$

$$V = \phi_2 - \phi_1, V' = \phi_4 - \phi_3, V'' = \phi_6 - \phi_5$$

Series and parallel junctions

This results in the space $\{(V, ..., I''): V + V' = V'', I = I' = I''\}$ and we think of the morphism m_2 as summing voltages together while equalizing current.

Series and parallel junctions

This results in the space $\{(V, \dots, I''): V + V' = V'', I = I' = I''\}$ and we think of the morphism m_2 as summing voltages together while equalizing current.

Engineers call this a "series" junction.

Series and parallel junctions

This results in the space $\{(V, \dots, I''): V + V' = V'', I = I' = I''\}$ and we think of the morphism m_2 as summing voltages together while equalizing current.

Engineers call this a "series" junction.

Doing this with the other multiplication gives us:

$$\{(V, ..., I''): I + I' = I'', V = V' = V''\}$$

so that μ_2 equalizes voltage and sums voltage. Engineers call this a "parallel" junction.

Now we want to look at the subcategory $FinCorel^{\circ}$ of FinCorel generated by these 8 morphisms.

Now we want to look at the subcategory FinCorel° of FinCorel generated by these 8 morphisms.

and we want to assign voltage and current with a functor $F: FinCorel^{\circ} \to LagRel_k$.

Then we want the following diagram:

where α comes from the relationships V = ϕ_2 – ϕ_1 and I = I_1 = $-I_2$.

Then we want the following diagram:

where α comes from the relationships $V=\phi_2-\phi_1$ and $I=I_1=-I_2$. However, this cannot be done.

BondGraph

Instead this led to a lot more work where we define another category which maps into $\operatorname{FinCorel}^{\circ}$ and also a subcategory of LagRel_k . Then we get a nice diagram: [1]

- [1] J. C. Baez, B. Coya, A compositional framework for bond graphs. Available at arXiv:1710.00098
- [2] J. C. Baez, B. Fong, A compositional framework for passive linear circuits. Available at arXiv:1504.05625.
- [3] C. Pastro, R. Street, Weak Hopf monoids in braided monoidal categories, Algebra and Number Theory 3(2): 149–207, 2009. Available at http://msp.org/ant/2009/3-2/ant-v3-n2-p02-s.pdf.