Open Systems in Classical Mechanics

Adam Yassine
Advisor: Dr. John Baez
University of California, Riverside

November 4, 2017
Table of Contents

1 Spans in Classical Mechanics
Table of Contents

1 Spans in Classical Mechanics

2 The categories Symp and SympSurj
Table of Contents

1. Spans in Classical Mechanics
2. The categories Symp and SympSurj
3. The Hamiltonian
Table of Contents

1. Spans in Classical Mechanics
2. The categories Symp and SympSurj
3. The Hamiltonian
4. Main Result
Open systems are systems that have external interactions whereas a closed system does not have such interactions.
Physicists like to study closed systems as well as be able to write Hamiltonians and equations of motion.
Physicists like to study closed systems as well as be able to write Hamiltonians and equations of motion.

We can study open systems where the “outside world” decides the location of the left and right rocks, which affects the position of the middle rock.
Lower left and right rocks represent the outside world which decides the location of the upper left and right rock.
Lower left and right rocks represent the outside world which decides the location of the upper left and right rock.
Lower left and right rocks represent the outside world which decides the location of the upper left and right rock.
A **span** from M to M' in a category \mathcal{C} is an object S in \mathcal{C} with a pair of morphisms $f: S \to M$ and $g: S \to M'$. M and M' are known as **feet** and S is known as the **apex** of the span.
Remark

The advantage of spans is that we can build bigger systems by by “gluing” together smaller systems.
The composition of spans is done using a pullback. Spans are composable if the right foot of one is the same as the left foot of the other.
The composition of spans is done using a pullback. Spans are composable if the right foot of one is the same as the left foot of the other.
The composition of spans is done using a pullback. Spans are composable if the right foot of one is the same as the left foot of the other.
The composition of spans is done using a pullback. Spans are composable if the right foot of one is the same as the left foot of the other.
Using the framework of category theory, we formalize the heuristic principles that physicists employ in constructing the Hamiltonians for classical systems as sums of Hamiltonians of subsystems.
Definition (Poisson Manifold)

A **Poisson manifold** is a manifold M endowed with a $\{\cdot, \cdot\}$ such that for any $f, g, h \in C^\infty(M)$ and $a, b \in \mathbb{R}$ with ordinary multiplication of functions, the following hold:

1. **Antisymmetry** $\{f, g\} = -\{g, f\}$
A Poisson manifold is a manifold M endowed with a $\{\cdot, \cdot\}$ such that for any $f, g, h \in C^\infty(M)$ and $a, b \in \mathbb{R}$ with ordinary multiplication of functions, the following hold:

1. **Antisymmetry** $\{f, g\} = -\{g, f\}$

2. **Bilinearity**

\[
\{f, ag + bh\} = a\{f, g\} + b\{f, h\}
\]
Definition (Poisson Manifold)

A **Poisson manifold** is a manifold M endowed with a $\{\cdot,\cdot\}$ such that for any $f, g, h \in C^\infty(M)$ and $a, b \in \mathbb{R}$ with ordinary multiplication of functions, the following hold:

1. **Antisymmetry** $\{f, g\} = -\{g, f\}$

2. **Bilinearity**

 $$\{f, ag + bh\} = a\{f, g\} + b\{f, h\}$$

3. **Jacobi Identity**

 $$\{f, \{g, h\}\} + \{\{g, h\}, f\} + \{h, \{f, g\}\} = 0.$$
Definition (Poisson Manifold)

A **Poisson manifold** is a manifold \(M \) endowed with a \(\{ \cdot, \cdot \} \) such that for any \(f, g, h \in C^\infty(M) \) and \(a, b \in \mathbb{R} \) with ordinary multiplication of functions, the following hold:

1. **Antisymmetry** \(\{ f, g \} = -\{ g, f \} \)
2. **Bilinearity**
 \[
 \{ f, ag + bh \} = a\{ f, g \} + b\{ f, h \}
 \]
3. **Jacobi Identity**
 \[
 \{ f, \{ g, h \} \} + \{ \{ g, h \}, f \} + \{ h, \{ f, g \} \} = 0.
 \]
4. **Leibniz Law**
 \[
 \{ fg, h \} = \{ f, h \} g + f \{ g, h \}
 \]
Symplectic Manifold

Definition (Symplectic Manifold)

A Poisson manifold of even dimension M equipped with a closed nondegenerate 2-form ω satisfying $\{f, g\} = \omega(v_f, v_g)$ where v_f is the vector field with $v_f(h) = \{h, f\}$ is a symplectic manifold.
Symplectic Manifold

<table>
<thead>
<tr>
<th>Definition (Symplectic Manifold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Poisson manifold of even dimension M equipped with a closed nondegenerate 2-form ω satisfying ${f, g} = \omega(v_f, v_g)$ where v_f is the vector field with $v_f(h) = {h, f}$ is a symplectic manifold.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let \mathbb{R}^{2n} have standard coordinates $(x_1, \ldots x_n, y_1, \ldots y_n)$, the 2-form $\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$ is closed and nondegenerate.</td>
</tr>
</tbody>
</table>
Definition (Poisson map)

Let \((M, \{\cdot, \cdot\}_M)\) and \((N, \{\cdot, \cdot\}_N)\) be Poisson manifolds. We say that a map

\[
\Phi : M \to N
\]

is a Poisson map if, for any \(f, g \in C^\infty(N)\)

\[
\{f, g\}_N \circ \Phi = \{f \circ \Phi, g \circ \Phi\}_M.
\]
Definition

The category of whose objects are symplectic manifolds and morphisms are Poisson maps is called Symp.

\[\text{Definition}\]

The subcategory $\text{Symp}_{\text{Surj}}$ of Symp has symplectic manifolds as objects and morphisms are surjective Poisson maps.
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>The category of whose objects are symplectic manifolds and morphisms are Poisson maps is called Symp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tha subcategory SympSurj of Symp has symplectic manifolds as objects and morphisms are surjective Poisson maps.</td>
</tr>
</tbody>
</table>
Theorem (A.Y.)

The morphisms of SympSurj are pullbackable in Symp.
Definition

A **map of spans** is a morphism $j: S \rightarrow S'$ in a category \mathcal{C} between apices of two spans such that both the following triangles commute. In particular, when j is an isomorphism, we have an **isomorphism of spans**.
Theorem

Given a category \mathcal{C} and a subcategory \mathcal{D} such that every cospan in \mathcal{D} is pullbackable in \mathcal{C}, then there exists a category $\text{Span}(\mathcal{C}, \mathcal{D})$ consisting of objects in \mathcal{D} and whose morphisms are isomorphism classes of spans in \mathcal{D} and composition is done using pullbacks in \mathcal{C}.
Theorem

Given a category \mathcal{C} and a subcategory \mathcal{D} such that every cospan in \mathcal{D} is pullbackable in \mathcal{C}, then there exists a category $\text{Span}(\mathcal{C}, \mathcal{D})$ consisting of objects in \mathcal{D} and whose morphisms are isomorphism classes of spans in \mathcal{D} and composition is done using pullbacks in \mathcal{C}.

\begin{equation}
\begin{array}{c}
 S \\
 f \quad g \\
 M \quad M'
\end{array}
\end{equation}
Theorem

Given a category \mathcal{C} and a subcategory \mathcal{D} such that every cospan in \mathcal{D} is pullbackable in \mathcal{C}, then there exists a category $\text{Span} (\mathcal{C}, \mathcal{D})$ consisting of objects in \mathcal{D} and whose morphisms are isomorphism classes of spans in \mathcal{D} and composition is done using pullbacks in \mathcal{C}.
Theorem

Given a category \mathcal{C} and a subcategory \mathcal{D} such that every cospan in \mathcal{D} is pullbackable in \mathcal{C}, then there exists a category $\text{Span}(\mathcal{C}, \mathcal{D})$ consisting of objects in \mathcal{D} and whose morphisms are isomorphism classes of spans in \mathcal{D} and composition is done using pullbacks in \mathcal{C}.

\[
\begin{array}{c}
S \\ \downarrow \pi_S \\ \downarrow f \\
M \\
\downarrow \\
M
\end{array} \quad \begin{array}{c}
S' \\ \downarrow \pi_{S'} \\ \downarrow g \\
M' \\
\downarrow \\
M'
\end{array} \quad \begin{array}{c}
S'' \\ \downarrow \pi_{S''} \\ \downarrow g' \\
M'' \\
\downarrow \\
M''
\end{array}
\]
Remark

Now because pullbacks are unique up to isomorphism, we need to take isomorphism classes of spans to obtain a category.
Example

We can apply the theorem to the case \(\mathcal{C} = \text{Symp} \) and \(\mathcal{D} = \text{SympSurj} \) as well as using the fact that the composition of surjective Poisson maps is surjective Poisson, to get that \(\text{Span}(\text{Symp, SympSurj}) \) is a category.
Definition

Let M be a symplectic manifold of dimension $2n$. We define a **Hamiltonian** to be a smooth function, H, with

$$H: M \rightarrow \mathbb{R}.$$
In physics, the Hamiltonian corresponds to the total energy of the system.
1. In physics, the Hamiltonian corresponds to the total energy of the system.

2. Often, the Hamiltonian is the sum of the kinetic energies of the all the particles, K, plus the potential energies of all the particles, V in the system. $H = K + V$.
We are now ready to state the main result, which will allow us to study Hamiltonian mechanics using category theory.
Theorem

There is a category HamSy where

- objects are symplectic manifolds
- a morphism from M to M' is an isomorphism class of spans $M \rightarrow S \rightarrow M'$ where the legs are surjective Poisson maps, together with a map $H : S \rightarrow \mathbb{R}$ called the Hamiltonian.
- we compose morphisms as follows:
Theorem

There is a category HamSy where

- objects are symplectic manifolds

we compose morphisms as follows:
Theorem

There is a category HamSy where
- objects are symplectic manifolds
- a morphism from M to M' is an isomorphism class of spans

\[\begin{array}{c} S \\ \downarrow \\\ M \end{array} \quad \begin{array}{c} S \\ \downarrow \\\ M' \end{array} \]

where the legs are surjective Poisson maps, together with a map $H: S \to \mathbb{R}$ called the Hamiltonian.
Theorem

There is a category HamSy where

- objects are symplectic manifolds
- a morphism from M to M' is an isomorphism class of spans

where the legs are surjective Poisson maps, together with a map $H: S \rightarrow \mathbb{R}$ called the Hamiltonian.

- we compose morphisms as follows:
Theorem (Continued)

We have the following morphisms

\[H \circ \pi_S : S \times_{M'} S' \to R \]

and

\[H' \circ \pi_{S'} : S \times_{M'} S' \to R. \]

So we define the Hamiltonian on the pullback as

\[H'' = H \circ \pi_S + H' \circ \pi_{S'} \]
Theorem (Continued)

We have the following morphisms
\[H \circ \pi_S : S \times_{M'} S' \rightarrow \mathbb{R} \]
and
\[H' \circ \pi_{S'} : S \times_{M'} S' \rightarrow \mathbb{R}. \]
So we define the Hamiltonian on the pullback as
\[H'' = H \circ \pi_S + H' \circ \pi_{S'}. \]
We have the following morphisms
\(H \circ \pi_S : S \times_{M'} S' \to \mathbb{R} \)
and
\(H' \circ \pi_{S'} : S \times_{M'} S' \to \mathbb{R} \).
So we define the Hamiltonian on the pullback as
\[
H'' = H \circ \pi_S + H' \circ \pi_{S'}.
\]
Theorem (Continued)

We have the following morphisms

\[H \circ \pi_S: S \times_{M'} S' \to \mathbb{R} \]

and

\[H' \circ \pi_{S'}: S \times_{M'} S' \to \mathbb{R}. \]

So we define the Hamiltonian on the pullback as

\[H'' = H \circ \pi_S + H' \circ \pi_{S'}. \]
Proof of Main Theorem

We use the theory of decorated cospans, developed in Fong’s thesis:

We adapt it to spans by working with the opposite categories.
References

References

