A Compositional and Statistical Approach to Natural Language

Tai-Danae Bradley CUNY and Tunnel

1

Goal: Understand meaning of words, phrases, sentences, and concepts in natural language.

You shall know a word by the company it keeps.

– John Firth

(the Yoneda lemma for linguistics)

Language is compositional and statistical.

Compositional:

red + firetruck

Statistical:

frequency count (red vs. blue firetruck)

Red contributes to the meaning of *firetruck*.

4

An inside-out approach: Define a **monoidal functor** from a grammar category (pregroups) to a meaning category (vector spaces).

An outside-in approach:

Let **statistics** serve as a proxy for grammar.

That is, learn "what goes with what" in the language given some samples of that language.

r grammar. e language

Goal (rephrased): Infer a probability distribution on a set of text data.

View language as a quantum-many body problem.

I. classical to quantum probability II. a tensor network language model

Let π be a probability distribution on a finite set *S*.

 $\pi:S o [0,1] \ \sum_s \pi(s) = 1$

Let π be a probability distribution on a finite set S.

$$\pi:S o [0,1] \ \sum_s \pi(s) = 1$$

Pass from *S* to the free vector space \mathbb{C}^S by $s \mapsto |s\rangle$.

$$egin{aligned} egin{aligned} & egin{aligned} 0 \ dots \ 1 \ dots \ dots \ dots \ dots ect \ dots \$$

The quantum version of a probability distribution is a **density operator** ρ , which is a self-adjoint, positive semidefinite operator with trace one. A density operator is also called a quantum state.

Every density ho on \mathbb{C}^S defines a probability distribution $\pi_ ho$ on S by

$\pi_ ho(s):=\langle s| ho|s angle$

Every density ρ on \mathbb{C}^S defines a probability distribution π_{ρ} on S by $\pi_
ho(s) := \langle s |
ho | s
angle$

Given a distribution π on S, there is more than one way to define a density so that $\pi_{\rho} = \pi$.

Here are two.

1. A diagonal operator

Note:
$$\pi(s) = \langle s |
ho_{ ext{diag}} | s
angle = \pi_{
ho_{ ext{diag}}}(s)$$

2. Projection onto a single unit vector $|\psi angle$

 $ho = |\psi
angle \langle \psi|$

where

$$|\psi
angle = \sum_{s\in S} \sqrt{\pi(s)} |s
angle$$

Again:
$$\pi(s) = \langle s |
ho | s
angle = \pi_
ho(s).$$

We **always** use the density $ho = |\psi\rangle\langle\psi|$ where

$$|\psi
angle = \sum_{s\in S} \sqrt{\pi(s)} |s
angle$$

Why bother?

Consider a **joint** distribution $\pi: X \times Y \to [0, 1]$. We have **marginal** distributions on X and Y by "integrating out."

- The quantum version of π is a density operator on $\mathbb{C}^X \otimes \mathbb{C}^Y$.
- The quantum version of marginalizing is the **partial trace**.

The partial trace gives rise to **reduced density operators**, which are the quantum analogues of marginal distributions.

Reduced densities contain the marginal distributions and more.

$$ho_X = egin{bmatrix} \pi_X(x_1) & * & \cdots & * \ * & \pi_X(x_2) & \cdots & * \ dots & dots & \ddots & dots \ * & & & \ddots & dots \ * & & & & \ddots & \pi_X(z) \end{pmatrix}$$

The *ij*th entry is proportional to the number of **shared continuations** in *Y* between x_i and x_j .

$$(x_i,y)$$
 (x_j,y)

This "extra information" captures subsystem interactions.

It is *lost* by classical marginalization!

It is encoded in the **spectral information** of the reduced densities.

The "extra information" contained in reduced densities is encoded in their spectral decompositions and is akin to conditional probability:

What can we do with this?

An unsupervised machine learning problem:

Infer a probability distribution π on a set S of text data given samples.

this? ng problem: set *S* of

Here's the main idea:

Let S be a set of sequences of length N from a finite alphabet A.

$$s = (a_1, a_2, \dots, a_N)$$

Let $T \subset S$ be a set of sequences with empirical probability distribution $\hat{\pi}: T \to [0, 1]$.

Consider the state $|\psi\rangle = \sum_{s \in T} \sqrt{\hat{\pi}(s)} |s\rangle$ in $\mathbb{C}^A \otimes \cdots \otimes \mathbb{C}^A$.

Apply a physics-inspired deterministic algorithm¹ to produce a low rank tensor factorization of $|\psi\rangle$ called a **matrix product state**.

¹The density matrix renormalization group (DMRG) procedure.

Each tensor is comprised of eigenvectors of reduced densities from $\rho = |\psi\rangle\langle\psi|$. As a result, **the model knows which "words" go** together to form meaningful "expressions" based on the statistics of the data.

Modeling Sequences with Quantum States: A Look Under the Hood

arXiv:1910.07425

with Miles Stoudenmire (Flatiron Institute) John Terilla (CUNY and Tunnel)