Metrics on Functor Categories & Reeb Graph Operations

Vin de Silva
Pomona College

AMS Sectional Meeting, UC Riverside
9–10 November 2019
Edelsbrunner, Letscher, Zomorodian 2000

Persistent homology takes a filtered space $\mathbb{X} = \{X_t \mid t \in \mathbb{R}\}$ and returns a barcode of intervals $[p, q) \subset \mathbb{R}$ or a persistence diagram of points $(p, q) \in \mathbb{R}^2$.

Vin de Silva Pomona College
Metrics on Functor Categories & Reeb Graph Operations
Persistence diagrams

- Discretize the t-variable to integers: $t = 0, 1, 2, \ldots$
- Present X as an increasing sequence:
 \[X : X_0 \subset X_1 \subset X_2 \subset \ldots \]
- Apply a homology functor $H = H(-; k)$ to obtain a persistence module:
 \[H(X) : H(X_0) \to H(X_1) \to H(X_2) \to \ldots \]
- Observe that $H(X)$ is a graded module over the polynomial ring $k[z]$, where z acts by shifting to the right.
- Decompose this graded module as a direct sum of cyclic submodules.
- Summands $z^s k[z]/(z^{t-s})$ are recorded as intervals $[s, t)$.
- Summands $z^s k[z]$ are recorded as intervals $[s, +\infty)$.
The map \{\text{persistence modules}\} \rightarrow \{\text{diagrams}\} is 1-Lipschitz.
Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

The map \{persistence modules\} → \{diagrams\} is 1-Lipschitz.

Relators

The metrics on the two spaces are defined in terms of ‘relators’.

- Two persistence modules may be related by an **interleaving**.
- Two diagrams may be related by a **matching**.

Every relator, of each type, has a size associated with it. The metrics are defined by finding the infimum of the size of relators between a given pair of objects. (Compare the geodesic distance in a Riemannian manifold.)

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

If two persistence modules admit an \(\epsilon\)-interleaving, then their persistence diagrams admit an \(\epsilon\)-matching.
Interleaving of Persistence Modules

Definition

Let V, W be persistence modules. An ϵ-interleaving between V, W is a pair (Φ, Ψ) where $\Phi = (\phi_t)$ and $\Psi = (\psi_t)$ are collections of maps

$$\phi_t : V_t \rightarrow W_{t+\epsilon} \quad \psi_t : W_t \rightarrow V_{t+\epsilon}$$

such that [various conditions].

The [various conditions] require the diagrams

![Diagram](diagram.png)

to commute for all $s < t$.
Definition

Let V, W be persistence modules. An ϵ-interleaving between V, W is a pair (Φ, Ψ) where $\Phi = (\phi_t)$ and $\Psi = (\psi_t)$ are collections of maps

$$\phi_t : V_t \to W_{t+\epsilon} \quad \psi_t : W_t \to V_{t+\epsilon}$$

such that [various conditions].

Interleavor categories (Chazal, dS, Glisse, Oudot 2016)

An ϵ-interleaved pair of modules (V, W, Φ, Ψ) is ‘the same thing’ as a persistence module defined over the set $I = \mathbb{R} \times \{0, \epsilon\}$ (two copies of the real line) with the partial order

$$(s, a) \leq (t, b) \iff \begin{cases} s \leq t & \text{if } a = b \\ s + \epsilon \leq t & \text{if } a \neq b \end{cases}$$

$\mathbb{R} \times \{0, \epsilon\}$:
Two classical persistence modules \(V, W \) are \(\epsilon \)-interleaved iff the following functor extension problem has a solution:

\[
\begin{array}{ccc}
\text{Vect} & \xrightarrow{V} & R \\
R & \xrightarrow{\cdot} & R \times \{0, \epsilon\}
\end{array}
\]

Here \(R \times \{0, \epsilon\} \) has the partial order:

\[
(s, a) \leq (t, b) \iff \begin{cases}
 s \leq t & \text{if } a = b \\
 s + \epsilon \leq t & \text{if } a \neq b
\end{cases}
\]

Interleaving of Persistence Modules
Two persistence modules $\mathbb{V}, \mathbb{W} : P \to C$ are Ω-interleaved iff the following functor extension problem has a solution:

Here $P \cup_\Omega P$ has the partial order

$$(s, a) \leq (t, b) \iff \begin{cases} s \leq t & \text{if } a = b \\ \Omega s \leq t & \text{if } a \neq b \end{cases}$$

where $\Omega : P \to P$ is a translation.
Interleaving Metrics on Functor Categories

Translations (Bubenik, dS, Scott 2015)

\(\text{Trans}_P \) is the poset of functions \(\Omega : P \to P \) that are order-preserving and satisfy \(x \leq \Omega x \) for all \(x \in P \).

Superlinear Families

A **superlinear family** is a 1-parameter family of translations of \(P \)

\[(\Omega_\epsilon \mid \epsilon \in [0, \infty)) \]

such that

\[\Omega_{\epsilon_1} \Omega_{\epsilon_2} \leq \Omega_{\epsilon_1 + \epsilon_2} \]

for all \(\epsilon_1, \epsilon_2 \in [0, \infty) \).

Sublinear Projections

A **sublinear projection** is a map \(\pi : \text{Trans}_P \to [0, \infty] \) such that

\[\pi(\Omega_1 \Omega_2) \leq \pi(\Omega_1) + \pi(\Omega_2) \]

for all \(\Omega_1, \Omega_2 \in \text{Trans}_P \).
Superlinear Families

A superlinear family is a 1-parameter family of translations of P

$$(\Omega_\epsilon \mid \epsilon \in [0, \infty))$$

such that

$$\Omega_{\epsilon_1} \Omega_{\epsilon_2} \leq \Omega_{\epsilon_1 + \epsilon_2}$$

for all $\epsilon_1, \epsilon_2 \in [0, \infty)$.

Examples of superlinear families

- $P = \mathbb{R}$,
 $$\Omega_\epsilon(t) = t + \epsilon.$$

- $P = \{\text{compact intervals in the real line}\}$,
 $$\Omega_\epsilon([a, b]) = [a - \epsilon, b + \epsilon].$$

- $P = \{\text{closed subsets of a metric space } X\}$,
 $$\Omega_\epsilon(V) = V^\epsilon = \{x \in X \text{ such that } d(x, V) \leq \epsilon\}.$$
Superlinear Families

A **superlinear family** is a 1-parameter family of translations of \mathbf{P}

$$\{\Omega_\epsilon \mid \epsilon \in [0, \infty)\}$$

such that

$$\Omega_{\epsilon_1} \Omega_{\epsilon_2} \leq \Omega_{\epsilon_1 + \epsilon_2}$$

for all $\epsilon_1, \epsilon_2 \in [0, \infty)$.

Interleaving distance (Bubenik, dS, Scott 2015)

Given a superlinear family $\{\Omega_\epsilon\}$ of translations of \mathbf{P}, we define the interleaving distance

$$d_i(\mathbf{V}, \mathbf{W}) = \inf (\epsilon \mid \mathbf{V}, \mathbf{W} \text{ are } \Omega_\epsilon\text{-interleaved})$$

between generalized persistence modules $\mathbf{V}, \mathbf{W} : \mathbf{P} \to \mathbf{C}$.
A **sublinear projection** is a map \(\pi : \text{Trans}_P \rightarrow [0, \infty] \) such that

\[
\pi(\Omega_1 \Omega_2) \leq \pi(\Omega_1) + \pi(\Omega_2)
\]

for all \(\Omega_1, \Omega_2 \in \text{Trans}_P \).

Interleaving distance (Bubenik, dS, Scott 2015)

Given a sublinear projection family \(\pi : \text{Trans}_P \rightarrow [0, \infty] \), we define the interleaving distance

\[
d_i(\mathbb{V}, \mathbb{W}) = \inf (\pi(\Omega) \mid \mathbb{V}, \mathbb{W} \text{ are } \Omega\text{-interleaved})
\]

between generalized persistence modules \(\mathbb{V}, \mathbb{W} : P \rightarrow C \).
Functoriality

Suppose $\mathcal{V}, \mathcal{W} : \mathbf{P} \to \mathbf{C}$ and $H : \mathbf{C} \to \mathbf{D}$ are functors. Then

$$d_i(H\mathcal{V}, H\mathcal{W}) \leq d_i(\mathcal{V}, \mathcal{W})$$

for any superlinear family or sublinear projection.

Proof.

An Ω-interleaving of \mathcal{V}, \mathcal{W} gives an Ω-interleaving of $H\mathcal{V}, H\mathcal{W}$:
Two persistence modules $\mathbb{V}, \mathbb{W} : P \rightarrow C$ are Ω-interleaved iff the following functor extension problem has a solution:

Here $P \cup_\Omega P$ has the partial order

$$(s, a) \leq (t, b) \iff \begin{cases} s \leq t & \text{if } a = b \\ \Omega s \leq t & \text{if } a \neq b \end{cases}$$

where $\Omega : P \rightarrow P$ is a translation.
Interleavings for generalized persistence modules over an arbitrary category

Two persistence modules $V, W : D \to C$ are Δ-interleaved iff the following functor extension problem has a solution:

Here Δ is a cospan. The two functors l_1, l_2 are full-and-faithful. Every object of Δ is of the form $l_1(d)$ or $l_2(d)$.

Bubenik, dS, Scott

Example: dynamical system interleavings

Let D be the category defined by the directed graph

\[\bullet \rightarrow \bullet \]

Thus D has one object and morphisms $\{0, 1, 2, 3, \ldots \}$.

- Functors $D \rightarrow \text{Top}$ are **discrete dynamical systems**.

Let Δ_n be the category with two objects \bullet_1 and \bullet_2 and morphisms

\[
\begin{align*}
\text{Mor}(\bullet_1, \bullet_1) &= \text{Mor}(\bullet_1, \bullet_1) = \{0, 1, 2, 3, \ldots \} \\
\text{Mor}(\bullet_1, \bullet_2) &= \text{Mor}(\bullet_2, \bullet_1) = \{n, n + 1, n + 2, n + 3, \ldots \}
\end{align*}
\]

with addition as composition.

- Δ_n-interleavings are **shift-equivalences**.
Interleaving Metrics on Functor Categories

Categories with a flow (dS, Munch, Stefanou 2018)

Interleaving distance defined on categories with a coherent \([0, \infty)\)-action.

Examples

- Functor categories \(C^P\), equipped with a superlinear family \((\Omega_\epsilon)\) on \(P\).
- Poset \(S\) of subsets of a metric space \(X\); ‘thickening’ action on \(S\):

 \[A \mapsto A^\epsilon = \{ x \in X \mid d(x, A) \leq \epsilon \} \]

Interleaving distance = Hausdorff distance.
Reeb graphs

- An R-space \((X, f)\) is a topological space \(X\) with a map \(f : X \to \mathbb{R}\).
- An R-space is a Reeb graph if each \(f^{-1}(t)\) is finite.

Reeb functor

- The Reeb functor converts a (constructible) R-space into a Reeb graph:

\[
(X, f) \mapsto ((X/\sim), \bar{f})
\]

where \(x \sim y\) iff \(x, y\) are in the same component of the same levelset of \(f\).
Reeb Graphs & Reeb Cosheaves

\(\mathbb{E}_0 \times [a_0, a_1] \quad \mathbb{E}_1 \times [a_1, a_2] \quad \mathbb{E}_2 \times [a_2, a_3] \quad \mathbb{E}_3 \times [a_3, a_4] \quad \mathbb{E}_4 \times [a_4, a_5] \)

\(V_0 \quad V_1 \quad V_2 \quad V_3 \quad V_4 \quad V_5 \)
Reeb Graphs & Reeb Cosheaves

\[E_0 \times [a_0, a_1] \quad E_1 \times [a_1, a_2] \quad E_2 \times [a_2, a_3] \quad E_3 \times [a_3, a_4] \quad E_4 \times [a_4, a_5] \]

\[V_0 \quad V_1 \quad V_2 \quad V_3 \quad V_4 \quad V_5 \]
Reeb cosheaves (dS, Munch, Patel 2016)

- Let Int denote the poset of open intervals, \subseteq.
- A Reeb graph gives rise to a functor $F = \pi_0 f^{-1} : \text{Int} \to \text{Set}$ that is constructible and satisfies the cosheaf condition for unions of intervals.

$$F(I = \bigcup I_{\alpha}) = \text{colim} \left[\bigsqcup_{\alpha, \beta} F(I_{\alpha} \cap I_{\beta}) \Rightarrow \bigsqcup_{\alpha} F(I_{\alpha}) \right]$$
Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

- Let Int denote the poset of open intervals, \subseteq.
- A Reeb graph is the same thing as a functor $F = \pi_0 f^{-1} : \text{Int} \to \text{Set}$ that is constructible and satisfies the cosheaf condition for unions of intervals.

$$F(I = \bigcup I_\alpha) = \text{colim} \left[\coprod_{\alpha, \beta} F(I_\alpha \cap I_\beta) \Rightarrow \coprod_\alpha F(I_\alpha) \right]$$
Reeb graphs & Reeb cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

- Let Int denote the poset of open intervals, \subseteq.
- A Reeb graph is the same thing as a functor $F = \pi_0 f^{-1} : \text{Int} \to \text{Set}$ that is constructible and satisfies the cosheaf condition for unions of intervals.
Reeb functor (two versions)

1. The **Reeb functor** converts a (constructible) \mathbb{R}-space into a Reeb graph:

$$(X, f) \mapsto ((X/\sim), \bar{f})$$

where $x \sim y$ iff x, y are in the same component of the same levelset of f.

Or

2. The **Reeb functor** converts a constructible \mathbb{R}-space into a Reeb cosheaf:

$$F(I) = \pi_0 f^{-1}(I)$$

$$G[I \subseteq J] = \pi_0 \left[f^{-1}(I) \subseteq f^{-1}(J) \right]$$
Reeb Graphs & Reeb Cosheaves

Translation operators on \textbf{Int}

We define a 1-parameter semigroup \((\Omega_\epsilon)\) of functors \(\text{Int} \to \text{Int}\) by setting

\[
\Omega_\epsilon(I) = I^\epsilon = \text{“}\epsilon\text{-neighbourhood of } I\text{”}
\]

Reeb interleaving distance (dS, Munch, Patel 2016)

An \(\epsilon\text{-interleaving}\) between \(F, G\) is given by two families of maps

\[
\phi_I : F(I) \to G(I^\epsilon), \quad \psi_I : G(I) \to F(I^\epsilon)
\]

which are natural with respect to inclusions \(I \subseteq J\), and such that for all \(I\)

\[
\psi_{I^\epsilon} \circ \phi_I = F[I \subseteq I^{2\epsilon}], \quad \phi_{I^\epsilon} \circ \psi_I = G[I \subseteq I^{2\epsilon}].
\]
Translation operators on \textbf{Int}

We define a 1-parameter semigroup \((\Omega_\epsilon)\) of functors \(\textbf{Int} \rightarrow \textbf{Int}\) by setting

\[\Omega_\epsilon(I) = I^\epsilon = \text{"\(\epsilon\)-neighbourhood of } I \text{"} \]

Reeb interleaving distance (dS, Munch, Patel 2016)

An \(\epsilon\)-interleaving between \(F, G\) is given by two families of maps

\[\phi_I : F(I) \rightarrow G(I^\epsilon), \quad \psi_I : G(I) \rightarrow F(I^\epsilon) \]

which are natural with respect to inclusions \(I \subseteq J\), and such that for all \(I\)

\[\psi_I \epsilon \circ \phi_I = F[I \subseteq I^{2\epsilon}], \quad \phi_I \epsilon \circ \psi_I = G[I \subseteq I^{2\epsilon}] \]

Stability Theorem

If \(f, g : X \rightarrow \mathbb{R}\) with \(\|f - g\|_\infty \leq \epsilon\) then \(d_i(F, G) \leq \epsilon\).

Universal ReebMetric (Bauer, Landi, Mémoli 2018)

The \textit{universal metric} \(d_u(F, G)\) is the largest that satisfies the stability theorem.
Translation operators on \mathbf{Int}

We define a 1-parameter semigroup (Ω_ϵ) of functors $\mathbf{Int} \to \mathbf{Int}$ by setting

$$\Omega_\epsilon(I) = I^\epsilon = \text{“}\epsilon\text{-neighbourhood of } I\text{”}$$
Translation operators on \mathbf{Int}

We define a 1-parameter semigroup (Ω_ϵ) of functors $\mathbf{Int} \to \mathbf{Int}$ by setting

$$\Omega_\epsilon(I) = I^\epsilon = "\epsilon\text{-neighbourhood of } I"$$

Cosheaf Smoothing Theorem

If $F : \mathbf{Int} \to \mathbf{Set}$ is a (constructible) cosheaf, then so is $F\Omega_\epsilon : \mathbf{Int} \to \mathbf{Set}$.
Translation operators on \textbf{Int}

We define a 1-parameter semigroup \((\Omega_\epsilon)\) of functors \textbf{Int} \to \textbf{Int} by setting

\[
\Omega_\epsilon(I) = I^\epsilon = \text{“}\epsilon\text{-neighbourhood of } I\text{“}
\]

Cosheaf Smoothing Theorem

If \(F : \textbf{Int} \to \textbf{Set}\) is a (constructible) cosheaf, then so is \(F\Omega_\epsilon : \textbf{Int} \to \textbf{Set}\).

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.
Translation operators on **Int**

We define a 1-parameter semigroup \((\Omega_\epsilon) \) of functors \(\text{Int} \to \text{Int} \) by setting

\[
\Omega_\epsilon(I) = I^\epsilon = "\epsilon\text{-neighbourhood of } I"
\]

Cosheaf Smoothing Theorem

If \(F : \text{Int} \to \text{Set} \) is a (constructible) cosheaf, then so is \(F\Omega_\epsilon : \text{Int} \to \text{Set} \).

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.
Translation operators on \textbf{Int}

We define a 1-parameter semigroup \((\Omega_\epsilon)\) of functors \(\textbf{Int} \to \textbf{Int}\) by setting

\[
\Omega_\epsilon(I) = I^\epsilon = \text{“}\epsilon\text{-neighbourhood of } I\text{”}
\]

Cosheaf Smoothing Theorem

If \(F : \textbf{Int} \to \textbf{Set}\) is a (constructible) cosheaf, then so is \(F\Omega_\epsilon : \textbf{Int} \to \textbf{Set}\).

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.
Reeb space operations

Reeb graphs

- An **R-space** (X, f) is a topological space X with a map $f : X \to \mathbb{R}$.
- An **R-space** is a **Reeb graph** if X is a graph and each $f^{-1}(t)$ is finite.

Reeb functor

- The **Reeb functor** converts a (constructible) **R-space** into a Reeb graph:

$$ (X, f) \mapsto ((X/\sim), \bar{f}) $$

where $x \sim y$ iff x, y are in the same component of the same levelset of f.
Reeb spaces

- A **B-space** \((X, f)\) is a topological space \(X\) with a map \(f : X \to B\).
- A **B-space** is a **Reeb B-space** if each \(f^{-1}(t)\) is finite.

Reeb functor

- The **Reeb functor** converts a (constructible) **B-space** into a Reeb **B-space**:

 \[(X, f) \mapsto ((X/\sim), \overline{f})\]

 where \(x \sim y\) iff \(x, y\) are in the same component of the same **fiber** of \(f\).
Example: Universal Cover

Let B be a (locally well-behaved) topological space. Then

$$\text{Path}(B, b_0) = \{ \text{paths } \gamma : [0, 1] \to B \text{ with } \gamma(0) = b_0 \}$$

is a B-space with respect to the evaluation map

$$e : \text{Path}(B, b_0) \to B; \gamma \mapsto \gamma(1).$$

Then

$$\text{Univ}(B) = \text{Reeb} \left[\text{Path}(B, b_0), e \right]$$

is the universal cover of B.
Let $X = (X, f)$ and $Y = (Y, g)$ be Reeb graphs.

- A **relator** for X, Y is an $(\mathbb{R} \times \mathbb{R})$-space
 $$W \xrightarrow{F} \mathbb{R} \times \mathbb{R}$$
 such that
 $$\text{Reeb}[W, p_1 \circ F] \cong (X, f),$$
 $$\text{Reeb}[W, p_2 \circ F] \cong (Y, g).$$

- The **deviation** of a relator
 $$\text{dev}(W) = \sup_{w \in W} |p_1(F(w)) - p_2(F(w))|$$
 measures how far $F(W)$ deviates from the diagonal.

- The **universal distance** between X, Y is defined
 $$d_u(X, Y) = \inf \{ \text{dev}(W) \mid W \text{ is a relator for } X, Y \}$$
Let B be a topological semigroup with operation \circ.

Reeb B-space convolutions

The π_0-convolution of Reeb spaces

$$X \xrightarrow{f} B, \quad Y \xrightarrow{g} B$$

is defined to be

$$(X, f) \ast (Y, g) = \text{Reeb} \left[X \times Y, f \circ g \right]$$

Reeb graph convolutions

$$(X, f) \ast (Y, g) = \text{Reeb} \left[X \times Y, f + g \right]$$
Reeb space operations

Reeb graph convolutions

$$(X, f) \ast (Y, g) = \text{Reeb} \left[X \times Y, f + g \right]$$

Examples

- The σ-smoothing of a Reeb graph $X = (X, f)$ is given by the formula
 $$X^\sigma = X \ast [-\sigma, \sigma].$$

- The intervals $[-\sigma, \sigma]$, for $\sigma \geq 0$, form a semigroup under \ast.

- More generally, the convolution of intervals is their Minkowski sum:
 $$[m_1 - \sigma_1, m_1 + \sigma_1] \ast [m_2 - \sigma_2, m_2 + \sigma_2] = [m - \sigma, m + \sigma]$$
 where $m = m_1 + m_2$ and $\sigma = \sigma_1 + \sigma_2$.

- The **merge-tree** and **split-tree** of X are given by the formulas
 $$\text{Merge}(X) = X \ast [0, +\infty), \quad \text{Split}(X) = X \ast (-\infty, 0].$$

- Thus $X \ast [-R, R]$, when $R \gg 0$, combines the merge and split trees of X.
Let X, Y be Reeb graphs. Then

$$d_i(X^\sigma, Y^\sigma) \leq d_i(X, Y), \quad d_u(X^\sigma, Y^\sigma) \leq d_u(X, Y)$$

and

$$d_i(X, X^\sigma) \leq d_u(X, X^\sigma) \leq \sigma$$

for all $\sigma \geq 0$.

Analogy: Gaussian kernel smoothing

Is there a theory of π_0 signal processing?
Metric properties of Reeb graph smoothing

Let X, Y be Reeb graphs. Then

$$d_i(X^\sigma, Y^\sigma) \leq d_i(X, Y), \quad d_u(X^\sigma, Y^\sigma) \leq d_u(X, Y)$$

and

$$d_i(X, X^\sigma) \leq d_u(X, X^\sigma) \leq \sigma$$

for all $\sigma \geq 0$.

Analogy: Gaussian kernel smoothing

Is there a theory of π_0 signal processing?
Acknowledgements

Collaborators

Peter Bubenik, Fred Chazal, Marc Glisse, Steve Oudot, Elizabeth Munch, Amit Patel, Jonathan Scott, Dmitriy Smirnov, Anastasios Stefanou, Song Yu
Bauer, U., Landi, C., and Mémoli, F.
The Reeb graph edit distance is universal.

Bubenik, P., de Silva, V., and Scott, J.
Metrics for generalized persistence modules.

Chazal, F., de Silva, V., Glisse, M., and Oudot, S.
The Structure and Stability of Persistence Modules.

Cohen-Steiner, D., Edelsbrunner, H., and Harer, J.
Stability of persistence diagrams.
Discrete & Computational Geometry 37, 1 (2007), 103–120.

de Silva, V., Munch, E., and Patel, A.
Categorified Reeb graphs.

de Silva, V., Munch, E., and Stefanou, A.
Theory of interleavings on categories with a flow.
Edelsbrunner, H., Letscher, D., and Zomorodian, A.

Topological persistence and simplification.

Zomorodian, A., and Carlsson, G.

Computing persistent homology.
Discrete and Computational Geometry 33, 2 (2005), 249–274.