Optimal transport on graphs and other structured data

Evan Patterson
Stanford University, Statistics Department

Special Session on Applied Category
AMS Fall Western Sectional Meeting, November 9-10, 2019
Graph matching

Is there a correspondence between two graphs?

- Formalized in different ways:
 - Graph homomorphism
 - Graph isomorphism
 - Maximum common subgraph
 - Graph edit distance
 - ...

- Exact formulations are mostly NP-hard
- Exact and inexact matching heavily studied by computer scientists

Conte et al 2004; Emmert-Streib et al 2016; more...
Relaxation of graph matching

- Hardness due to combinatorics of matching
- Can we relax the matching problem into an easier one?
- A common method for relaxing matching problems is optimal transport
- Numerous efforts to match graphs using optimal transport

Aflalo et al 2015; Alvarez-Melis et al 2017; Vayer et al 2018
Optimal transport

Monge problem (1781): Given measures $\mu \in \text{Prob}(X)$ and $\nu \in \text{Prob}(Y)$ and cost function $c : X \times Y \to \mathbb{R}$,

$$\minimize_{T : X \to Y : T \mu = \nu} \int_X c(x, T(x)) \mu(dx)$$

Image: Villani 2003
Optimal transport

Monge problem is combinatorial and nonconvex.

Kantorovich's relaxation (1942): Replace deterministic map with probabilistic coupling:

\[
\min_{\pi \in \text{Coup}(X,Y)} \int_{X \times Y} c(x, y) \pi(dx, dy)
\]

where

\[
\text{Coup}(X, Y) := \{ \pi \in \text{Prob}(X \times Y) : \text{proj}_X \pi = \mu, \text{proj}_Y \pi = \nu \}.
\]

New problem is convex, in fact a linear program.

Villani 2003; Villani 2009; more...
Wasserstein metric in graph matching

When cost is a metric \(d : X \times X \rightarrow \mathbb{R} \), we get the Wasserstein metric on \(\text{Prob}(X) \):

\[
W_p(\mu, \nu) := \inf_{\pi \in \text{Coup}(\mu, \nu)} \left(\int_{X \times X} d(x, x')^p \, \pi(dx, dx') \right)^{1/p}, \quad 1 \leq p < \infty.
\]

Applied to graph matching in two ways:

1. Featurize vertices of both graphs in common metric space, then compute Wasserstein distance.
2. Convert graphs into distinct metric spaces on vertices (via shortest path metric), then compute Gromov-Wasserstein distance.

Problem: Discards significant information about edges.
Wasserstein metric on graphs?

Goal: Construct a Wasserstein-style metric on graphs that respects both vertices and edges, in a sense to be defined.

So, this informal diagram should not commute!

In fact, no reason to restrict to graphs; generalizing to C-sets even points the way towards a solution.
Graphs and other C-sets

Recall: For \(C \) a small category, a \(C \)-set is a functor \(X : C \to \text{Set} \). The category of \(C \)-sets is the functor category \([C, \text{Set}]\).

Example: When \(C = \left\{ E \xrightarrow{\text{src}} V \right\} \), a \(C \)-set is a (directed) graph.

Example: When \(C = \left\{ \text{inv} \xleftarrow{\text{src}} E \xrightarrow{\text{tgt}} V \right\} \), a \(C \)-set is a symmetric graph.

Nearly the same as an undirected graph.
Graphs and other C-sets

Other examples

- Reflexive and symmetric reflexive graphs
- Bipartite graphs
- Hypergraphs
- Higher-dimensional (semi-)simplicial sets

Reyes et al 2004; Spivak 2009; more...

For applications: Attributes can be modeled in C, to get vertex-attributed graphs, edge-attributed graphs, and so on.
Functorial semantics of C-sets

A C-set in a category S is a functor $X : C \to S$.

For us, useful categories S include:

- **Set**, the category of sets and functions
- **Meas**, the category of measurable spaces and measurable functions
- **Meas$_*$**, the category of measure spaces and measurable functions
- **Met**, the category of metric spaces and functions
- **MM**, the category of metric measure spaces (mm spaces) and measurable functions
- **Markov**, the category of measurable spaces and Markov kernels

Leads to C-sets, measurable C-spaces, measure C-spaces, metric C-spaces, and so on.
Project overview

Explore relaxations of the notion of homomorphism (natural transformation):

- **\mathcal{C}-set morphisms** ($\mathcal{S} = \textbf{Set}$ or \textbf{Meas})
- **Markov \mathcal{C}-set morphisms** ($\mathcal{S} = \textbf{Markov}$)
- **Hausdorff metric on \mathcal{C}-sets** ($\mathcal{S} = \textbf{Met}$ or \textbf{MM})
- **Wasserstein metric on \mathcal{C}-sets** ($\mathcal{S} = \textbf{MMarkov}$)

In this talk, I give a sketch. A systematic development is in the paper.
The category of Markov kernels

A Markov kernel \(M : X \rightarrow Y \) is a measurable assignment of each point \(x \in X \) to a probability measure \(M(x) \in \text{Prob}(Y) \).

Other names for Markov kernels:

- Probability kernels
- Stochastic kernels
- Stochastic relations

There is a category Markov of measurable spaces and Markov kernels.

Čencov 1982; Panangaden 1998; Fritz 2019; more...
Markov kernels and couplings

Let $\mu \in \text{Prob}(X)$ and $\nu \in \text{Prob}(Y)$.

For any coupling $\pi \in \text{Coup}(\mu, \nu)$, the disintegration (conditional probability distribution) $M : X \to Y$ satisfies

$$\mu \cdot M = \nu.$$

Conversely, for any Markov kernel $M : X \to Y$ with $\mu \cdot M = \nu$, there is a product

$$\mu \otimes M \in \text{Coup}(\mu, \nu).$$
Markov kernels and optimal transport

In fact, this correspondence is functorial.

Proposition (folklore?): Under regularity conditions, there is an isomorphism between

- the category of probability spaces and couplings, with composition defined by the gluing lemma, and
- the category of probability spaces and measure-preserving Markov kernels (defined up to almost-everywhere equality).

Interpretation: Markov kernels allow a "directed" version of optimal transport.
Markov morphisms of C-sets

Meas embeds in **Markov** as the deterministic Markov kernels:

\[\mathcal{M} : \text{Meas} \hookrightarrow \text{Markov}. \]

Induces a relaxation functor by post-composition:

\[\mathcal{M}_* : [C, \text{Meas}] \to [C, \text{Markov}]. \]

Definition. A Markov morphism \(X \to Y \) of measurable \(C \)-spaces \(X \) and \(Y \) is a morphism \(\mathcal{M}_*(X) \to \mathcal{M}_*(Y) \).
Markov morphisms of graphs

So, a Markov morphism $\Phi : X \rightarrow Y$ of graphs X and Y consists of Markov kernels $\Phi_V : X(V) \rightarrow Y(V)$ and $\Phi_E : X(E) \rightarrow Y(E)$ such that

$$
\begin{array}{c}
X(E) \xrightarrow{\text{src}} X(V) \\
\Phi_E \downarrow \quad \Phi_V \downarrow \\
Y(E) \xrightarrow{\text{src}} Y(V)
\end{array}
\quad
\begin{array}{c}
X(E) \xrightarrow{\text{tgt}} X(V) \\
\Phi_E \downarrow \quad \Phi_V \downarrow \\
Y(E) \xrightarrow{\text{tgt}} Y(V)
\end{array}
$$

Important: Graph homomorphism is NP-hard, but Markov graph morphism is a linear feasibility problem.

Examples of Markov morphisms:

- any graph homomorphism
- any probabilistic mixture of graph homomorphisms
Markov morphisms of graphs

But more exotic things can happen because mass can be "split".

Example: \(X \) = self loop, \(Y \) = directed cycle.

No graph homomorphisms \(X \to Y \), but there is a unique Markov morphism \(\Phi : X \to Y \):

\[
\Phi_V(*) \sim \text{Unif}(Y(V)), \quad \Phi_E(*) \sim \text{Unif}(Y(E)).
\]
Metric categories

Now, the metric side of matching \mathcal{C}-sets.

Let \textbf{Met} be the category of Lawvere metric spaces and maps. (Note choice of morphisms.)

Definition. A **metric category** is a category \mathcal{S} enriched in \textbf{Met}, i.e., the hom-sets $\mathcal{S}(X, Y)$ are Lawvere metric spaces.

Definition. A morphism $f : X \to Y$ in \mathcal{S} is **short** if for all morphisms $g, g' : Y \to Z$ and $h, h' : W \to X$,

$$d(fg, fg') \leq d(g, g') \quad \text{and} \quad d(hf, h'f) \leq d(h, h').$$

Short morphisms of \mathcal{S} form a subcategory $\text{Short}(\mathcal{S})$.
Example 1 of metric category: metric spaces

Category \textbf{Met} with supremum metric

$$d_{\infty}(f, g) := \sup_{x \in X} d_Y(f(x), g(x)), \quad f, g \in \textbf{Met}(X, Y).$$

Short morphisms are short maps:

$$d_Y(f(x), f(x')) \leq d_X(x, x'), \quad \forall x, x' \in X.$$

Proposition: For any metric category S, $\text{Short}(S)$ is enriched in $\text{Short}(\textbf{Met})$.

Example 2 of metric category: metric measure spaces

Category \mathbf{MM} of mm spaces and measurable maps, with L^p metric, $1 \leq p < \infty$:

$$d_p(f, g) := \left(\int_X d_Y(f(x), g(x))^p \, \mu_X(dx) \right)^{1/p}, \quad f, g \in \mathbf{MM}(X, Y).$$

Proposition: A map $f : X \to Y$ is short iff

$$\mu_X f := \mu_X \circ f^{-1} \leq \mu_Y,$$

and

$$d_Y(f(x), f(x')) \leq d_X(x, x'), \quad \forall x, x' \in X.$$
Metrics on C-sets in metric categories

Let C be a finitely presented category and S a metric category.

Idea: For $X, Y \in [C, S]$, consider distance from naturality of transformation $\phi : X \to Y$ at $c \in C$:

$$d(Xf \cdot \phi_c', \phi_c \cdot Yf) \quad \text{"=} \quad \begin{array}{c}
X(c) \xrightarrow{Xf} X(c') \\
\phi_c \\Y(c) \xrightarrow{Yf} Y(c')
\end{array}$$
Metrics on C-sets in metric categories

Theorem: For any $1 \leq p \leq \infty$, a Lawvere metric on $[C, S]$ is defined by

$$d(X, Y) := \inf_{\phi: X \to Y} \sum_{f: c \to c'} d(X f \cdot \phi_{c'}, \phi_c \cdot Y f),$$

where

- infimum is over (unnatural) transformations with components in $\text{Short}(S)$
- ℓ^p norm/sum is over a fixed, finite generating set of morphisms in C.

Note: Condition that each $\phi_c \in \text{Short}(S)$ is needed for triangle inequality.
Example 3 of metric category: Markov kernels on mm spaces

Category \textbf{Markov} of mm spaces and Markov kernels, with Wasserstein metric:

$$W_p(M, N) := \inf_{\Pi \in \text{Coup}(M, N)} \left(\int_{X \times Y \times Y} d_Y(y, y')^p \Pi(dy, dy' | x) \mu_X(dx) \right)^{1/p}$$

Generalizes both classical L^p and Wasserstein metrics:
Example 3 of metric category: Markov kernels on mm spaces

Proposition: Under regularity conditions, a Markov kernel $M : X \to Y$ is short iff

$$\mu_X M \leq \mu_Y$$

and there exists $\Pi \in \text{Prod}(X, Y)$ such that

$$\int_{Y \times Y} d_Y(y, y')^p \Pi(dy, dy \mid x, x') \leq d_X(x, x')^p, \quad \forall x, x' \in X.$$

Consequence: Via the theorem, a Wasserstein-style metric on metric measure C-spaces, computable by solving a **linear program**.
Future work

- Beyond C-sets
 - Sums (coproducts) and units (terminal objects) are easy
 - Products are less immediate
- Faster algorithms
 - Needed for practical use on graphs of even moderate size
 - Entropic regularization of both theoretical and algorithmic interest
Thanks!