
PETRI NETS
as a source of mathematical structures

•

•

•

•• → •

••

John Baez
BLAST 2022

2022 August 8

Chemists often use ‘chemical reaction networks’ like this:

2H2 + O2 → 2H2O

C + O2 → CO2

Mathematically we give the molecules more abstract names,
but name the reactions, working with ‘reaction networks’:

2A + B
τ1
−−−→ 2D

C + B
τ2
−−−→ E

The information in a reaction network can also be expressed
using a ‘Petri net’.

This reaction network

2A + B
τ1
−−−→ 2D

C + B
τ2
−−−→ E

corresponds to this Petri net:

A

B

C

D

E

τ1

τ2

•

••

•

•

••

•

•

•

To ‘run’ a Petri net, we start by placing a finite number of
tokens in each place. This is called a marking. Then we can
repeatedly move the tokens using the transitions.

A Petri net has:

a set of places ,
a set of transitions ,
a natural number of edges from each place to each transition,
a natural number of edges from each transition to each place.

•

••

•

•

••

•

•

•

To ‘run’ a Petri net, we start by placing a finite number of
tokens in each place. This is called a marking. Then we can
repeatedly move the tokens using the transitions.

A Petri net has:

a set of places ,
a set of transitions ,
a natural number of edges from each place to each transition,
a natural number of edges from each transition to each place.

•

••

•

•

••

•

•

•

To ‘run’ a Petri net, we start by placing a finite number of
tokens in each place. This is called a marking. Then we can
repeatedly move the tokens using the transitions.

A Petri net has:

a set of places ,
a set of transitions ,
a natural number of edges from each place to each transition,
a natural number of edges from each transition to each place.

•

••

•

•

••

•

•

•

To ‘run’ a Petri net, we start by placing a finite number of
tokens in each place. This is called a marking. Then we can
repeatedly move the tokens using the transitions.

A Petri net has:

a set of places ,
a set of transitions ,
a natural number of edges from each place to each transition,
a natural number of edges from each transition to each place.

•

••

•

•

••

•

•

•

To ‘run’ a Petri net, we start by placing a finite number of
tokens in each place. This is called a marking. Then we can
repeatedly move the tokens using the transitions.

A Petri net has:

a set of places ,
a set of transitions ,
a natural number of edges from each place to each transition,
a natural number of edges from each transition to each place.

Mathematically, a Petri net is a diagram like this:

T N[S]
s

t

S is the set of places,
T is the set of transitions,
N[S] is the set of markings:
formal finite sums of elements of S.

More mathematically, N[S] is the underlying set of the free
commutative monoid on S:

Set CommMona
J

K

N = K ◦ J

Any Petri net gives a symmetric monoidal category where the
objects are markings, the tensor product of objects is addition
of markings, and the morphisms are generated by transitions.

•

•

•

•• → •

••

What kind of symmetric monoidal category? A commutative
monoidal category!

A commutative monoidal category is a commutative monoid
object in Cat: a category C with a commutative and associative
multiplication

⊗ : C × C→ C

and a unit for this multiplication:

I ∈ C

Equivalently, it’s a symmetric monoidal category where the
I braidings βx ,y : x ⊗ y → y ⊗ x
I associators αx ,y ,z : (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z), and
I left and right unitors λx : I ⊗ x → x , ρx : x ⊗ I → x

are all identity morphisms.

Any Petri net P gives a commutative monoidal category FP for
which:

I objects are markings of P;
I morphisms are generated from the transitions of P by

composition and tensor product, subject to the laws of a
commutative monoidal category.

FP is the free commutative monoidal category on the Petri net
P. Let me explain this.

There’s a category Petri, where:
I an object is a Petri net;
I a morphism from s, t : T → N[S] to s′, t ′ : T → N[S′] is a

pair of functions f : T → T ′,g : S → S′ such that these
diagrams commute:

T

f
��

s // N[S]

N[g]
��

T ′
s′
// N[S′]

T

f
��

t // N[S]

N[g]
��

T ′
t ′
// N[S′]

A morphism of Petri nets:

↓

There’s also a category CMCat of commutative monoidal
categories, where:

I objects are commutative monoidal categories;
I morphisms are strict monoidal functors (automatically

symmetric).

Theorem (Master). There are adjoint functors

Petri CMCata

F

U

with F sending the Petri net P to the free commutative
monoidal category FP described earlier.

Figuring out the right adjoint U is not as easy as you might
think:

I Jade Master, Generalized Petri nets, arXiv:1904.09091

https://arxiv.org/abs/1904.09091
https://arxiv.org/abs/1904.09091

We can turn a category C into a preorder L1C by decreeing
x ≤ y whenever there exists a morphism f : x → y .

We can turn a preorder X into a poset L2X by decreeing x = y
whenever x ≤ y and y ≤ x .

We can then turn a poset Y into a set L3Y by decreeing x = y
whenever x ≤ y or y ≤ x and closing this relation under
transitivity.

Cat Preord Poset Set
L1 L2 L3

Cat Preord Poset Set
L1 L2 L3

All the above functors are left adjoints, but they also preserve
products, so they preserve commutative monoid objects. We
thus get functors

Petri CMCat CMPreord CMPoset CMSet
F L1 L2 L3

Petri CMCat CMPreord
F L1

Given a Petri net P, the commutative monoidal preorder L1FP
has markings of P as elements, and x ≤ y if y is reachable
from x : that is, there exists a morphism f : x → y in FP.

•• ≤ ••

The reachability problem asks us to decide if x ≤ y when x , y
are two markings of a Petri net.

For example, given these chemical reactions:

C + O2 −→ CO2

CO2 + NaOH −→ NaHCO3

NaHCO3 + HCl −→ H2O + NaCl + CO2

can you turn
C + O2 + NaOH + HCl

into
CO2 + H2O + NaCl?

Theorem (Czerwinski–Lasota–Lazic–Leroux–Mazowiecki).
For any algorithm that decides the reachability problem, the
worst-case runtime exceeds

2
2 ·
· ·
· ·

2

where the number of layers in the tower can be any function
2N ,22N

,222N
, Here N is the size of the problem: the sum of

the number of generating places, the total number of inputs and
outputs of all transitions, and the number of summands in the
markings x , y for which the problem is posed.

Theorem (Leroux–Schmitz). There is an algorithm that
decides the reachability problem whose runtime is bounded by
an Ackermann function of N.

https://arxiv.org/abs/1809.07115
https://arxiv.org/abs/1903.0857

Petri CMCat CMPreord CMPoset CMSet
F L1 L2 L3

Given a Petri net P, the commutative monoid L3L2L1FP has
equivalence classes of markings of P as elements: we impose
an equation x = y whenever x is reachable from y or vice
versa.

Any presentation of a commutative monoid can be expressed
using a Petri net with one place per generator and one
transition per relation.

For example:
C

O2

CO2τ

gives the commutative monoid with three generators C,O2,CO2
and one relation

C + O2 = CO2

Theorem (Cardoza). The word problem in any fixed finitely
presented commutative monoid can be solved in linear time —
linear in the sum of the lengths of the two words being checked
for equality.

Theorem (Mayr–Meyer). The word problem for finitely
presented commutative monoids can be solved in exponential
space: exponential in the sum of the lengths of the words in all
the relations and the two words being checked for equality. It is
exponential space complete.

If it can be solved in exponential time, then EXPSPACE =
EXPTIME.

It can be solved in doubly exponential time: a runtime ≤ 22P(N)

for some polynomial P. It cannot be solved in polynomial time.

http://www.math.vanderbilt.edu/%7Emsapir/ftp/pub/survey/survey.pdf
http://www.math.vanderbilt.edu/%7Emsapir/ftp/pub/survey/survey.pdf

There is also a left adjoint functor

Poset SuplatL

Here Suplat is the category of suplattices, where
I an object is a poset where all subsets have suprema;
I a morphism is an order-preserving map preserving all

suprema.

If X is a poset, LX is the poset of downsets of X , i.e.
downwards-closed subsets, ordered by inclusion. We have an
inclusion of posets

X ↪→ LX

sending x ∈ X to the downset
{
y ∈ X : y ≤ x

}
.

The supremum in LX is given by union of downsets of X .

Any suplattice has, not only suprema of all subset, but also
infima.

But beware: maps of suplattices need not preserve infima!

A free suplattice on a poset is also cartesian closed, meaning
that x ∧ · has a right adjoint x ⇒ ·, or in other words:

x ∧ y ≤ z if and only if x ≤ (y ⇒ z)

There is a tensor product of suplattices such that a map of
suplattices

L ⊗ L′ → M

is the same as an order-preserving map

L × L′ → M

that preserves suprema in each argument.

It resembles the tensor product of vector spaces, or modules of
a commutative ring.

The functor

Poset SuplatL

has
L(X × X ′) � L(X) ⊗ L(X ′)

for any posets X ,X ′. In fact it is a symmetric monoidal functor.

It thus sends commutative monoid objects in (Poset,×) to
commutative monoid objects in (Suplat,⊗), which are called
commutative (unital) quantales.

Indeed we have left adjoints

Petri CMCat CMPreord CMPoset CQuant
F L1 L2 L

Concretely, a commutative quantale is a suplattice X with a
commutative associative multiplication

X × X → X

that distributes over arbitrary suprema, and a unit object for this
multiplication.

When we get a commutative quantale from a Petri net P, this
multiplication comes from the tensor product in our
commutative monoidal category FP, which we’ve been calling
+, as in C + O2. The unit object is 0: “nothing”.

Petri CMCat CMPreord CMPoset CQuant
F L1 L2 L

So, in the commutative quantale coming from the Petri net

C

O2

CO2τ

we have relations like

C + O2 ≤ CO2

C ≤ C ∨O2 O2 ≤ C ∨O2

C + (C ∨O2) = 2C ∨ (C + O2)

C + (C ∨O2) ≤ 2C ∨ CO2

(C ∨O2) ∧ C = C

Thus, the commutative quantale coming from a Petri net
describes a “logic of resources”. It has three commutative
monoid structures:

I x + y : “what you have is x together with y ”, as in C + O2 =
“what you have is a carbon atom together with an oxygen
molecule”.

I x ∨ y : “what you have is an x or an y ”, as in C ∨O2 =
“what you have is a carbon atom or an oxygen molecule”.

I x ∧ y : “what you have is both an x and a y ”, as in C ∧O2 =
“what you have is both an carbon atom and an oxgen
molecule” = ∅.

The material on commutative quantales from Petri nets is my
interpretation of this:

I Uffe Engberg and Glynn Winskel, Petri nets as models of
linear logic, in Colloquium on Trees in Algebra and
Programming, Springer, Berlin, 1990, pp. 147–161.

They also show more. For example: in the commutative
quantale coming from a Petri net, x + · has a right adjoint x (·.
In other words:

x + y ≤ z if and only if x ≤ (y (z)

AND THERE’S MORE... BUT NOT TODAY!

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.3821&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.3821&rep=rep1&type=pdf

