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Abstract

This paper proposes a programme of research with the aim of understanding network-based
systems through the application of monoidal category theory, and outlines some in-progress
work in this direction.

1 Introduction

Control theory begins with the following picture:

systeminput output

In this picture we have an object under study, referred to as a system, which when fed certain inputs
produces certain outputs. These outputs need not be uniquely determined by the inputs; in general
the relationship may be stochastic or non-deterministic, or depend also on internal states of the
system. Although we take it as given that the system is an open system—so it interacts with its
environment, and so we can observe its inputs and outputs—we assume no access to the details of
these internal states or the inner workings of the system, and this can add considerable complexity
to our models. The end goal of control theory is then to control the system: to understand how to
influence its behaviour in order to achieve some desired goal. Two key questions arise:

• Analysis: Given a system, what is the relationship it induces between input and output?

• Synthesis: Given a target relationship between input and output, how do we build a system
that produces this relationship?

The first, the question of system analysis, provides the basic understanding required to find the
inputs that lead to the desired outputs. The second question, the question of synthesis, is the central
question of feedback control theory, which aims to design controllers to regulate other systems. We
give brief overview of the field, illustrated with some questions of these kinds.

Control has a long history. Indeed, many systems found in the biology and chemistry of living
organisms have interesting interpretations from a control theoretic viewpoint, such as those that are
responsible for body temperature regulation or bipedal balance [39]. Human understanding of control
developed alongside engineering, and so dates back at least as far as antiquity, with for example the
ancient Romans devising elaborate systems to maintain desired water levels in aqueducts [38]. The
origin of formal mathematical control theory, however, is more recent, and in general taken to be
James Clerk Maxwell’s seminal analysis of centrifugal governors, presented to the Royal Society of
London in 1868 [12].
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A good example of a basic, but characteristic, system studied by control theory, centrifugal
governors were developed to address the problem of speed regulation for steam engines. A centrifugal
governor consists of masses attached via lever arms to a vertical spindle, as depicted in Figure 1.
This spindle is then connected to the output wheel of an engine, and the height of the masses is
inversely related to the aperture of the steam valve into the engine. Higher speeds therefore cause
the spindle to rotate faster, which in turn causes the masses to move upward and decrease the flow
of steam into the engine. This moderates or prevents acceleration, and hence overspeeding of the
engine. Maxwell’s paper classifies the possible trajectories over time of the speed of a governed
steam engine.

Figure 1: A centrifugal governor.

With respect to the framework laid out above, there are three systems under investigation here.
The first is the steam engine, with input steam flow and output engine speed. The second is the
centrifugal governor, with input engine speed and output steam flow. The third is the combined
governor-steam engine, which forms the main system under investigation, with again input steam
flow and output engine speed.

The techniques used and developed from Maxwell’s paper, in particular by Rayleigh and Heavi-
side, are in general known as transfer function techniques. A transfer function is a linear map from
the set of inputs to the set of outputs of a linear time-invariant system with zero initial conditions.
Transfer functions are commonly used in the analysis of single-input single-output linear systems,
but become unwieldy or inapplicable for more general systems.

In the 1960s, led by Wiener and Kalman, so-called state space techniques were developed to
address multiple-input multiple-output, time-varying, nonlinear systems [14]. These methods are
characterised by defining a system as a collection of input, output, and internal state variables, with
the state changing as a function of the input and state variables over time, and the output a function
of the input and state. These functions are often implicitly specified by differential equations.

In general, however, classical control theory remains grounded in a paradigm that defines and
analyses systems in terms of inputs and outputs or, from another perspective, causes and effects. In
recent years Willems, among others, has argued that this input-output perspective is limiting, as in
the case of many systems studied through control theory there is no clear distinction between input
and output variables [47]. For example, given a circuit component for which the relevant variables
are the voltages and currents, different contexts may call for the voltage to be viewed as the input
and current output, or vice versa. It is useful to have a single framework capable of discussing the
behaviour of the component without making this choice.
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Moreover, in the drive to understand larger and more complex systems, increasing emphasis
has been put on understanding the way systems can be broken down into composite subsystems,
and conversely how systems link together to form larger systems [48, 20]. Indeed, interconnection or
composition of systems has always played a central role in systems engineering, as in the combination
of the centrifugal governor and steam engine of Maxwell’s research, and the difficulty of discussing
how systems compose within an input-output framework lends support to Willems’ call for a more
nuanced definition of control system. To illustrate these difficulties, consider the simple example of
two water tanks each with two access pipes:

pA1

fA1

pA2

fA2

Tank A pB1

fB1

pB2

fB2

Tank B

For each tank, the relevant variables are the pressure p and the flow f . A typical control theoretic
analysis might view the water pressure as inducing flow through the tank, and hence take pressure
as the input variable, flow as the output variable, and describe each tank as a transfer function
H• : P• → F• between the sets P• and F• these vary over.

Ideally then, the composite system below, connecting pipe 2 of Tank A to pipe 1 of Tank B,
would be described by the composite of the transfer functions HA and HB of these tanks.

pA1

fA1

pB2

fB2

pA2

fA2

pB1

fB1

Tank A Tank B

This is rarely the case, and indeed makes little sense: the output of transfer function HA describes
the flow through Tank A, while the domain of the transfer function HB describes pressures through
Tank B, so taking the output of HA as the input of HB runs into data type issues. Instead, here
the relationship between the transfer functions HA and HB , and the transfer function HAB of the
composite system can be understood through the fact that connection requires the pressure at pipe
1 of Tank A must be equal to the pressure at pipe 2 of Tank B, and that the flow out of the former
pipe must equal the flow into the latter—that is, by imposing the relations

pA2 = pB1

fA2 = −fB1

on the variables. Indeed in many contexts, hydraulics and electronics among them, connections
between systems are characterised not by the ‘output’ of one system forming the ‘input’ of the next,
but by variable sharing between the systems. Such relations are often difficult to describe using the
language of transfer functions and state space methods.

This dissertation proposes to contribute to a programme of research that aims to place compo-
sition of systems as central to the study of control, and in doing so address the limitations of the
input-output paradigm that these two dominant approaches to control theory fall within.

The following section, Section 2, gives a brief overview of the context this programme arises
from. Section 3 then runs through an example of the intended approach, and Section 4 proposes a
few intended directions for further study.
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2 Literature review

2.1 Behaviours

We take as our starting point a perspective of Willems’, which models control systems as collections
of possible parameter readings for the variables of the system [29]. More formally, we model systems
using triples (T,W,B) comprising a time axis T ⊆ R, a signal space W in which the variables take
their values, and a behaviour B ⊆WT . The behaviour is thought of as describing the trajectories
of parameter readings over time that are declared possible by the system.

In cases where transfer function or state space techniques may be applied, the behaviour is
often the set of ordered pairs defining the transfer function, or the set of solutions to a system of
differential equations. Note that this perspective also allows for discussion of systems that are not
usually thought of in such ways, such as a tank of gases governed by the ideal gas law, or a collection
of planets governed by Kepler’s law. Indeed, in general physical laws only prescribe a set of allowed
trajectories: they make no comment on cause and effect. Thus a framework that does not assume
these ideas may be of use.

2.2 Networks, effort, and flow

Phrased in these terms, the two central questions of control theory posed above can be viewed as
investigating the properties of two opposing maps:

Systems Behaviours
analysis

synthesis

These questions only become well-defined within the context of a specified class of systems, such
as hydraulic systems or mechanical structures or electrical circuits. In the work of this proposed
dissertation, we shall restrict attention to contexts in which notions of effort and flow are present
in graph or network-like structures, indeed such as in hydraulic systems or electrical circuits, and
certain mechanical constructions. First discussed in detail by Olsen [28], mathematically precise
analogies exist between, for example, systems of the types given by the following table, and their
associated quantities.

displacement flow momentum effort
q q′ p p′

Translation position velocity momentum force

Rotation angle angular velocity angular momentum torque

Electronics charge current flux linkage voltage

Hydraulics volume flow pressure momentum pressure

Thermodynamics entropy entropy flow temperature momentum temperature

Chemistry moles molar flow chemical momentum chemical potential

Further work, pioneered by in particular Odum, links these network-type systems to biology,
ecology, and economics, and we anticipate results of this research programme making a contribution
across all these fields [27].

2.3 A diagrammatic approach

A result of these analogies is that many of the diagrammatic formalisms designed to reason about
these systems, such as electric and hydraulic circuit diagrams (Figure 2), signal flow graphs (Figure
3), and energy systems language (Figure 4), themselves have many visual and deeper similarities.
Bond graphs, originated by Paynter in 1961 [30] and further developed and applied by Karnopp,
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Figure 2: An electrical circuit representing an amplifier.

Figure 3: A signal flow graph for the asymptotic gain model for a negative feedback amplifier.

Figure 4: An energy systems diagram depicting an energy storage system.
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Rosenberg, and Thoma, among others [9, 42], go some way to unifying these diagrammatic languages
into a common, domain-independent framework.

In these formalisms each diagram represents a system. The diagrammatic language itself com-
prises a collection of atomic symbols, a syntax for connecting them to result in ‘well-formed’ di-
agrams, and hence a well-defined representation of a system, and a rule for understanding the
semantics of the diagrams, for example associating a transfer function or differential equation to
each diagram.

The independent emergence and widespread use of diagrammatic methods across these fields
suggests that diagrams are an effective way to understand this type of system, and we take this as a
guiding principle. In particular, a strength of a diagrammatic approach is that the syntax for these
diagrams gives rise to an understanding of how to connect diagrams. While this is so, however,
within the context of transfer functions or state space methods it is often difficult to understand
how the semantics of the combined system relates to the semantics of the constituent systems. We
suggest that using behaviours to understand systems, and so the semantics of these diagrams, allows
for a better understanding of how the semantic interpretations of the diagrams compose.

2.4 Dagger compact categories

Past work on formalising these diagrammatic languages has often made use of the language of graph
theory, treating diagrams as graphs with leaves [47]. In line with our emphasis on the compositional
aspects of control theory, we propose the use of category theory. The two-dimensional nature of
these graphical formalisms suggest monoidal structure is useful.

Monoidal categories were first defined by Mac Lane in 1963 [24]. Arising from the work of Penrose
[31] and Joyal and Street [18, 19], it became clear that morphisms in these categories had a precise
graphical representation through string diagrams, and subsequently that monoidal categories can be
used to provide a foundation for Feynman diagrams and other similar graphical tools.

We shall be in particular concerned with dagger compact categories—symmetric monoidal cat-
egories further equipped with a dagger functor and duals for objects. Recent work including that
by Abramsky and Coecke [1], Baez [3], and Selinger [35] has shown this is an important structure
in quantum mechanics. The dagger compact structure here reflects the interchangability between
the domain and codomain of a diagram and our acausal view of systems; we give an example in the
following section.

We note also related work by Spivak on the operad of wiring diagrams [40].

2.5 Symplectic methods

While the diagrams themselves give a straightforward dagger compact category of systems, we aim
also to describe the behaviours of a given class of systems as a dagger compact category. As the
behaviours of a system can often be described as those that minimise a certain energy, techniques
from symplectic geometry are useful here. In particular, drawing from the work of Hörmander
and Sniatycki and Tulczejew, we shall see that it is possible to describe behaviours as Lagrangian
submanifolds of symplectic manifolds, and that these form a category [46].

The role of in particular this category and more generally of symplectic geometry in control theory
has been explored by Benenti [8], while Cimasoni and Turaev have done work on the relationship
between categories of diagrams and categories of Lagrangian submanifolds [13]

3 Pilot work

To demonstrate the viability of this project, in this section we briefly explore, omitting proofs, how
these ideas develop in the context of electrical circuits consisting only of linear resistors. We begin
with the construction of a category whose morphisms are these networks of linear resistors, before
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constructing a category classifying the possible behaviours of these systems, and then discussing the
‘analysis’ functor mapping systems to behaviours.

Much here is owed to unpublished work and discussions with John Baez.

3.1 Circuits of linear resistors

The concept of an abstract electrical circuit made of linear resistors is well-known in electrical
engineering, but we shall to formalise it with more precision than usual. The basic idea is that
a circuit of linear resistors is a graph whose edges are labelled by positive real numbers called
‘resistances’, and whose sets of vertices is equipped with two subsets: the ‘inputs’ and ‘outputs’.
This unfolds as follows.

A circuit of resistors looks like this:

1Ω

1Ω1Ω

2Ω

We can consider this a labelled graph, with each resistor an edge of the graph, its resistance its label,
and the vertices of the graph the points at which resistors are connected. Composition of circuits
involves creating connections between distinct circuits. To do this we first mark points at which
connections can be made by denoting some vertices as input and output terminals:

inputs outputs

1Ω

1Ω1Ω

2Ω

Then, given a second circuit, we may choose a relation between the output set of the first and the
input set of this second circuit, such as the simple relation of the single output vertex of the circuit
above with the single input vertex of the circuit below.

inputs outputs

1Ω

3Ω

We compose the two circuits by identifying output and input vertices according to this relation,
giving in this case the composite circuit:

inputs outputs

1Ω

1Ω1Ω

2Ω

1Ω

3Ω

We will formalise these notions of ‘marking terminals’ and composition of circuits using cospans and
push forwards. Treating these cospans as morphisms between finite sets, we shall show that this
defines a dagger compact category.
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3.1.1 L-labelled graphs

Given a set of labels L, we shall define a category L-Graph of L-labelled directed multigraphs. In
this paper we will refer to directed multigraphs simply as graphs. So, define a graph to be a pair
of functions s, t : E → N where E and N are finite sets. An L-graph is a graph further equipped
with a function r : E → L.

L E
s //

t
//

roo N

We call elements of E edges and elements of N vertices or nodes. We say that the edge e ∈ E
has source s(e) and target t(e), and also say that e is an edge from s(e) to t(e).

Given L-graphs Γ = (E,N, s, t, r) and Γ′ = (E′, N ′, s′, t′, r′), a morphism of L-graphs Γ→ Γ′ is
a pair of functions ε, v such that the following diagrams commute:

E
r

ww
ε

��
L

E′r′

gg

E
s //

ε

��

N

v

��

E′
s′
// N ′

E
t //

ε

��

N

v

��

E′
t′
// N ′.

These L-graphs and their morphisms form the category L-Graph. Using results about colimits in
the category of sets, it is straightforward to check that this category has finite colimits.

We will later make use of the notion of connectedness in graphs, and so we give a definition
here. Given two vertices v, w ∈ N of a graph, a path from v to w is a finite sequence of vertices
v = v0, v1, . . . , vn = w and edges e1, . . . , en such that for each 1 ≤ i ≤ n, either ei is an edge from vi
to vi+1, or an edge from vi+1 to vi. A subset S of the vertices of a graph is connected if for each
pair of vertices in S, there is a path from one to the other. A connected component of a graph
is a maximal connected subset of its vertices.

3.1.2 Cospans

In this paper we are particularly interested in the case when our set L of labels is the set (0,∞) of
positive real numbers. Here we view each edge as a ‘wire’ between the source and target vertices,
and consider each label as assigning a ‘resistance’ to the wire, so that the objects of (0,∞)-Graph
may be considered as networks of resistors. Cospans provide the machinery for combining these
networks in series.

Recall that a cospan from X to Y in a category C is an object C in C with a pair of morphisms
f : X → C, g : Y → C.

C

X

f
>>

Y.

g
``

We shall refer to X and Y as the feet, and C as the apex of the cospan. When such pushforwards
exist, cospans may be composed using the pushforward from the common foot: given cospans
(C, f : X → C, g : Y → C) for X to Y and (C ′, f ′ : Y → C ′, g′ : Z → C ′) from Y to Z, their
composite cospan is (P, i ◦ f : X → P, i′ ◦ g′ : Z → P ), where (P, i : C → P, i′ : C ′ → P ) is the
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pushforward of the square:

P

C

i

??

C ′

i′
``

X

f
>>

Y

g
__

f ′
>>

Z.

g′
``

A map of cospans is a morphism h : C → C ′ in C between the apices of two cospans (C, f : X →
C, g : Y → C) and (C ′, f ′ : X → C ′, g′ : Y → C ′) with the same feet, such that

C

h

��

X

f
>>

f ′
  

Y

g
``

g′~~

C ′

commutes.
We will later discuss spans in a category C. The definitions of these, their composition, and

their maps are dual to the corresponding definitions above.

3.1.3 A category of circuits

Following the work of Stay, L-labelled graphs, cospans in L-Graph, and maps of cospans form a
compact closed bicategory Cospan(L-Graph) [41]. Note that this requires choosing pushforwards
for each pushforward square in L-Graph. We shall predominantly concern ourselves with the compact
closed subbicategory ResCirc of Cospan((0,∞)-Graph), which we define as follows.

Definition 3.1. The bicategory ResCirc is the full subbicategory of Cospan((0,∞)−Graph) with
objects those (0,∞)-graphs with no edges. We call the 1-morphisms of ResCirc circuits.

It can be shown that every object in Cospan((0,∞)-Graph) is self-dual, and this implies that
ResCirc is again a compact closed bicategory [41].

Since (0,∞)-graphs with no edges are uniquely determined by their vertex sets, an object of
ResCirc may simply be thought of as a finite set, while a 1-morphism between finite sets X and Y
may be thought of as comprising a (0,∞)-graph Γ = (E,N, s, t, r) with functions i : X → N and
o : Y → N . We call the sets X and Y the input connections and output connections of the
circuit respectively, and call subsets N− = i(X) and N+ = o(Y ) the input terminals and outputs
terminals of the circuit. These are both thought of as points to which we might attach connections
or terminals of other circuits. Note that N− and N+ need not be disjoint. Often the difference
between inputs and outputs will not matter, so we also define ∂N = N− ∪N+, and collectively call
elements of this set terminals.

Abusing notation slightly, we also write ResCirc for the 1-categorical decategorification of this
bicategory, with objects finite sets, and morphisms isomorphism classes of cospans in (0,∞)-Graph
with feet such objects. Note that the notion of isomorphism for cospan of (0,∞)-Graph is quite
restrictive, amounting to no more than a renaming of the nodes and edges, so we may be lazy with
our distinction between the notions of morphism of this category and of circuits.

This category is compact closed, with dual objects and their units and counits given by the
compactness of the bicategory. The compactness of our category of circuits of linear resistors captures
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the interchangeability between individual input and output terminals of circuits—that is, the fact
that we can choose any input terminal to our circuit and consider it instead as an output terminal,
and vice versa.

Exploring the structure more explicitly, the monoidal product for ResCirc is simply the disjoint
union of finite sets on objects, and the disjoint union of graphs for morphisms. The monoidal unit
is the empty set. Observe that given a morphism f : X → Y in some category C, we may construct
the cospan

Y

X

f
>>

Y

idY

``

from X to Y , with this cospan an isomorphism if and only if f is, and with inverse

Y

Y

idY

??

X

f
``

in this case. The structural morphisms for the symmetric monoidal structure may be specified by set
functions in this way, with for example the associator the cospan induced by the canonical functions
(X t Y ) t Z → X t (Y t Z), and the braiding the cospan induced by the canonical functions
X t Y → Y tX.

The existence of duals may be seen as follows. Let X be a finite set, and let a : X tX → X be
the function given by taking the coproduct of two identity functions X → X, and let ! : ∅→ X be
the unique such map. We may take X as its own dual object, with unit and counit given by

X

∅

!

??

X tX

a

cc

and

X

X tX

a

;;

∅.

!

``

It is readily verified that these cospans do indeed form a unit and counit for the self-dual object X.

3.1.4 The dagger structure

A dagger functor expresses the idea that the direction of morphisms can be reversed: through a
dagger functor each morphism specifies a map from its codomain to its domain, in addition to the
map it is from its domain to its codomain. This is true of electrical circuits: if we like we may treat
the set of inputs as the set of outputs instead, and the set of outputs as the set of inputs.

Proposition 3.2. The category ResCirc is a dagger compact category.

3.2 Equivalences of circuits, and Dirichlet forms

So far we have modelled our circuits of linear resistors according to their physical form. But another,
often more relevant, way to understand a circuit is by its function. To an electric circuit we associate
two quantities to each edge: voltage and current. However, circuits are subject to governing laws
that imply these quantities must have certain relationships; we are not free to choose voltages and
currents as we like. From the perspective of control theory we are particularly interested in the
values these quantities take at the terminals, and how altering one value will affect the other values.
We shall see that the potentials at the terminals of the circuit determine the flow of current in or out
of these terminals. We call two circuits equivalent when they determine the same relationship. Our
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task in this section is to explore when two circuits are equivalent. We begin by discussing how to
find the function of a circuit from its form, advocating in particular the perspective of the principle
of minimum power.

In the following let X and Y be finite sets, and Γ = (E,N, s, t, r), together with maps i : X → N
and o : Y → N , be a circuit. In particular E will always stand for the edge set of the apex of a circuit,
and N for the set of nodes. For a finite set S, we shall write RS for the vector space of functions
ψ : S → R. Elementary circuit theory is most frequently presented in terms of voltages and currents
on the edges or ‘wires’ of the circuit. These are functions V ∈ RE and I ∈ RE respectively. We
use I for ‘intensity of current’, following Ampère. This material is all well known, and the current
presentation is a rewriting of a draft by Baez [4].

3.2.1 Ohm’s law and Kirchhoff’s laws

We say that Ohm’s law holds if for all edges e ∈ E the voltage and current functions of a circuit
obey:

V (e) = r(e)I(e).

We say Kirchhoff’s voltage law holds if there exists φ ∈ RN such that

V (e) = φ(t(e))− φ(s(e)).

We call the function φ a potential, and think of it as assigning an electrical potential to each node
in the circuit. The voltage then arises as the differences in potentials between adjacent nodes. If
Kirchhoff’s voltage law holds for some voltage V , the potential φ is unique only in the trivial case of
the empty circuit: when the set of nodes N is empty. Indeed, two potentials define the same voltage
function if and only if their difference is constant on each connected component of the graph Γ.

We say Kirchhoff’s current law holds if for all nonterminal nodes n ∈ N \ ∂N we have∑
s(e)=n

I(e) =
∑
t(e)=n

I(e).

This is an expression of conservation of charge within the circuit; it says that the total current
flowing in or out of any nonterminal node is zero. Even when Kirchhoff’s current law is obeyed,
terminals need not be sites of zero net current; we call the function ι ∈ R∂N that takes a terminal
to the difference between the outward and inward flowing currents,

ι : ∂N −→ R

n 7−→
∑
t(e)=n

I(e)−
∑
s(e)=n

I(e),

the boundary current for I.

3.2.2 The principle of minimum power

A boundary potential is also a function in R∂N , but instead thought of as specifying electric
potentials on the terminals of a circuit. As we think of our circuits as open circuits, with the
terminals points of interaction with the external world, we shall think of these potentials as variables
that are free for us to choose. Using the above three principles—Ohm’s law, Kirchhoff’s voltage law,
and Kirchhoff’s current law—it is possible to show that choosing a boundary potential determines
unique voltage and current functions on that circuit.

The principle of minimum power gives some insight into how this occurs, by describing a way
potentials on the terminals might determine potentials at all nodes. From this, Kirchhoff’s voltage
law then gives rise to a voltage function on the edges, and Ohm’s law gives us a current function
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too. In fact, a potential satisfies the principle of minimum power for a given boundary potential if
and only if this current obeys Kirchhoff’s current law.

A circuit with current I and voltage V dissipates energy at a rate proportional to the real number

P =
∑
e∈E

I(e)V (e).

Ohm’s law allows us to rewrite I as V/r, while Kirchhoff’s voltage law gives us a potential φ such
that V (e) can be written as φ(t(e))− φ(s(e)), so for a circuit obeying these two laws the power can
also be expressed in terms of this potential. We thus arrive at a functional mapping potentials φ to
the power dissipated by the circuit when Ohm’s law and Kirchhoff’s voltage law are obeyed for φ.

Definition 3.3. The extended power functional P : RN → R of a circuit is the map

P (ϕ) =
∑
e∈E

1

r(e)

(
ϕ(t(e))− ϕ(s(e))

)2
.

We call this the extended power functional as we shall see that it is defined on potentials that are
not compatible with the three governing laws of electric circuits. We shall later restrict the domain
of this functional so that it is defined precisely on those potentials that are compatible with the
governing laws. Note that this functional does not depend on the directions chosen for the edges of
the circuit.

This expression lets us formulate the ‘principle of minimum power’, which gives us information
about the potential φ given its restriction to the boundary of Γ. Call a potential φ ∈ RN an
extension of a boundary potential ψ ∈ R∂N if φ is equal to ψ when restricted to R∂N—that is, if
φ|R∂N = ψ.

Definition 3.4. We say a potential φ ∈ RN obeys the principle of minimum power for a
boundary potential ψ ∈ R∂N if φ minimizes the extended power functional P subject to the constraint
that φ is an extension of ψ.

In the presence of Ohm’s law and Kirchhoff’s voltage law, it can be shown that the principle of
minimum power is equivalent to Kirchhoff’s current law.

Proposition 3.5. Let φ be a potential extending some boundary potential ψ. Then φ obeys the
principle of minimum power for ψ if and only if the induced current I(e) = 1

r(e) (φ(t(e)) − φ(s(e)))

obeys Kirchhoff’s current law.

3.2.3 A Dirichlet problem

We remind ourselves that we are in the midst of understanding circuits as objects that define
relationships between boundary potentials and boundary currents. This relationship is defined by
the stipulation that voltage–current pairs on a circuit must obey Ohm’s law and Kirchhoff’s laws—
or equivalently, Ohm’s law, Kirchhoff’s voltage law, and the principle of minimum power. In this
subsection we show these conditions imply that for each boundary potential ψ on the circuit there
exists a potential φ on the circuit extending ψ, unique up to what may be interpreted as a choice of
reference potential on each connected component of the circuit. From this potential φ we can then
compute the unique voltage, current, and boundary current functions compatible with the given
boundary potential.

Fix again a circuit with extended power functional P : RN → R. Let ∇ : RN → RN be the
operator that maps a potential φ ∈ RN to the function N → R given by

n 7−→ ∂P

∂ϕ(n)

∣∣∣∣
ϕ=φ

.
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As we have seen, this function takes potentials to twice the pointwise currents that they induce. We
have also seen that a potential φ is compatible with the governing laws of circuits if and only if(

∇φ
)∣∣

R∂N = 0 (1)

The operator ∇ acts as a discrete analogue of the Laplacian for the graph Γ, so we call this operator
the Laplacian of Γ, and say that the equation (1) is a version of Laplace’s equation. We then
say that the problem of finding an extension φ of some fixed boundary potential ψ that solves this
Laplace’s equation—or, equivalently, the problem of finding a φ that obeys the principle of minimum
power for ψ—is a discrete version of the Dirichlet problem.

As we shall see, this version of the Dirichlet problem always has a solution. However, the solution
is not necessarily unique. If we take a solution φ and some α ∈ RN that is constant on each connected
component and vanishes on the boundary of Γ, it is clear that φ + α is still an extension of ψ and
that ∂P

∂ϕ(n) |ϕ=φ = ∂P
∂ϕ(n) |ϕ=φ+α, so φ+α is another solution. We say that a connected component of

a circuit touches the boundary if it contains a vertex in ∂N . Note that such an α must vanish
on all connected components touching the boundary.

With these preliminaries in hand, we can solve the Dirichlet problem:

Proposition 3.6. For any boundary potential ψ ∈ R∂N there exists a potential φ obeying the
principle of minimum power for ψ. If we also demand that φ vanish on every connected component
of Γ not touching the boundary, then φ is unique.

Proof. For existence, observe that the power is a nonnegative quadratic form, the extensions of ψ
form an affine subspace of RN , and a nonnegative quadratic form restricted to an affine subspace of
a real vector space must reach a minimum somewhere on this subspace.

For uniqueness, suppose that both φ and φ′ obey the principle of minimum power for ψ. Let

α = φ′ − φ.

Then
α|∂N = φ′|∂N − φ|∂N = ψ − ψ = 0,

so φ+ λα is an extension of ψ for all λ ∈ R. This implies that

f(λ) := P (φ+ λα)

is a smooth function attaining its minimum value at both t = 0 and t = 1. In particular, this implies
that f ′(0) = 0. But this means that when writing f as a quadratic, the coefficient of λ must be 0,
so we can write

f(λ) =
∑
e∈E

1

r(e)

(
(φ+ λα)(t(e))− (φ+ λα)(s(e))

)2
=
∑
e∈E

1

r(e)

((
φ(t(e))− φ(s(e))

)
+ λ
(
α(t(e))− α(s(e))

))2
=
∑
e∈E

1

r(e)

(
φ(t(e))− φ(s(e))

)2
+ λ-term + λ2

∑
e∈E

1

r(e)

(
α(t(e))− α(s(e))

)2
=
∑
e∈E

1

r(e)

(
φ(t(e))− φ(s(e))

)2
+ λ2

∑
e∈E

1

r(e)

(
α(t(e))− α(s(e))

)2
.

Then

f(1)− f(0) =
∑
e∈E

1

r(e)

(
α(t(e))− α(s(e))

)2
= 0,
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so α(t(e)) = α(s(e)) for every edge e ∈ E. This implies that α is constant on each connected
component of the graph Γ of our circuit.

Note that as α|∂N = 0, α vanishes on every connected component of Γ touching the boundary.
Thus, if we also require that φ and φ′ vanish on every connected component of Γ not touching the
boundary, then α = φ′−φ vanishes on all connected components of Γ, and hence is identically zero.
Thus φ′ = φ, and this extra condition ensures a unique solution to the Dirichlet problem.

Note also from the proof of the above proposition that:

Proposition 3.7. Suppose ψ ∈ R∂N and φ is a potential obeying the principle of minimum power
for ψ. Then φ′ obeys the principle of minimum power for ψ if and only if the difference φ′ − φ is
constant on every connected component of Γ and vanishes on every connected component touching
the boundary of Γ.

3.2.4 Behaviours

We have seen that boundary potentials determine, essentially uniquely, the value of all the elec-
tric properties across the entire circuit. But from the perspective of control theory, this internal
structure is irrelevant: we can only access the circuit at its terminals, and hence only need con-
cern ourselves with the relationship between boundary potentials and boundary currents. In this
section we streamline our investigations above to state the precise way in which boundary currents
depend on boundary potentials. In particular, we shall see that the relationship is completely cap-
tured by the functional taking boundary potentials to the minimum power used by any extension of
that boundary potential. Furthermore, each such power functional determines a different boundary
potential–boundary current relationship, and so we can conclude that two circuits are equivalent if
and only if they have the same power function. A ‘behaviour’ is an equivalence class of circuits,
where two are considered equivalent when the boundary current is the same function of the boundary
potential.

First let us check that the boundary current is a function of the boundary potential. For this we
introduce an important quadratic form on the space of boundary potentials:

Definition 3.8. The (scaled) power functional Q : R∂N → R of a circuit with extended power
functional P is given by

Q(ψ) = 1
2 min
φ|R∂N =ψ

P (φ).

Proposition 3.6 shows the minimum above exists, so the power functional is well-defined. Up
to a factor of 1

2 , Q(ψ) is just the power dissipated by the circuit when the boundary voltage is ψ,
thanks to the principle of minimum power. The factor of 1

2 simplifies the next proposition, which
uses Q to compute the boundary current as a function of the boundary voltage. We will later see
that in fact Q(ψ) is a nonnegative quadratic form on R∂N .

Since Q is a smooth real-valued function on R∂N , its differential dQ at any given point ψ ∈ R∂N
defines an element of the dual space (R∂N )∗, which we denote by dQψ. In fact, this element is equal
to the boundary current ι corresponding to the boundary voltage ψ:

Proposition 3.9. Suppose ψ ∈ R∂N . Suppose φ is any extension of ψ minimizing the power. Then
dQψ ∈ (R∂N )∗ ∼= R∂N gives the boundary current of the current induced by the potential φ.

Note this only depends on Q, which makes no mention of the potentials at nonterminals. This is
amazing: the way power depends on boundary potentials completely characterises the way boundary
currents depend on boundary potentials.
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3.2.5 An example

Example 3.10 (Resistors in series). Resistors are said to be placed in series if they are placed end to
end or, more precisely, if they form a path with no self-intersections. It is well known that resistors
in series are equivalent to a single resistor with resistance equal to the sum of their resistances. To
prove this, consider the following circuit comprising two resistors in series, with input A and output
C:

A
B

C
rABrAB rBC

Now, the extended power functional P : R{A,B,C} → R for this circuit is

P (φ) =
1

rAB

(
φ(A)− φ(B)

)2
+

1

rBC

(
φ(B)− φ(C)

)2
,

while the power functional Q : R{A,C} → R is given by minimisation over values of φ(B) = x:

Q(ψ) =
1

2
min
x∈R

(
1

rAB

(
ψ(A)− x

)2
+

1

rBC

(
x− ψ(C)

)2)
.

Differentiating with respect to x, we see that this minimum occurs when

1

rAB

(
x− ψ(A)

)
+

1

rBC

(
x− ψ(C)

)
= 0,

and hence when x is the r-weighted average of ψ(A) and ψ(C):

x =
rBCψ(A) + rABψ(C)

rBC + rAB
.

Substituting this value for x into the expression for Q above and simplifying gives

Q(ψ) =
1

rAB + rBC

(
ψ(A)− ψ(C)

)2
.

This is also the power functional of the circuit

A C
rAB + rBC

and so the circuits are equivalent.

3.2.6 Dirichlet forms

We have seen that a behaviour is completely specified by the power functional Q on the vector space
R∂N . Now we describe which functionals can arise this way. They are the quadratic forms known
as ‘Dirichlet forms’, and they admit a number of equivalent characterizations. We start with the
simplest. A Dirichlet form on S will be a certain sort of quadratic form on RS :

Definition 3.11. Given a finite set S, a Dirichlet form on S is a quadratic form Q : RS → R
given by the formula

Q(ψ) =
∑
i,j

cij(ψi − ψj)2

for some nonnegative real numbers cij.
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Any Dirichlet form is nonnegative: Q(ψ) ≥ 0 for all ψ ∈ RS . However, not all nonnegative
quadratic forms are Dirichlet forms. For example, if S = {1, 2}:

Q(ψ) = (ψ1 + ψ2)2

is not a Dirichlet form.
It is crucial for us that the property of being a Dirichlet form is preserved under minimising over

linear subspaces of the domain generated by subsets of the given basis.

Proposition 3.12. If Q : RS+T → R is Dirichlet, then

min
ν∈RT

Q(−, ν) : RS → R

is Dirichlet.

This means that all power functionals are Dirichlet forms.

Corollary 3.13. Let Q : R∂N → R be the power functional for some circuit. Then Q is a Dirichlet
form.

The converse is also true: simply construct the circuit with set of vertices X and an edge of
resistance 1

cij
between any i, j ∈ X such that the term cij(ψi − ψj) appears in the Dirichlet form.

This gives:

Proposition 3.14. A function Q is the power functional for some circuit if and only if Q is a
Dirichlet form.

3.2.7 Summary

In summary, in this section we have shown the existence of a surjective function{
circuits with inputs i(X), outputs o(Y ),

and i(X) ∩ o(Y ) = ∅

}
−→

{
Dirichlet forms on i(X) + o(Y )

}
mapping two circuits to the same Dirichlet form if and only if they are functionally equivalent.

3.3 Lagrangian relations

Open circuits can be connected with one another to create new circuits, determining a new rela-
tionship. We show that this new relationship is a function only of the current-voltage relationships
determined by the composite circuits, and hence does not depend on the internal structure of the
composite circuits. This allows us to speak of a composition rule for current-voltage relationships.

We begin by constructing a category where the morphisms are, roughly speaking, behaviours.
Recall that behaviours, or equivalence classes of circuits, are in one-to-one correspondence with
Dirichlet forms. Although one can define a composition rule for behaviours by adding their corre-
sponding Dirichlet forms and minimising over internal nodes, no behaviour acts as the identity for
this composition. To construct our category then, we move to a setting which allows more mor-
phisms: that of sympletic vector spaces and their Lagrangian subspaces. These extra morphisms
may be interpreted as circuits having wires with zero resistance. As the expression for the extended
power functional includes the reciprocals of resistances, such circuits cannot be expressed within
the framework we have developed thus far. Indeed, for these idealised circuits there is no function
taking boundary potentials to boundary currents: the lack of resistance is thought as as implying
that any difference in potentials at the boundary induces ‘infinite’ currents.
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3.3.1 Symplectic vector spaces

Inspired by the principle of least action of classical mechanics in analogy with the principle of
minimum power, we turn to symplectic methods to discuss behaviours. A symplectic vector space
allows a more invariant perspective, viewing voltages and currents in the same vector space.

A circuit made up of wires of positive resistance defines a function from boundary potentials to
boundary currents. A wire of zero resistance, however, does not define a function: the principle of
minimum power is obeyed as long as the potentials at the two ends of the wire are equal. More
generally, we may thus think of circuits as specifying a set of allowed voltage-current pairs, or as
a relation between boundary potentials and boundary currents. This set forms what is called a
Lagrangian subspace, and is given by the graph of the differential of the power functional. More
generally, Lagrangian submanifolds graph derivatives of smooth functions: they describe the point
evaluated and the tangent to that point within the same space.

Definition 3.15. Given a vector space V over a field F, a symplectic form ω : V ×V → F on V is
a antisymmetric nondegenerate bilinear form. That is, a symplectic form ω is a function V ×V → F
that obeys

(i) bilinearity: for all λ ∈ F and all u, v ∈ V we have ω(λu, v) = ω(u, λv) = λω(u, v);

(ii) total isotropy: for all v ∈ V we have ω(v, v) = 0; and

(iii) nondegeneracy: given v ∈ V , ω(u, v) = 0 for all u ∈ V if and only if u = 0.

A symplectic vector space (V, ω) is a vector space V equipped with a symplectic form ω.
Given symplectic vector spaces (V1, ω1), (V2, ω2), a symplectic map is a linear map f : (V1, ω1)→

(V2, ω2) such that ω2(f(u), f(v)) = ω1(u, v) for all u, v ∈ V1. A symplectomorphism is a sym-
plectic map that is also an isomorphism.

A symplectic basis for a symplectic vector space (V, ω) is a basis {p1, . . . , pn, q1, . . . , qn} such
that ω(pi, pj) = ω(qi, qj) = 0 for all 1 ≤ i, j ≤ n, and ω(pi, qj) = δij for all 1 ≤ i, j ≤ n, where δij is
the Dirac delta, equal to 1 when i = j, and 0 otherwise. A symplectomorphism maps symplectic bases
to symplectic bases, and conversely: any map that takes a symplectic basis to another symplectic
basis is a symplectomorphism.

Example 3.16 (The symplectic vector space generated by a finite set). Given a finite set S, we
consider the vector space RS ⊕ RS∗ a symplectic vector space, with symplectic form

ω((v, φ), (v′, φ′)) = φ′(v)− φ(v′).

Let {vs}s∈S be the basis of RS consisting of the functions S → R mapping s to 1 and all other
elements of s to 0, and let {φs}s∈S ⊆ RS∗ be the dual basis. Then {(vs, 0), (0, φs)}s∈S forms a
symplectic basis for Rs ⊕ RS∗.

There are a two common ways we will build symplectic spaces from other symplectic spaces:
conjugation and summation. Given a symplectic form ω, we may define its conjugate sympletic
form ω = −ω, and write the conjugate symplectic space (V, ω) as V . Given two symplectic vector
spaces (U, ν), (V, ω), we consider the direct sum U ⊕V a sympletic vector space with the symplectic
form ν +ω. This is not a product in the category of symplectic vector spaces and symplectic maps.

The symplectic form gives a map from a symplectic space to its dual space. We study these dual
elements, and the symplectic form itself, through their kernels. Given a subspace S of V , we define
its complement

S◦ = {v ∈ V | ω(v, s) = 0 for all s ∈ S}.

Given a symplectic vector space V = U ⊕ U∗, the subspace U has the property of being a
maximal subspace such that the symplectic form restricts to a zero form on U . Subspaces with this
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property are known as Lagrangian subspaces, and may be realised as the image of U under symplectic
isometries V → V . Lagrangian subspaces may also be viewed as the subspaces that correspond to
possible (point, tangent vector) pairs for quadratic forms on V . They may also mostly be viewed as
graphs of ‘self-adjoint’ maps U → U∗.

Definition 3.17. Let S be a linear subspace of a symplectic vector space (V, ω). We say that S is
isotropic if ω|S×S = 0, and that S is coisotropic if S◦ is isotropic. A subspace is Lagrangian if
it is both isotropic and coisotropic.

Lagrangian subspaces are also known as Lagrangian correspondences and canonical relations.

3.3.2 Lagrangian subspaces from Dirichlet forms

We are interested in these symplectic structures as Dirichlet forms on S give rise to Lagrangian
subspaces of RS ⊕ RS∗. In this subsection we show how these subspaces are constructed. More
generally, we show that there is a one-to-one correspondence between Lagrangian subspaces and
quadratic forms.

Proposition 3.18. Let S be a finite set. Given a quadratic form Q on RS, the subspace

LQ =
{

(v, dQv) | v ∈ RS
}
⊆ RS ⊕ RS∗,

where dQv ∈ RS∗ is the value of differential dQ of Q at v ∈ RS, is Lagrangian. Moreover, this
construction gives a one-to-one correspondence{

quadratic forms on RS
}
←→

{
Lagrangian subspaces of RS ⊕ RS∗

with trivial intersection with RS ⊕ {0} ⊆ RS ⊕ RS∗
}
.

In particular, every Dirichlet form defines a Lagrangian subspace. We call the Lagrangian sub-
spaces arising from Dirichlet forms in this way Dirichlet Lagrangian subspaces.

3.3.3 Lagrangian subspaces as morphisms

Recall that a relation between sets X and Y is a subset R of their product X × Y . Furthermore,
given relations R ⊆ X × Y and S ⊆ Y × Z, there is a composite relation (S ◦ R) ⊆ X × Z given
by pairs (x, z) such that there exists y ∈ Y with (x, y) ∈ R and (y, z) ∈ S—a direct generalisation
of function composition. A Lagrangian relation between symplectic vector spaces V1 and V2 is a
relation between V1 and V2 that forms a Lagrangian subspace of the symplectic vector space V1⊕V2.
This allows us to think of certain Lagrangian subspaces as morphisms, giving a way to compose
them.

Definition 3.19. A Lagrangian relation L : V1 → V2 is a Lagrangian subspace L of V1 ⊕ V2.

The composite of two Lagrangian relations is again a Lagrangian relation.

Proposition 3.20. Let L : V1 → V2 and L′ : V2 → V3 be Lagrangian relations. Then their composite
relation L′ ◦ L is a Lagrangian relation V1 → V3.

This composition agrees with our briefly mentioned composition of Dirichlet forms, and hence
also composition of circuits.
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3.3.4 The dagger compact category of Lagrangian relations

Lagrangian relations solve the identity problems we had with Dirichlet forms: given a symplectic
vector space V , the Lagrangian relation id : V → V specified by the Lagrangian subspace

id = {(v, v) | v ∈ V } ⊆ V ⊕ V,

acts as an identity for composition of relations. We thus have a category.

Definition 3.21. We write LagrRel for the category with objects symplectic vector spaces and
morphisms Lagrangian relations.

In fact the move to the setting of Lagrangian relations, rather than Dirichlet forms, adds far
richer structure than just identity morphisms. The category LagrRel can be viewed as endowed
with the structure of a dagger compact category. We lay this out in steps.

Symmetric monoidal structure

We define the monoidal product of two objects of LagrRel to be their direct sum, and similarly define
the monoidal product of two morphisms to be the direct product—note that the direct product of
two Lagrangian subspaces is again Lagrangian in the product of their ambient spaces. Defining for
all objects U, V,W unitors

λV = {(0, v, v)} ⊆ {0} ⊕ V ⊕ V,

ρV = {(v, 0, v)} ⊆ V ⊕ {0} ⊕ V,

associators
αU,V,W = {(u, v, w, u, v, w)} ⊆ (U ⊕ V )⊕W ⊕ U ⊕ (V ⊕W ),

and swaps
σU,V = {(u, v, v, u) | u ∈ U, v ∈ V } ⊆ U ⊕ V ⊕ V ⊕ U,

we have a symmetric monoidal category. Indeed, note that all these structure maps come from
symplectomorphisms between the domain and codomain. From this viewpoint it is immediate that
all the necessary diagrams commute, and so we have a symmetric monoidal category.

Compactness structure

Each object V of LagrRel is dual to its conjugate space V , with cup η : {0} → V ⊕ V given by

η = {(0, v, v) | v ∈ V } ⊆ {0} ⊕ V ⊕ V

and cap ε : V ⊕ V → {0} given by

ε = {(v, v, 0) | v ∈ V } ⊆ V ⊕ V ⊕ {0}.

Dagger structure

Given symplectic vector spaces V1, V2, observe that the map

† : V1 ⊕ V2 −→ V2 ⊕ V1;

(v1, v2) 7−→ (v2, v1)

takes Lagrangian subspaces of the domain to Lagrangian subspaces of the codomain. Thus we can
view it as a map † taking morphisms L : V1 → V2 of LagrRel to morphisms †(L) : V2 → V1. This
defines a functor which is the identity on objects, and in fact a symmetric monoidal dagger functor:
by inspection the dagger of the monoidal product of maps is equal to the monoidal product of their
daggers, and it takes each structural morphism to its inverse.

This dagger functor plays nicely with the compactness: it is clear that η† = ε ◦ σ. We thus have
a dagger compact category.
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3.4 The black box functor

We have now developed enough machinery to discuss the semantics of diagrams of resistive circuits
and their composition. To recap, we have so far developed two categories: one capturing the
notion of the physical form of circuits of linear resistors—in which the morphisms represent these
circuits up to topological equivalence—and one capturing the notion of the function of circuits of
linear resistors—which contains morphisms representing circuits up to functional equivalence. We
now define a functor that maps the physical form of a circuit to its behaviour. In particular, the
composition rule for circuits by function reflects the composition rule we use to define circuits by
their form. As such a functor identifies all circuits performing the same role, making the internal
physical structure of the circuit inaccessible, we call this functor the black box functor, writing

� : ResCirc→ LagrRel.

On objects this functor maps finite sets to the symplectic vector space generated by this set.
That is, let X be an object of ResCirc. Then X is a (0,∞)-graph with no edges or, equivalently, a
finite set. We define

�(X) = RX ⊕ (RX)∗.

Defining the way the black box functor acts on morphisms is a bit more involved. Let Γ : X → Y
be a circuit. Recall that this means that X and Y are finite sets considered as (0,∞)-graphs with no
edges, and Γ is a (0,∞)-graph (N,E, s, t, r) equipped with maps of circuits i : X → Γ and o : Y → Γ:

Γ

X

i

??

Y.

o

__

To define the image of Γ under our functor �, we must specify a Lagrangian subspace

�(Γ) ⊆ RX ⊕ (RX)∗ ⊕ RY ⊕ (RY )∗.

Recall that we associate a Dirichlet form, the power functional Q : R∂N → R to Γ, where ∂N =
i(X) ∪ o(Y ) ⊆ N is the set of terminals of Γ, and associate a Lagrangian subspace

LQ ⊆ R∂N ⊕ (R∂N )∗

to this Dirichlet form. It remains to construct from this Lagrangian subspace of R∂N ⊕ (R∂N )∗ a

Lagrangian subspace of RX ⊕ (RX)∗ ⊕ RY ⊕ (RY )∗.

We make this construction by composing with a relation R∂N ⊕ (R∂N )∗ → RX ⊕ (RX)∗ ⊕RY ⊕
(RY )∗. Note that an ∂N is the union of the images of i : X → N and o : Y → N , we may consider
these both as maps with codomain ∂N . The induce the dual maps

i∗ : R∂N −→ RX and o∗ : R∂N −→ RY

given by precomposition of elements of R∂N with i and o respectively, and these in turn induce dual
maps

i∗∗ : (RX)∗ −→ (R∂N )∗ and o∗∗ : (RY )∗ −→ (R∂N )∗.

We then define the relation

R : R∂N ⊕ (R∂N )∗ −→ RX ⊕ (RX)∗ ⊕ RY ⊕ (RY )∗

(φ, ι) 7−→ {(x, x∗, y, y∗) | i∗(φ) = x, i∗∗(x∗) = ι, o∗(φ) = y, o∗∗(y∗) = ι}.
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To understand this construction more concretely, observe that given an element φ ∈ R∂N , i∗(φ) ∈
RX maps x ∈ X to φ(i(x)) and o∗(φ) maps y ∈ Y to φ(o(y)), so the relation assigns potentials to the
elements of X and Y according to the potential at the terminal of Γ that they map to. On the other
hand, given ι′ ∈ (RX+Y )∗, τ∗(ι′) is the element of (R∂N )∗ which assigns to any terminal n ∈ ∂N
the difference

∑
i(x)=n ι

′(x) −
∑
o(y)=n ι

′(y) between the pointwise currents through the input and

output connections that are mapped to n. This means that the preimage of some ι ∈ (R∂N )∗ under
τ∗ consists of all the ways ι′ ∈ (RX+Y )∗ to apportion the current at each terminal n ∈ ∂N among
the connections that map to it under the input and output maps so that the net current into it is
the current at n.

As isomorphisms of cospans of (0,∞)-graphs amount to no more than a relabelling of nodes and
edges, this construction is independent of the cospan chosen as representative of the isomorphism
class of cospans forming the circuit.

It can be checked that this functor is indeed well-defined. We have the following propositions.

Proposition 3.22. The black box functor � : ResCirc → LagrRel respects the dagger structures.
That is,

† ◦� = � ◦ †.

Proposition 3.23. The image of the homset hom(X,Y ) of ResCirc under the black box functor
� is the closure of the set of Dirichlet Lagrangian subspaces in the Lagrangian Grassmanian of the
sympectic vector space RX ⊕ (RX)∗ ⊕ RY ⊕ (RY )∗.

4 Further lines of investigation

4.1 Networks of resistors

The material developed above still bears investigation. Can we describe the structure of the cate-
gories ResCirc and LagrRel better? What are the preimages of morphisms in LagrRel under �—or,
equivalently, how do we tell when two circuits have the same behaviour? The category LagrRel
has a Frobenius algebra corresponding to ‘networks of wires of zero resistance’—can this be used
for anything? What list of properties uniquely characterise the black box functors as a functor
ResCirc→ LagrRel?

4.2 General circuits

The work of the previous section restricts attention to those circuits made of linear resistors where
the voltages and currents do not depend on time. Although this setting is well-understood without
the machinery employed here, generalisation to include other circuit components opens classification
problems that are yet to answered. It is anticipated that much of the framework should apply without
great change by working over the complex numbers instead of the reals—this allows discussion
impedance rather than resistance, and hence include inductors and capacitors as well as resistors.

For example, while in this setting it was proved by Brune that for finite two terminal circuits a
function can be realised as an impedance function if and only if it is a rational function with positive
real part, analytic on the right-half plane, and takes real values on the real axis [10]. Although
partial results generalise this to multiple-input/multiple-output circuits, a full classification is not
known. Furthermore, many more open questions arise if constraints are placed on the number of
circuit elements.

4.3 Signal-flow diagrams

Baez and Erbele [5] have given a definition of a monoidal category of signal-flow diagrams. What is
the relationship between this category, and the categories of circuits and behaviours discussed here?
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4.4 Hodge theory

Well-known and dating back to Bott, there is a large body of work on the use of homological and
Hodge theoretic methods in understanding circuits of linear resistors, and in particular towards
understanding duality between current and voltage [11, 32, 43]. It may be worthwhile to look at
more general circuits from this perspective, and integrate these ideas into the monoidal setting
developed here.

4.5 Higher categorical concerns

Although we defined ResCirc as a bicategory of cospans, in the above we decategorified immediately
and worked in the 1-categorical setting to discuss the semantics. In the higher categorical setting,
2-morphisms between circuits correspond to rewrite rules or graph transformations. These have
been studied by Verdiére and collaborators [44, 45], and more recently by Alman, Lian, and Tran
[2], and are useful for discussing normal forms of circuits. Here there are also more foundational
questions concerning higher categories of spans and cospans.

It would also be interesting to relate this work to that of Spivak [40] on circuits and operads.
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