
STRUCTURED COSPANS

John Baez and Kenny Courser
QPL 2019

June 12, 2019



In the 1990s we learned something amazing! Feynman
diagrams in particle physics are string diagrams in symmetric
monoidal categories...

... so the world is made of categories!



Throughout science and engineering, people use networks,
drawn as boxes connected by wires:

So, they’re using categories! Which categories are these?

http://math.ucr.edu/home/baez/networks/networks_1.html
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/


Networks of some particular kind, with specified inputs and
outputs, can be seen as morphisms in some symmetric
monoidal category:

X Y

Such networks let us describe open systems, meaning systems
where:
I stuff can flow in or out;
I we can combine systems to form larger systems by

composition and tensoring.



How can we construct symmetric monoidal categories? There
are ‘algebraic’ and ‘geometrical’ ways to do this.

The ‘algebraic’ way is to present a symmetric monoidal
category by specifying:

I generating objects,
I generating morphisms, and
I relations between morphisms.

If we don’t need any relations, we can do this using a ‘Petri net’.



A Petri net is a bipartite directed multigraph:

We call the two kinds of vertices places and transitions .



Petri nets became popular in computer science starting in the
1970s. But they were invented for chemistry in 1939:

as an alternative to the more familiar ‘reaction networks’:

C + O2 → CO2

CO2 + NaOH→ NaHCO3

NaHCO3 + HCl→ H2O + NaCl + CO2

http://math.ucr.edu/home/baez/networks/networks_2.html


Petri nets are also used in models of population biology and
epidemiology:

http://math.ucr.edu/home/baez/networks/networks_2.html


Any Petri net gives a ‘freely generated’ symmetric monoidal
category where:

I the objects are tensor products of places
I the morphisms are tensor products and composites of

transitions

birth : R → R ⊗ R

predation : R ⊗W →W ⊗W

death : W → I

http://math.ucr.edu/home/baez/networks/networks_2.html


Morphisms in this category can be drawn as string diagrams:

http://math.ucr.edu/home/baez/networks/networks_2.html


The ‘geometrical’ way to describe symmetric monoidal
categories is to use cospans with extra structure. For example,
this:

X Y

is really a cospan of finite sets:

S

X

i ??

Y

o__

where S is decorated with extra structure: edges making S into
the vertices of a graph.

Fong invented ‘decorated cospans’ to make this precise:

I Brendan Fong, Decorated cospans, arXiv:1502.00872.

https://johncarlosbaez.wordpress.com/2015/05/01/decorated-cospans/


Decorated cospans are good for studying categories where the
morphisms are networks.

Electrical circuits:

I JB and Brendan Fong, A compositional framework for
passive linear networks, arXiv:1504.05625.

3Ω

1Ω

4Ω

https://arxiv.org/abs/1504.05625
https://arxiv.org/abs/1504.05625


Markov processes:

I JB, Brendan Fong and Blake Pollard, A compositional
framework for Markov processes, arXiv:1508.06448.

6

1
2

1 2
4

22

1

1
2

3

https://johncarlosbaez.wordpress.com/2015/09/04/a-compositional-framework-for-markov-processes/
https://johncarlosbaez.wordpress.com/2015/09/04/a-compositional-framework-for-markov-processes/


Petri nets with rates:

I JB and Blake Pollard, A compositional framework for
reaction networks, arXiv:1704.02051.

r1 r2

https://johncarlosbaez.wordpress.com/2017/07/30/a-compositional-framework-for-reaction-networks/
https://johncarlosbaez.wordpress.com/2017/07/30/a-compositional-framework-for-reaction-networks/


Now Kenny Courser has developed a simpler formalism —
‘structured cospans’ — that avoids certain problems with
decorated cospans.

Kenny has redone most of the previous work using structured
cospans:

I Kenny Courser, Open Systems: A Double Categorical
Perspective, https://tinyurl.com/courser-thesis.

http://math.ucr.edu/home/baez/thesis_courser.pdf
http://math.ucr.edu/home/baez/thesis_courser.pdf


Given a functor
L : A→ X

a structured cospan is a diagram

L(a)

x

L(b)

i o

Think of A as a category of objects with ‘less structure’, and X
as a category of objects with ‘more structure’.



For example, there’s a category of Petri nets, and a functor

L : Set→ Petri

sending any set to the Petri net with that set of places, and no
transitions. In this case, a structured cospan

L(a)

x

L(b)

i o

is called an open Petri net:



To compose open Petri nets f : a→ b and g : b → c:

a cb

we identify the outputs of f with the inputs of g:

a c



In other words, given open Petri nets:

L(a1)

x

L(a2) L(a2)

y

L(a3)

i o i ′ o′

we compose them by taking a pushout in the category Petri:

L(a1)

x

L(a2)

y

L(a3)

x +L(a2) y

i o i ′ o′



To tensor open Petri nets f : a→ b and f ′ : a′ → b′:

a b a′ b′

we set them side by side:

a + a′ b + b′



In other words, to tensor open Petri nets:

L(a)

x

L(b) L(a′)

x ′

L(b′)

i o i ′ o′

we use coproducts in Set and Petri:

L(a) + L(a′)

x + x ′

L(b) + L(b′)

L(a + a′) L(b + b′)

i + i ′ o + o′

� �

and the fact that L : Set→ Petri preserves coproducts.



In general:

Theorem (JB, Kenny Courser)
Let A be a category with finite coproducts,
X a category with finite coproducts and pushouts, and
L : A→ X a functor preserving finite coproducts.

Then there is a symmetric monoidal category LCsp(X) where:
I an object is an object of A;
I a morphism is an isomorphism class of structured cospans

— that is, diagrams in X of the form:

L(a)

x

L(b)

i o



Here two structured cospans are isomorphic if there is a
commuting diagram of this form:

L(a)

x

y

L(b)f�

i o

i ′ o′



We compose structured cospans

L(a1)

x

L(a2) L(a2)

y

L(a3)

i o i ′ o′

using a pushout in X:

L(a1)

x

L(a2)

y

L(a3)

x +L(a2) y

i o i ′ o′



and we tensor structured cospans:

L(a)

x

L(b) L(a′)

x ′

L(b′)

i o i ′ o′

using coproducts in A and X:

L(a) + L(a′)

x + x ′

L(b) + L(b′)

L(a + a′) L(b + b′)

i + i ′ o + o′

� �



Moreover:

Theorem (JB, Kenny Courser)
Under the same conditions, LCsp(X) is a hypergraph category.

It follows that:
I LCsp(X) is a dagger-category, so every morphism f : a→ b

can be turned around to give a morphism f † : b → a.
I Every object a ∈ LCsp(X) is a commutative Frobenius

monoid and thus its own dual.
I Duals and daggers interact well: LCsp(X) is

dagger-compact.



These theorems apply to many examples, giving structured
cospan categories whose morphisms are:

I open electrical circuits
I open Markov processes
I open Petri nets
I open Petri nets with rates

etcetera. In all these examples A and X have finite colimits and
L : A→ X is a left adjoint, so all the conditions of the theorems
hold!

Let’s look at one example: open Petri nets with rates.



In a Petri net with rates, each transition is assigned a rate
constant: a positive real number. We can then write down a
‘rate equation’ describing dynamics. For example, this Petri net
with rates:

A3

A2

A1

r1

r2

gives this rate equation:

dA1

dt
= −r1 A1A2

dA2

dt
= −r1 A1A2 + 2r2 A3

dA3

dt
= r1 A1A2 − r2 A3



In a Petri net with rates, each transition is assigned a rate
constant: a positive real number. We can then write down a
‘rate equation’ describing dynamics. For example, this Petri net
with rates:

A3

A2

A1
r1

r2

gives this rate equation:

dA1

dt
= −r1 A1A2

dA2

dt
= −r1 A1A2 + 2r2 A3

dA3

dt
= r1 A1A2 − r2 A3



There’s a category Petrir of Petri nets with rates, and a functor

L : Set→ Petrir

sending any set to the Petri net with rates having that set of
places, and no transitions.

Our theorems apply, so we get a symmetric monoidal category
Open(Petrir ) where:

I an object is a finite set;
I a morphism f : X → Y is a Petri net with rates together with

functions from X and Y to its set of places:

r1X Y



An open Petri net with rates f : X → Y gives an open rate
equation involving flows in and out, which can be arbitrary
smooth functions of time. For example this:

A1
A3

A2

r1

X Y

I1
I2
I3

O1

gives:
dA1

dt
= −r1 A1A2 + I1(t)

dA2

dt
= −r1 A1A2 + I2(t) + I3(t)

dA3

dt
= 2r1 A1A2 −O1(t)



An open Petri net with rates f : X → Y gives an open rate
equation involving flows in and out, which can be arbitrary
smooth functions of time. For example this:

A1
A3

A2

r1

X Y
I1
I2
I3

O1

gives:
dA1

dt
= −r1 A1A2 + I1(t)

dA2

dt
= −r1 A1A2 + I2(t) + I3(t)

dA3

dt
= 2r1 A1A2 −O1(t)



In fact, the map sending open Petri nets to their open rate
equations a symmetric monoidal functor

� : Open(Petrir )→ Dynam

where Dynam is a category of ‘open dynamical systems’.

So, we can describe dynamical systems compositionally, a
piece at a time, using open Petri nets with rates.



That’s what structured cospans are good for:
I describing networks and how to build bigger networks from

smaller ones, using categories;
I describing the behavior of networks in a compositional

way, using functors.


