Heat flows adjust local ion concentrations in favor of prebiotic chemistry

Christof Mast Systems Biophysics LMU Munich

Virtual SMB 2021 Annual Meeting

June 13 - 17, 2021

Emergence of life

Emergence of life

ISLATI +

It's hard!

Ionic boundary conditions -11.1 111 ALLA LAL CAR $\frac{[Mg^{2+}]}{[Na^+]}$ = 0.001 to 0.1**Molecular** evolution **RNA** UNITEST pH 1-11 В* Kallies Feinchemie AG **A*** Ch.-B. Ribozymes **B*** Er 30 ER **E**^{*} E_R

Systems Pre-Biophysics Coupling between physical non-equilibria and

Coupling between physical non-equilibria and prebiotic chemistry & geology

scale not correct

Systems Pre-Biophysics Coupling between physical non-equilibria and

Coupling between physical non-equilibria and prebiotic chemistry & geology

scale not correct

Systems Pre-Biophysics Coupling between physical non-equilibria and

Coupling between physical non-equilibria and prebiotic chemistry & geology

scale not correct

Thermophoresis: The "capacitor effect"

Thermophoresis: The "capacitor effect"

Increase thermophoretic effect by convection

Thermophoresis only:

(no **g**, thin vessel, $\mathbf{g} \otimes \nabla T$ same direction..)

Increase thermophoretic effect by convection

Thermophoresis only: (no \mathbf{g} this vessel $\mathbf{g} \in \nabla T$ some \mathbf{g}

(no **g**, thin vessel, $\mathbf{g} \otimes \nabla T$ same direction..)

Thermophoresis + convection:

Increase thermophoretic effect by convection

Thermophoresis only: (no **g**, thin vessel, $\mathbf{g} \otimes \nabla T$ same direction..)

Thermophoresis + convection:

Experiment

Experiment

Experiment

Setup

Setup

Leaching only:

Matreux, LeVay, .., Scheu, Dingwell, Braun, Mutschler, Mast, Heat flows in rock cracks naturally optimize salt compositions for ribozymes, under final review

Ribozyme function in the trap:

Matreux, LeVay, .., Scheu, Dingwell, Braun, Mutschler, Mast, Heat flows in rock cracks naturally optimize salt compositions for ribozymes, under final review

Ribozyme function in the trap:

Matreux, LeVay, .., Scheu, Dingwell, Braun, Mutschler, Mast, Heat flows in rock cracks naturally optimize salt compositions for ribozymes, under final review

Matreux, LeVay, .., Scheu, Dingwell, Braun, Mutschler, Mast, Heat flows in rock cracks naturally optimize salt compositions for ribozymes, under final review

Ribozyme function in the trap:

	0.5 mM				1 mM				4 mM				[Mg]				$ \Delta $	Na
and the second	1000	10	0	0	1000	10	0	0	1000	10	0 0	0	[Na]/[Mg]	\sim	-	•	-	1000x
	_		-	+	-	-	-	+	-	-	-	+	ΔΤ	\sim]	$\overline{\wedge}$	_	10x
	1	2	3	4	5	6	7	8	9	10) 11	12	lane	fe	50-			
Elizabeth and													198	<u>a</u>	· · ·		-	<u> 0x</u> 🧹
											-	-	100	st	-		+	
								-			-	-	132	ą	1		•	
								-			-		99	d sr	25-			l'aller a
				alaa			-	-		-	•	•	66	SSe	-	•	-	· · · · · · · · · · · · · · · · · · ·
														oce	0-	\$ -		·····
					-									brd			4	6 8 2 4 1
					a second										Γ	Ma	COI	ncentration (mM)

Matreux, LeVay, ..., Scheu, Dingwell, Braun, Mutschler, Mast, Heat flows in rock cracks naturally optimize salt compositions for ribozymes, under final review

Results: Heat flows boost PO4/Ca

Inversion of pH gradient: formic acid

Combination with DNA/RNA

Combination with DNA/RNA

Acknowledgments

Thanks to my PhD students:

A. Kühnlein, T. Matreux

Thanks to the Braun group:

C. Dirscherl, N. Y. Martin, A. Ianaselli, A. Salditt, P. Schwintek, M. Weingart, P. Aikkila, A. Schmid, A. Sehnem, J. Stein, A. Serrao, A. Salditt, S. Wunnava, J. Langlais, N. Hermis, A. Floroni, F.

Dänekamp, **D. Braun**

Thanks to H. Mutschler (Dortmund) Thanks to the Gerland group (TUM): B. Altaner, J. Raith, U. Gerland

Thanks to: D. Dingwell, B. Scheu Thanks for your attention

erc

Simons Collaboration on the Origins of Life