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The tale of the non-interacting species
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Quasi-Steady State Approximation (QSSA)

Michaelis-Menten mechanism and the QSSA

Conversion of substrate S to product P

S + E
k1−−⇀↽−−
k2

Y , Y
k3−−→ P + E

ċS = −k1cScE + k2cY

ċP = k3cY

ċE = −k1cScE + k2cY + k3cY

ċY = k1cScE − k2cY

T̂ = cS + cP + cY , T = cE + cY

Our interest is the accumulation of P in terms of S , so the species E ,Y
are nuisance species

Segal & Slemrod (1989)
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Quasi-Steady State Approximation (QSSA)

Michaelis-Menten mechanism and the QSSA

A standard heuristic procedure to reduce a model to a simpler model by
elimination of variables (species) is that of QSSA

It assumes quasi-stationarity of the species to eliminate

ċS = −k1cScE + k2cY

ċP = k3cY

ċE = −k1cScE + k2cY + k3cY

ċY = k1cScE − k2cY

T̂ = cS + cP + cY , T = cE + cY

We solve the red equations in terms of cE , cY , and plug the solution back
into the remaining equations to get

ċS = −ċP =
Tk1k3cs

k1cs + k2 + k3
Segal & Slemrod (1989)

Carsten Wiuf 4 / 23



Quasi-Steady State Approximation (QSSA)

Michaelis-Menten mechanism and the QSSA

A standard heuristic procedure to reduce a model to a simpler model by
elimination of variables (species) is that of QSSA

It assumes quasi-stationarity of the species to eliminate
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Tk1k3cs

k1cs + k2 + k3
Segal & Slemrod (1989)

Carsten Wiuf 4 / 23



Quasi-Steady State Approximation (QSSA)

Michaelis-Menten mechanism and the QSSA

The QSSA claims the trajectories of the reduced system are close to the
trajectories of the original system

For this, some assumptions are made on the speed of the reactions (ki )
and the total amounts of the eliminated species (T )

The method of verification in general (if any is given!) is reference to
Tikhonov’s theorem

However, QSSA is not in general a valid procedure and cannot be verified
generally1

My interest is to give a simple procedure that guarantees the QSSA is
valid2

1Lax, Seliger & Walcher (2018); 2Feliu, Lax, Walcher & Wiuf (2021)
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Example

Two-substrate mechanism

Two-substrate example with mass-action kinetics (Cornish-Bowden, 2012)

Substrate binding: E + A
k1−−⇀↽−−
k2

EA EA+ B
k3−−⇀↽−−
k4

EAB

Transformation: EAB
k5−−⇀↽−−
k6

EPQ

Product release: EPQ
k7−−⇀↽−−
k8

EQ + P EQ
k9−−⇀↽−−
k10

E + Q

A+ B
r1−−⇀↽−−r2 P + Q r1(c) =

TE cAcB
p(c) , r2(c) =

TE cPcQ
p(c)

The red species are non-interacting (stoichiometric coefficients are one and
they are never on the same side of a reaction)

Eliminated species: E ,EA,EAB,EPQ,EQ Core species: A,B,P,Q
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Theorem

Reduction theorem

Let a mass-action reaction network and a set of non-interacting species be given.

Further suppose

the non-interacting species are consumed and produced

the rate constants of the reactions involving non-interacting species in the
reactant scale as ki =

1
ϵκi (‘fast’ reactions)

the conserved quantity of any conservation law involving only
non-interaction species scales as T = ϵτ

There exists a mass-action-like reduced reaction network (w/o the non-interacting
species) and a time t > 0, such that the trajectories of original network converge
to the trajectories of the reduced on finite time intervals [u, t], for any 0 < u < t,
as ϵ → 0. The reaction rates of the reduced system are rational functions,
depending on κi , τ

Moreover, the QSSA is valid

Feliu & Wiuf (2012,2013a,b); Sáez, Wiuf & Feliu (2016); Feliu, Lax, Walcher & Wiuf (2021)

Related work: King & Altman (1956); Horiuti & Nakamura (1957); Wong & Hanes (1962)
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Feliu & Wiuf (2012,2013a,b); Sáez, Wiuf & Feliu (2016); Feliu, Lax, Walcher & Wiuf (2021)

Related work: King & Altman (1956); Horiuti & Nakamura (1957); Wong & Hanes (1962)

Carsten Wiuf 7 / 23



Theorem

Reduction theorem

Let a mass-action reaction network and a set of non-interacting species be given.
Further suppose

the non-interacting species are consumed and produced

the rate constants of the reactions involving non-interacting species in the
reactant scale as ki =

1
ϵκi (‘fast’ reactions)

the conserved quantity of any conservation law involving only
non-interaction species scales as T = ϵτ

There exists a mass-action-like reduced reaction network (w/o the non-interacting
species) and a time t > 0, such that the trajectories of original network converge
to the trajectories of the reduced on finite time intervals [u, t], for any 0 < u < t,
as ϵ → 0. The reaction rates of the reduced system are rational functions,
depending on κi , τ

Moreover, the QSSA is valid
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Theorem

Returning to the example

Substrate binding: E + A

1
ϵ κ1

−−−⇀↽−−−
1
ϵ κ2

EA EA+ B

1
ϵ κ3

−−−⇀↽−−−
1
ϵ κ4

EAB

Transformation: EAB

1
ϵ κ5

−−−⇀↽−−−
1
ϵ κ6

EPQ

Product release: EPQ

1
ϵ κ7

−−−⇀↽−−−
1
ϵ κ8

EQ + P EQ

1
ϵ κ9

−−−⇀↽−−−
1
ϵ κ10

E + Q

ϵτE = cE + cEA + cEAB + cEPQ + cEQ

Carsten Wiuf 8 / 23



Theorem

Michaelis-Menten mechanism

S + E
k1−−⇀↽−−
k2

Y , Y
k3−−→ P + E .

Non-interacting species E ,Y

All reactions involve E or Y in the reactant and T = cY + cE , so

ki =
1
ϵκi , i = 1, 2, 3, T = ϵτ

The reduced system corresponds to the system S → P with kinetics

ċS = −ċP =
τκ1κ3cs

κ1cs + κ2 + κ3

Carsten Wiuf 9 / 23



Proof

The proof

There are three steps in the proof

Derive the reduced ODE system using QSSA1

Identify a mass-action-like reaction network for the reduced ODE
system2

Apply Tikhonov theory to deduce convergence of trajectories3

All three steps rely on the eliminated species being non-interacting

1Feliu & Wiuf (2012,2013a,b); 2Sáez, Wiuf, Feliu (2016); 3Feliu, Walcher & Wiuf (2018)

Carsten Wiuf 10 / 23



Proof

ODE system and QSSA

E + A
k1−−⇀↽−−
k2

EA ċE = −k1cEcA − k10cEcQ + k2cEA + k9cEQ

EA+ B
k3−−⇀↽−−
k4

EAB ċA = −k1cEcA + k2cEA

EAB
k5−−⇀↽−−
k6

EPQ ċB = −k3cBcEA + k4cEAB

EPQ
k7−−⇀↽−−
k8

EQ + P ċP = −k8cPcEQ + k7cEPQ

EQ
k9−−⇀↽−−−
k10

E + Q ċQ = −k10cEcQ + k9cEQ

ċEA = −k3cBcEA − k2cEA + k1cEcA + k4cEAB

ċEAB = −k4cEAB − k5cEAB + k3cBcEA + k6cEPQ

ċEPQ = −k6cEPQ − k7cEPQ + k8cPcEQ + k5cEAB

ċEQ = −k9cEQ − k8cPcEQ + k10cEcQ + k7cEPQ

Conservation laws : TE = cE + cEA + cEAB + cEPQ + cEQ

TA+Q = cA + cQ + cEA + cEAB + cEPQ + cEQ

TB+Q = cB + cQ + cEAB + cEPQ + cEQ

TB+P = cB + cP + cEAB + cEPQ
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Proof

Interpretation as a linear system

Steady state equations of cE , cEA, cEAB , cEPQ and cEQ

ċE = 0 = −k1cEcA − k10cEcQ + k2cEA + k9cEQ

ċEA = 0 = −k2cEA − k3cBcEA + k1cEcA + k4cEAB

ċEAB = 0 = −k4cEAB − k5cEAB + k3cBcEA + k6cEPQ

ċEPQ = 0 = −k6cEPQ − k7cEPQ + k8cPcEQ + k5cEAB

ċEQ = 0 = −k8cPcEQ − k9cEQ + k10cEcQ + k7cEPQ

TE = cE + cEA + cEAB + cEPQ + cEQ

The system is linear in cE , cEA, cEAB , cEPQ , cEQ and has a unique solution

. . . because the species are non-interacting

Carsten Wiuf 12 / 23



Proof

Solution

q(c)= (k4k6+k4k7+k5k7)k2k9+k2k4k6k8cP+k3k5k7k9cB+(k4k6+k4k7+k5k7)k2k10cQ+(k4k6+k5k7+k4k7)k1k9cA

+(k5k9+k7k9+k5k7+k6k9)k1k3cAcB+k3k5k7k10cB cQ+k1k4k6k8cAcP+(k5+k6)k1k3k8cAcB cP

+(k5k2+k4k2+k6k2+k6k4)k8k10cP cQ+(k5+k6)k3k8k10cB cP cQ

cE = TE
q(c)

(
(k4k6 + k4k7 + k5k7)k2k9 + k3k5k7k9cB + k2k4k6k8cP

)
cEA = TE

q(c)

(
(k4k6 + k5k7 + k4k7)k1k9cA + k4k6k8k10cPcQ + k1k4k6k8cAcP

)
cEAB = TE

q(c)

(
(k6 + k7)k1k3k9cAcB + k2k6k8k10cPcQ + k3k6k8k10cBcPcQ

+k1k3k6k8cAcBcP
)

cEPQ = TE
q(c)

(
k1k3k5k9cAcB + (k4 + k5)k2k8k10cPcQ + k3k5k8k10cBcPcQ

+k1k3k5k8cAcBcP
)

cEQ = TE
q(c)

(
(k4k6 + k5k7 + k4k7)k2k10cQ + k3k5k7k10cBcQ + k1k3k5k7cAcB

)
Non-negative solution because the species are non-interacting
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Proof

The reduced reaction network

Inserting these expressions into the remaining equations yields

ċA = TE
q(c) (−α1cAcB + α2cPcQ) α1 = k1k3k5k7k9

ċB = TE
q(c) (−α1cAcB + α2cPcQ) α2 = k2k4k6k8k10

ċP = TE
q(c) ( α1cAcB − α2cPcQ)

ċQ = TE
q(c) ( α1cAcB − α2cPcQ)

This system in invariant in the non-negative orphant

. . . because the species are non-interacting
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Proof

Reduced ODE system

Linear elimination of non-interacting species

The concentrations of a set of non-interacting species can be
non-negatively eliminated from the steady state equations.
That is, the concentrations of the non-interacting species are rational
functions of the remaining species, and furthermore, they are non-negative
for non-negative concentrations of the remaining species

ODE system without the non-interacting species

By insertion of the rational expressions obtained for the non-interacting
species into the original ODE system, an ODE system for the remaining
species is obtained

1Feliu & Wiuf (2012,2013a,b)
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Proof

The reduced reaction network

Returning to the reduced ODE system

ċA = TE

q(c) (−α1cAcB + α2cPcQ) α1 = k1k3k5k7k9

ċB = TE

q(c) (−α1cAcB + α2cPcQ) α2 = k2k4k6k8k10

ċP = TE

q(c) ( α1cAcB − α2cPcQ)

ċQ = TE

q(c) ( α1cAcB − α2cPcQ)

Reactions and kinetics

A+ B
r1−−→ P + Q r1(c) =

TE

q(c)α1cAcB

P + Q
r2−−→ A+ B r2(c) =

TE

q(c)α2cPcQ

The kinetics is mass-action-like . . . because of the non-interacting species

Carsten Wiuf 16 / 23



Proof

Reduction theorem

Let a mass-action reaction network and a set of non-interacting species be given.
Further suppose

the non-interacting species are consumed and produced

the rate constants of the reactions involving non-interacting species in the
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1
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There exists a mass-action-like reduced reaction network (w/o the non-interacting
species) and a time t > 0, such that the trajectories of original network converge
to the trajectories of the reduced on finite time intervals [u, t], for any 0 < u < t,
as ϵ → 0. The reaction rates of the reduced system are rational functions,
depending on κi , τ

Moreover, the QSSA is valid
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Tikhonov reduction

Tikhonov’s theorem assume ‘fast’ and ‘slow’ variables

ẋ = f (x , y), ϵẏ = g(x , y)

We have ‘fast’ and ‘slow’ reactions, defined by the reaction rate constants

ẋ =
1

ϵ
f1(x , y) + f2(x , y), ẏ =

1

ϵ
g1(x , y) + g2(x , y)

There exist conditions under which a reaction network with fast and slow
reactions can be transformed into Tikhonov form1

Assuming mass-action kinetics and that the eliminated species are non-interacting

then the conditions are fulfilled

1Lax, Seliger & Walcher (2018)
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Application of Tikhonov theory

Tikhonov reduction (non-interacting species)1

Let a mass-action reaction network and a set of non-interacting species be
given. Further suppose

the eliminated-species graph consists of strongly connected
components

the rate constants of the reactions involving non-interacting species in
the reactant scale as ki =

1
ϵκi

the conserved quantity of any conservation law involving only
non-interaction species fulfils T = ϵτ

The trajectories of the ODE system converge to the trajectories of the
reduced ODE system on finite time intervals [t1, t2], 0 < t1 < t2, as ϵ → 0.
The reaction rates of the reduced system depend on κi , τi

1Feliu, Walcher & Wiuf (2018)
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Eliminated-species graph

E + A
k1−−⇀↽−−
k2

EA EA+ B
k3−−⇀↽−−
k4

EAB EAB
k5−−⇀↽−−
k6

EPQ

EPQ
k7−−⇀↽−−
k8

EQ + P EQ
k9−−⇀↽−−
k10

E + Q

E EA EAB EPQ EQ
k3cB

k4

k5

k6

k7

k8cP

k1cA

k2

k9

k10cQ
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Reactions in the reduced reaction network

i) Consider a directed cycle and the corresponding reactions

ii) Cancel the eliminated species on both sides

iii) Add the remaining reactants and products

iv) Define the rate function as TE
q(c)

r(c)

E EA EAB EPQ EQ
k3cB

k4

k5

k6

k7

k8cP

k1cA

k2

k9

k10cQ

r(c) = k1k3k5k7k9cAcB

E+A
k1cA−−→ EA

EA+B
k3cB−−→ EAB

EAB
k5−−→ EPQ

EPQ
k7−−→ EQ+P

EQ
k9−−→ E+Q

A+ B
TE
q(c) r(c)−−−−→ P + Q

Carsten Wiuf 22 / 23



Thanks

Reactions in the reduced reaction network

i) Consider a directed cycle and the corresponding reactions

ii) Cancel the eliminated species on both sides

iii) Add the remaining reactants and products

iv) Define the rate function as TE
q(c)

r(c)

E EA EAB EPQ EQ
k3cB

k4

k5

k6

k7

k8cP

k1cA

k2

k9

k10cQ

r(c) = k1k3k5k7k9cAcB

E+A
k1cA−−→ EA

EA+B
k3cB−−→ EAB

EAB
k5−−→ EPQ

EPQ
k7−−→ EQ+P

EQ
k9−−→ E+Q

A+ B
TE
q(c) r(c)−−−−→ P + Q

Carsten Wiuf 22 / 23



Thanks

Reactions in the reduced reaction network

i) Consider a directed cycle and the corresponding reactions

ii) Cancel the eliminated species on both sides

iii) Add the remaining reactants and products

iv) Define the rate function as TE
q(c)

r(c)

E EA EAB EPQ EQ
k3cB

k4

k5

k6

k7

k8cP

k1cA

k2

k9

k10cQ

r(c) = k1k3k5k7k9cAcB

E+A
k1cA−−→ EA

EA+B
k3cB−−→ EAB

EAB
k5−−→ EPQ

EPQ
k7−−→ EQ+P

EQ
k9−−→ E+Q

A+ B
TE
q(c) r(c)−−−−→ P + Q

Carsten Wiuf 22 / 23



Thanks

Reactions in the reduced reaction network

i) Consider a directed cycle and the corresponding reactions

ii) Cancel the eliminated species on both sides

iii) Add the remaining reactants and products

iv) Define the rate function as TE
q(c)

r(c)

E EA EAB EPQ EQ
k3cB

k4

k5

k6

k7

k8cP

k1cA

k2

k9

k10cQ

r(c) = k1k3k5k7k9cAcB

E+A
k1cA−−→ EA

EA+B
k3cB−−→ EAB

EAB
k5−−→ EPQ

EPQ
k7−−→ EQ+P

EQ
k9−−→ E+Q

A+ B
TE
q(c) r(c)−−−−→ P + Q

Carsten Wiuf 22 / 23



Thanks

Reactions in the reduced reaction network

Reduced reaction network (non-interacting species)1

The reduced ODE system can always be interpreted as a reaction network
on the core species.
The reactions are derived from the cycles of the eliminated-species graph

Kinetic of the reduced reaction network (non-interacting species)1

If the original system has mass-action kinetics then the reaction rates are
of the form p(c)

q(c) , where p, q are polynomials in c , and p(c)
q(c) is irreducible.

Furthermore, the numerator p(c) has mass-action form

1Sáez, Wiuf & Feliu (2017)

King & Altman (1956); Horiuti & Nakamura (1957); Wong & Hanes (1962); Temkin (1965); Temkin & Bonchev (1992)
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