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Preface

These are the first 50 issues of This Week’s Finds of Mathematical Physics. This series has
sometimes been called the world’s first blog, though it was originally posted on a “usenet
newsgroup” called sci.physics.research — a form of communication that predated the
world-wide web. I began writing this series as a way to talk about papers I was reading
and writing, and in the first 50 issues I stuck closely to this format. These issues focus
rather tightly on quantum gravity, topological quantum field theory, knot theory, and
applications of n-categories to these subjects. However, there are also digressions into
Lie algebras, elliptic curves, linear logic and other subjects.

Tim Hosgood kindly typeset all 300 issues of This Week’s Finds in 2020. They will
be released in six installments of 50 issues each. I have edited the issues here to make
the style a bit more uniform and also to change some references to preprints, technical
reports, etc. into more useful arXiv links. This accounts for some anachronisms where I
discuss a paper that only appeared on the arXiv later.

I thank Blake Stacey for helping me fix many mistakes. There are undoubtedly many
still remaining. If you find some, please contact me and I will try to fix them.
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WEEK 1 JANUARY 19, 1993

Week 1

January 19, 1993

I thought I might try something that may become a regular feature on sci.physics.research,
if that group comes to be. The idea is that I’ll briefly describe the papers I have enjoyed
this week in mathematical physics. I am making no pretense at being exhaustive or ob-
jective. . . what I review is utterly a function of my own biases and what I happen to
have run into. I am not trying to “rate” papers in any way, just to entertain some people
and perhaps inform them of some papers they hadn’t yet run into. “This week” refers
to when I read the papers, not when they appeared (which may be much earlier or also
perhaps later, since some of these I am getting as preprints).

1) J. Scott Carter and Masahico Saito, “Syzygies among elementary string interactions
in 2+1 dimensions”, Lett. Math. Phys. 23 (1991), 287–300.

J. Scott Carter and Masahico Saito, “On formulations and solutions of simplex
equations”, preprint.

J. Scott Carter and Masahico Saito, “A diagrammatic theory of knotted surfaces”,
preprint.

J. Scott Carter and Masahico Saito, “Reidemeister moves for surface isotopies and
their interpretations as moves to movies”, preprint.

The idea here is to take what has been done for knots in 3-dimensional space and gen-
eralize it to “knotted surfaces,” that is, embedded 2-manifolds in 4-dimensional space.
For knots it is convenient to work with 2-dimensional pictures that indicate over- and
under-crossings; there is a well-known small set of “Reidemeister moves” that enable
you to get between any two pictures of the same knot. One way to visualize knotted
surfaces is to project them down to R3; there are “Roseman moves” analogous to the
Reidemeister moves that enable to get you between any two projections of the same
knotted surface. Carter and Saito prefer to work with “movies” that display a knotted
surface as the evolution of knots (actually links) over time. Each step in such a movie
consists of one of the “elementary string interactions.” They have developed a set of
“movie moves” that connect any two movies of the same knotted surface. These papers
contain a lot of fascinating pictures! And there does seem to be more than a minor rela-
tion to string theory. For example, one of the movie moves is very analogous to the 3rd
Reidemeister move — which goes

=

I won’t try to draw the corresponding movie move, but just as the 3rd Reidemeister
move is the basis for the Yang–Baxter equation R23R13R12 = R12R13R23 (the subscripts
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WEEK 1 JANUARY 19, 1993

indicate which strand is crossing which), the corresponding movie move is the basis for a
variant of the “Frenkel–Moore” form of the “Zamolodchikov tetrahedron equation” which
first arose in string theory. This variant goes like S124S135S236S456 = S456S236S135S124,
and Carter and Saito draw pictures that make this equation almost as obvious as the
Yang–Baxter equations.

In any event, this is becoming a very hot subject, since topologists are interested in
generalizing the new results on knot theory to higher dimensions, while some physicists
(especially Louis Crane) are convinced that this is the right way to tackle the “problem
of time” in quantum gravity (which, in the loop variables approach, amounts to study-
ing the relationship of knot theory to the 4th dimension, time). In particular, Carter
and Saito are investigating how to construct solutions of the Zamolodchikov equations
from solutions of the Yang–Baxter equation — the goal presumably being to find in-
variants of knotted surfaces that are closely related to the link invariants coming from
quantum groups. This looks promising, since Crane and Yetter have just constructed a 4-
dimensional topological quantum field theory from the quantum SU(2). But apparently
nobody has yet done it.

Lovers of category theory will be pleased to learn that the correct framework for
this problem appears to be the theory of 2-categories. These are categories with objects,
morphisms between objects, and also “2-morphisms” between objects. The idea is simply
that tangles are morphisms between sets of points (i.e., each of the tangles in the picture
above are morphisms from 3 points to 3 points), while surfaces in R4 are 2-morphisms
between tangles. The instigators of the 2-categorical approach here seem to be Kapranov
and Voevodsky, whose paper “2-categories and Zamolodhikov tetrahedra equations”, to
appear in Proc. Symp. Pure Math., is something I will have to get ahold of soon by any
means possible (I can probably nab it from Oleg Viro down the hall; he is currently
hosting Kharmalov, who is giving a series of talks on knotted surfaces at 2-categories
here at UCR). But it seems to be Louis Crane who is most strongly proclaiming the
importance of 2-categories in physics.

2) Jorge Pullin, “Knot theory and quantum gravity in loop space: a primer”, to appear
in Proceedings of the Vth Mexican School of Particles and Fields, ed. J. L. Lucio, World
Scientific, Singapore, now available as hep-th/9301028.

This is a review of the new work on knot theory and the loop representation of
quantum gravity. Pullin is among a group who has been carefully studying the “Chern–
Simons state” of quantum gravity, so his presentation, which starts with a nice treatment
of the basics, leads towards the study of the Chern–Simons state. This is by far the best-
understood state of quantum gravity, and is defined by SU(2) Chern–Simons theory in
terms of the connection representation, or by the Kauffman bracket invariant of knots
in the loop representation. It is a state of Euclideanized quantum gravity with nonzero
cosmological constant, and is not invariant under CP. Ashtekar has recently speculated
that it is a kind of “ground state” for gravity with cosmological constant (evidence for
this has been given by Kodama), and that its CP violation may be a “reason” for why the
cosmological constant is actually zero (this part is extremely speculative). Louis Crane,
on the other hand, seems convinced that the Chern–Simons state (or more generally
states arising from modular tensor categories) is the wavefunction of the universe. In
any event, it’s much nicer to have one state of quantum gravity to play with than none,
as was the case until recently.
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WEEK 1 JANUARY 19, 1993

3) Lee Smolin, “Time, measurement and information loss in quantum cosmology”,
preprint available as gr-qc/9301016.

This is, as usual for Smolin, a very ambitious paper. It attempts to sketch a solution of
some aspects of the problem of time in quantum gravity (in terms of the loop represen-
tation). I might as well quote from the introduction:

Thus, to return to the opening question, if we are, within a nonperturbative
framework, to ask what happens after a black hole evaporates, we must be
able to construct spacetime diffeomorphism invariant operators that can give
physical meaning to the notion of “after the evaporation.” Perhaps I can put
it in the following way: the questions about loss of information or breakdown
of unitary evolution rely, implicitly, on a notion of time. Without reference to
time it is impossible to say that something is being lost. In a quantum theory of
gravity, time is a problematic concept which makes it difficult to even ask such
questions at the nonperturbative level, without reference to a fixed spacetime
manifold. [I would prefer to say “fixed background metric” — JB] The main
idea, which it is the purpose of this paper to develop, is that the problem of time
in the nonperturbative framework is more than an obstacle that blocks any easy
approach to the problem of loss of information in black hole evaporation. It
may be the key to its solution.

As many people have argued, the problem of time is indeed the conceptual core of
the problem of quantum gravity. Time, as it is conceived in quantum mechanics
is a rather different thing than it is from the point of view of general relativity.
The problem of quantum gravity, especially when put in the cosmological con-
text, requires for its solution that some single concept of time be invented that
is compatible with both diffeomorphism invariance and the principle of super-
position. However, looking beyond this, what is at stake in quantum gravity is
indeed no less and no more than the entire and ancient mystery: What is time?
For the theory that will emerge from the search for quantum gravity is likely to
be the background for future discussions about the nature of time, as Newtonian
physics has loomed over any discussion about time from the seventeenth century
to the present.

I certainly do not know the solution to the problem of time. Elsewhere I have
speculated about the direction in which we might search for its ultimate resolu-
tion. In this paper I will take a rather different point of view, which is based on
a retreat to what both Einstein and Bohr taught us to do when the meaning of
a physical concept becomes confused: reach for an operational definition. Thus,
in this paper I will adopt the point of view that time is precisely no more and no
less than that which is measured by physical clocks. From this point of view, if
we want to understand what time is in quantum gravity then we must construct
a description of a physical clock living inside a relativistic quantum mechanical
universe.

Technically speaking, what Smolin does is roughly as follows. He considers quantum
gravity coupled to matter, modelled in such a way that the Hilbert space is spanned
by states labelled by isotopy classes of: any number N loops in a compact 3-manifold
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WEEK 1 JANUARY 19, 1993

M (“space”) and N surfaces with boundary in M . (This trick is something I hadn’t seen
before, though Smolin gives references to it.) He then introduces a “clock field,” which is
just a free scalar field coupled to the gravity, and does gauge-fixing to see what evolution
with respect to this clock field looks like. I will have to read this a number of times!
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WEEK 2 JANUARY 24, 1993

Week 2

January 24, 1993

Well, this week I have had guests and have not been keeping up with the literature. So
“this week’s finds” are mostly papers that have been sitting around in my office and that
I am now filing away.

1) Daniel Armand Ugon, Rodolfo Gambini, and Pablo Mora, “Link invariants for inter-
secting loops”, October 1992 preprint, available from Gambini, Instituto de F́ısica,
Facultad de Ciencias, Tristán Narvaja 1674, Montevideo, Uruguay.

The authors generalize the standard trick for getting link invariants from solutions of the
Yang–Baxter equations, and show how to get link invariants applicable to generalized
links with 4-valent or 6-valent vertices, that is, transverse double points, like

and transverse triple points. This involves working with a generalization of the braid
group that includes generators for these vertices as well as the usual generators for
crossings. In this case of 4-valent vertices, rigorously working out the generators and
relations was done by Joan Birman in the paper below, but various people had used the
answer already. The case of triple points is very important in physics due to the connec-
tion with the loop representation of quantum gravity (which is what Gambini is working
on these days). In this representation, states are invariants of (possibly generalized)
links, and only by considering links with triple points can one define operators such as
the “total volume of the universe”.

It is thus quite interesting that the authors make progress on determining the “right”
extension of the HOMFLY polynomial invariant of links to links with transverse triple
points — that is, the extension that one gets by doing calculations in SU(n) Chern–
Simons theory. In a special case, namely when the HOMFLY polynomial reduces to
the Kauffman bracket (which corresponds to the Lie group SU(2)), one gets a state of
quantum gravity that has been under extensive investigation these days. The authors
compute the Kaufmann bracket of links with triple points using first order perturbation
theory in Chern–Simons theory. A nonperturbative calculation would be very good to
have!

2) Joan Birman, “New points of view in knot theory”, Bull. Amer. Math. Soc. 28
(1993), 253–287. Also available as math/9304209.

This is a nice review of the recent work on Vassiliev invariants of links. Given an invariant
of oriented links, one can extend it to links with arbitrarily many double points by setting
the value of the invariant on a link with a double point
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WEEK 2 JANUARY 24, 1993

to be the invariant of the link with the double point changed to

minus the invariant of the link with the double point changed to

Note that the link has to be oriented for this rule to make sense, and the strands shown
in the pictures above should be pointing downwards. Now, having made this extension,
we say a link invariant is a Vassiliev invariant of degree n if it vanishes on all links with
n+ 1 or more double points.

It is interesting that this rule for extending link invariants to links with double points,
when applied to the Kauffman bracket, does not give the extension computed by Gambini
et al in the paper above. (This is not surprising, actually, but it shows that some interest-
ing things are going on in the subject of invariants for links with self-intersections and
Chern–Simons theory.)

3) Louis Kauffman and P. Vogel, “Link polynomials and a graphical calculus”, Jour. of
Knot Theory and its Ramifications, 1 (1992), 59–104.

This is another nice treatment of link invariants for generalized links with self-intersections.
It concentrates on the famous link invariants coming from Chern–Simons theory — the
HOMFLY polynomial (from SU(n)) and the Kauffman polynomial (from SO(n)). Lots of
good pictures.

And, switching back to the category theory, 2-categories, and the like, let me list these
before filing them away:

4) Louis Crane, “Categorical physics”, available as hep-th/9301061.

Louis Crane and David Yetter, A categorical construction of 4d topological quantum
field theories, available as hep-th/9301062.

Louis Crane and Igor Frenkel, Hopf Categories and their representations, draft
version.

Louis Crane and Igor Frenkel, Categorification and the construction of topological
quantum field theory, draft version.

These outline Louis Crane’s vision of an approach to generally covariant 4-dimensional
quantum field theories (e.g. quantum gravity or a “theory of everything”) based on 2-
categories. “Categorical physics” sketches the big picture, while the paper with Yetter
provides a juicy mathematical spinoff — the first known four-dimensional TQFT, based
on the representations of quantum SU(2) and very similar in spirit to the Turaev–Viro
construction of a 3d TQFT from quantum SU(2). The papers with Frenkel (apparently
still not in their final form) describe the game plan and hint at marvelous things still
to come. The conjecture is stated: “a 4d TQFT can be reconstructed from a tensor 2-
category”. This follows up on Crane’s earlier work on getting 3d TQFTs from modular
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WEEK 2 JANUARY 24, 1993

tensor categories (big example: the categories of representations of quantum groups at
roots of unity). And the authors define the notion of a Hopf category, show how the
category of module categories of a Hopf category is a tensor 2-category, and use “cate-
gorification” to turn the universal enveloping algebra of a quantum group into a Hopf
category. Sound abstract? Indeed it is. But the aim is clear: to cook up 4d TQFTs from
quantum groups. Such quantum field theories might be physically important; indeed,
the one associated to SU(2) is likely to have a lot to do with quantum gravity.

I am currently perusing Kapranov and Voevodsky’s massive paper on 2-categories,
which seems to be the starting point for Crane’s above papers and also those of Carter/Saito
that I mentioned last week. Next week I should post an outline of what this paper does.

5) S. W. Hawking, R. Laflamme and G. W. Lyons, “The origin of time asymmetry”,
preprint available as gr-qc/9301017.

I haven’t had a chance to read this one yet but it looks very ambitious and is likely to be
interesting. Let me just quote from the introduction to get across the goal:

The laws of physics do not distinguish the future from the past direction of time.
More precisely, the famous CPT theorem says that the laws are invariant under
the combination of charge conjugation, space inversion and time reversal. In
fact effects that are not invariant under the combination CP are very weak, so to
a good approximation, the laws are invariant under the time reversal operation
T alone. Despite this, there is a very obvious difference between the future and
past directions of time in the universe we live in. One only has to see a film run
backward to be aware of this.

There are are several expressions of this difference. One is the so-called psycho-
logical arrow, our subjective sense of time, the fact that we remember events in
one direction of time but not the other. Another is the electromagnetic arrow, the
fact that the universe is described by retarded solutions of Maxwell’s equations
and not advanced ones. Both of these arrows can be shown to be consequences
of the thermodynamic arrow, which says that entropy is increasing in one di-
rection of time. It is a non trivial feature of our universe that it should have a
well defined thermodynamic arrow which seems to point in the same direction
everywhere we can observe. Whether the direction of the thermodynamic arrow
is also constant in time is something we shall discuss shortly.

There have been a number of attempts to explain why the universe should have
a thermodynamic arrow of time at all. Why shouldn’t the universe be in a
state of maximum entropy at all times? And why should the direction of the
thermodynamic arrow agree with that of the cosmological arrow, the direction
in which the universe is expanding? Would the thermodynamic arrow reverse,
if the universe reached a maximum radius and began to contract?

Some authors have tried to account for the arrow of time on the basis of dy-
namic laws. The discovery that CP invariance is violated in the decay of the K
meson, inspired a number of such attempts but it is now generally recognized
that CP violation can explain why the universe contains baryons rather than
anti baryons, but it can not explain the arrow of time. Other authors have
questioned whether quantum gravity might not violate CPT, but no mechanism
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WEEK 2 JANUARY 24, 1993

has been suggested. One would not be satisfied with an ad hoc CPT violation
that was put in by hand.

The lack of a dynamical explanation for the arrow of time suggests that it arises
from boundary conditions. The view has been expressed that the boundary con-
ditions for the universe are not a question for Science, but for Metaphysics or
Religion. However that objection does not apply if there is a sense in which the
universe has no boundary. We shall therefore investigate the origin of the ar-
row of time in the context of the no boundary proposal of Hartle & Hawking.
This was formulated in terms of Einsteinian gravity which may be only a low
energy effective theory arising from some more fundamental theory such as su-
perstrings. Presumably it should be possible to express a no boundary condition
in purely string theory terms but we do not yet know how to do this. However
the recent COBE observations indicate that the perturbations that lead to the
arrow of time arise at a time during inflation when the energy density is about
10−12 of the Planck density. In this regime, Einstein gravity should be a good
approximation.

I’ll skip some more technical stuff on the validity of perturbative calculations in quantum
gravity. . .

One can estimate the wave functions for the perturbation modes by considering
complex metrics and scalar fields that are solutions of the Einstein equations
whose only boundary is the surface S. When S is a small three sphere, the
complex metric can be close to that of part of a Euclidean four sphere. In this
case the wave functions for the tensor and scalar modes correspond to them
being in their ground state. As the three sphere S becomes larger, these com-
plex metrics change continuously to become almost Lorentzian. They represent
universes with an initial period of inflation driven by the potential energy of
the scalar field. During the inflationary phase the perturbation modes remain
in their ground states until their wave lengths become longer than the horizon
size. The wave function of the perturbations then remains frozen until the hori-
zon size increases to be more than the wave length again during the matter
dominated era of expansion that follows the inflation. After the wave lengths of
the perturbations come back within the horizon, they can be treated classically.

This behaviour of the perturbations can explain the existence and direction of
the thermodynamic arrow of time. The density perturbations when they come
within the horizon are not in a general state but in a very special state with a
small amplitude that is determined by the parameters of the inflationary model,
in this case, the mass of the scalar field. The recent observations by COBE indi-
cate this amplitude is about 10−5. After the density perturbations come within
the horizon, they will grow until they cause some regions to collapse as proto-
galaxies and clusters. The dynamics will become highly non linear and chaotic
and the coarse grained entropy will increase. There will be a well defined ther-
modynamic arrow of time that points in the same direction everywhere in the
universe and agrees with the direction of time in which the universe is expand-
ing, at least during this phase.
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WEEK 2 JANUARY 24, 1993

The question then arises: If and when the universe reaches and maximum size,
will the thermodynamic arrow reverse? Will entropy decrease and the universe
become smoother and more homogeneous during the contracting phase?

I’ll skip some stuff on why Hawking originally thought entropy had to decrease during
the Big Crunch if the no-boundary proposal were correct. . . and why he no longer thinks
so.

The thermodynamic arrow will agree with the cosmological arrow for half the
history of the universe, but not for the other half. So why is it that we observe
them to agree? Why is it that entropy increases in the direction that the universe
is expanding? This is really a situation in which one can legitimately invoke the
weak anthropic principle because it is a question of where in the history of the
universe conditions are suitable for intelligent life. The inflation in the early
universe implies that the universe will expand for a very long time before it
contracts again. In fact, it is so long that the stars will have all burnt out and
the baryons will have all decayed. All that will be left in the contracting phase
will be a mixture of electrons, positrons, neutrinos and gravitons. This is not a
suitable basis for intelligent life.

The conclusion of this paper is that the no boundary proposal can explain the
existence of a well defined thermodynamic arrow of time. This arrow always
points in the same direction. The reason we observe it to point in the same
direction as the cosmological arrow is that conditions are suitable for intelligent
life only at the low entropy end of the universe’s history.
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Week 3

January 30, 1993

Here’s this week’s reading material. The first test will be in two weeks. :-)

1) Dror Bar-Natan, “On the Vassiliev knot invariants”, Harvard University “pre-preprint”.

I went to U.C. San Diego this week to give a talk, and the timing was nice, because
Dror Bar-Natan was there. He is a student of Witten who has started from Witten’s
ideas relating knot theory and quantum field theory and developed them into a beautiful
picture that shows how knot theory, the theory of classical Lie algebras, and abstract
Feynman diagrams are three faces of the same thing. To put it boldly, in a deliberately
exaggerated form, Bar-Natan has proposed a conjecture saying that knot theory and the
theory of classical Lie algebras are one and the same!

This won’t seem very exciting if you don’t know what a classical Lie algebra is. Let
me give a brief and very sketchy introduction, apologizing in advance to all the experts
for the terrible sins I will commit, such as failing to distinguish between complex and
real Lie algebras.

Well, remember that a Lie algebra is just a vector space equipped with a “bracket”
such that the bracket [x, y] of any two vectors x and y is again a vector, and such that the
following hold:

a) skew-symmetry: [x, y] = −[y, x].

b) bilinearity: [x, ay] = a[x, y], [x, y + z] = [x, y] + [x, z]. (a is a number.)

c) Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The best known example is good old R3 with the cross product as the bracket. But
the real importance of Lie algebras is that one can get one from any Lie group — roughly
speaking, a group that’s also a manifold, and such that the group operations are smooth
maps. And the importance of Lie groups is that they are what crop up as the groups
of symmetries in physics. The Lie algebra is essentially the “infinitesimal version” of
the corresponding Lie group, as anyone has seen who has taken physics and seen the
relation between the group of rotations in R3 and the cross product. Here the group is
called SO(3) and the Lie algebra is called so(3). (So R3 with its cross product is called
so(3).) One can generalize this to any number of dimensions, letting SO(n) denote the
group of rotations in Rn and so(n) the corresponding Lie algebra. (However, so(n) is
not isomorphic to Rn except for n = 3, so there is something very special about three
dimensions.)

Similarly, if one uses complex numbers instead of real numbers, one gets a group
SU(n) and Lie algebra su(n). And if one looks at the symmetries of a 2n-dimensional
classical phase space — so-called canonical transformations, or symplectic transforma-
tions — one gets the group Sp(n) and Lie algebra sp(n). To be precise, SO(n) consists of
all n×n orthogonal real matrices with determinant 1, SU(n) consists of all n×n unitary
complex matrices with determinant 1, and Sp(n) consists of all (2n)× (2n) real matrices
preserving a nondegenerate skew-symmetric form.

12
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These are all very important in physics. Indeed, all the “gauge groups” of physics are
Lie groups of a certain sort, so-called compact Lie groups, and in the standard model
all the forces are symmetrical under some gauge group or other. Electromagnetism a la
Maxwell is symmetric under the group U(1) of complex numbers of unit magnitude, or
“phases”. The electroweak force (unified electromagnetism and weak force) is symmetric
under U(1) × SU(2), where one uses the fact that one can build up bigger semisimple
Lie groups as direct sums (also called products) of smaller ones. The gauge group for
the strong force is SU(3). And, finally, the gauge group of the whole standard model is
simply U(1) × SU(2) × SU(3), which results from lumping the electroweak and strong
gauge groups together. This direct sum business also works for the Lie algebras, so the
Lie algebra relevant to the standard model is written u(1)× su(2)× su(3).

There are certain very special Lie algebras called simple Lie algebras which play the
role of “elementary building blocks” in the world of Lie algebras. They cannot be written
as the direct sum of other Lie algebras (and in fact there is an even stronger sense in
which they cannot be decomposed). On the other hand, the Lie algebra of any compact
Lie group is a direct sum of simple Lie algebras and copies of u(1) — the one-dimensional
Lie algebra with zero Lie bracket which, for technical reasons, people don’t call “simple”.

These simple Lie algebras were classified by the monumental work of Killing, Cartan
and others, and the classification is strikingly simple: there are infinite series of “clas-
sical” Lie algebras of type su(n), so(n), and sp(n), and five “exceptional” Lie algebras
called G2, F4, E6, E7, and E8. Believe it or not, there is a deep connection between the
exceptional Lie algebras and the Platonic solids. But that is another story, one I barely
know. . . .

Now, Witten showed how one could use quantum field theory to constuct an invariant
of knots, or even links, corresponding to any representation of a compact Lie group. (You
won’t even need to know what a representation is to understand what follows.) This had
been done in a different way, in terms of “quantum groups,” by Reshetikhin and Turaev
(following up on work by many other people). These invariants are polynomials in a
variable q (for “quantum”), and if one writes q as e~ and expands a power series in ~,
the coefficient of ~n is a “Vassiliev invariant of degree n”. Recall from last week that
given an invariant of oriented knots, one can extend it to knot with arbitrarily many nice
crossings by setting the value of the invariant on a knot with a crossing like

to be the invariant of the knot with the crossing changed to

minus the invariant of the knot with the crossing changed to

(Again, the knot has to be oriented for this rule to make sense, and the strands shown
in the pictures above should be pointing downwards.) Having made this extension, one
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says a knot invariant is a Vassiliev invariant of degree n if it vanishes on all knot with
n+ 1 or more double points.

This is where Dror stepped in, roughly. First of all, he showed that the Vassiliev in-
variant of degree n is just what you get when you do Witten’s quantum-field-theoretic
calculations perturbatively using Feynman diagrams and look at the terms of order n in
Planck’s constant, ~! Secondly, and more surprisingly, he developed a bunch of relation-
ships between Feynman diagrams and pictures of knots! The third and most amazing
thing he did takes a bit longer to explain. . .

Roughly, he showed that any Vassiliev invariant of degree n is determined by some
combinatorial data called a “weight system.” He showed that any representation of a
Lie algebra determines a weight system and hence a Vassiliev invariant. But the really
interesting thing he showed is that many of the things one can do for Lie algebras can
be done for arbitrary weight systems. This makes it plausible that every weight system,
hence every Vassiliev invariant, comes from a representation of a simple Lie algebra.
In fact, Dror conjectures that every Vassiliev invariant comes from a representation of
a classical simple Lie algebra. Now there is another conjecture floating around these
days, namely that Vassiliev invariants almost form a complete set — that is, that if two
knots cannot be distinguished by any Vassiliev invariants, they must either be the same
or differ simply by reversing the orientation of all the strands. If BOTH these conjectures
are true, one has in some sense practically reduced the theory of knots to the theory of
the classical Lie algebras! This wouldn’t mean that all of sudden we know the answer to
every question about knots, but it would certainly help a lot, and more importantly, in
my opinion, it would show that the connection between topology and the theory of Lie
algebras is far more profound than we really understand. The ramifications for physics,
as I hope all my chatting about knots, gauge theories and quantum gravity makes clear,
might also be profound.

Well, we certainly don’t understand all this stuff yet, since we don’t know how to
prove these conjectures! But Dror’s conjecture — that all weight systems come from
representations of simple Lie algebras — is tantalizingly close to being within grasp,
since he has reduced it to a fairly elementary combinatorial problem, which I will now
state. Note that “elementary” does not mean easy to solve! Just easy to state.

Before I state the combinatorial problem, let me say something about the evidence
for the conjecture that all Vassiliev invariants come from representations of classical Lie
algebras. In addition to all sorts of “technical” evidence, Dror has shown the conjecture
is true for Vassiliev invariants of degree 6 9 by means of many hours of computation
using his Sparcstation. In fact, he said in his talk that he felt guilty about having a
Sparcstation unless it was always computing something, and that even as he spoke his
computer was busily verifying the conjecture for higher degrees. (I suggested that it
was the Sparcstation that should feel guilty when it was not working, not him.) He
also advertised that his programs, a mixture of C and Mathematica code, are available
by anonymous ftp from math.harvard. Use user name “ftp”, go to the directory “dror”.
You folks with Crays should feel VERY guilty if they are just sitting there and not helping
Dror verify this important conjecture. (I suggest that you first read his papers and the file
README in his directory, then check out his programs, and then ask him where he’s at
and what would be worth doing. Please don’t pester him unless you are a good enough
mathematician to discuss this stuff intelligently and have megaflops to burn. If you want
to make a fool of yourself, don’t say I sent you.)
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Okay, with no further ado, here’s the conjecture in its elementary combinatorial form.
LetB be the vector space spanned by finite graphs with univalent and “oriented” trivalent
vertices, modulo some relations. . . first of all, a trivalent vertex is “oriented” if there is a
cyclic ordering of the three incident edges. That is, we “orient” the vertex

	

by drawing a little clockwise or counterclockwise-pointing circle at the vertex. (Or, for
those of an algebraic bent, label the edges by 1,2,3 but then mod out by cyclic permuta-
tions.) The relations are:

1) if we reverse the orientation of a trivalent vertex, that’s equivalent to multiplying
the graph by −1. (Remember we’re in a vector space spanned by graphs.)

2)

= −

(That is, we can make this substitution anywhere we want; these pictures might
be part of a bigger graph. Note that the “X” is not a vertex, since there aren’t
quadrivalent vertices; it’s just one edge going over or under another. It doesn’t
matter whether it goes over or under since these are abstract graphs, not graphs
embedded in space.)

Now, let Bm be the vector space spanned by “labelled” finite graphs with univalent
and oriented trivalent vertices, modulo some relations. . . but first I have to say what
“labelled” means. It means that each edge is labelled with a 1 or −1. The relations are:

1) if we reverse the orientation of a trivalent vertex, it’s the same as multiplying the
labellings of all three incident edges by −1.

2)

=

if the internal edge is labelled with a 1. (Here the 4 external edges can have any
labellings and we don’t mess with that.)
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Now, define a linear map from B to Bm by mapping any graph to the signed sum of
the 2number of edges ways of labelling the edges with 1 or −1. Symbolically,

7→ 1 − −1

Of course, one must work a bit to show this map is well-defined. (This just takes a
paragraph — see Proposition 6.5 of Dror’s paper.)

Okay, the conjecture is:

THIS MAP IS ONE-TO-ONE.

If you can solve it, you’ve made great progress in showing that knots and classical Lie
groups are just two aspects of the same branch of mathematics. Don’t work on it, though,
until you get Dror’s paper and make sure I stated it exactly right!!!!!

2) Abhay Ashtekar, “Mathematical problems of non-perturbative quantum general rel-
ativity”, lectures delivered at the 1992 Les Houches summer school on Gravitation
and Quantization, December 2, 1992, available as gr-qc/9302024.

This is a good overview of the loop variables approach to quantizing general relativ-
ity as it currently stands. It begins with a review of the basic difficulties with quantiz-
ing gravity, as viewed from three perspectives: the particle physicist, the mathematical
physicist, and the general relativist. Technically, a main problem is that general relativity
consists of both evolution equations and constraint equations on the initial data (which
are roughly the metric of space at a given time and its first time derivative, or really “ex-
trinsic curvature”). So Ashtekar reviews Dirac’s ideas on quantizing constrained systems
before sketching how this program is carried out for general relativity.

Then he considers a “toy model” — quantum gravity in 2+1 dimensions. This is a
funny theory because classically Einstein’s equations in 2+1 dimensions simply say that
spacetime is flat (in a vacuum)! No gravitational waves exist as in 3+1 dimensions, and
one can say that the information in the gravitational field is “purely global” — locally,
everywhere looks the same as everywhere else (like Iowa), but there may be global
“twists” that you notice when going around a noncontractible loop. There has been a lot
of work on 2+1 gravity recently — in a sense this problem has been solved, by a number
of methods — and this allows one to understand some of the conceptual difficulties of
honest 3+1-dimensional quantum gravity without getting caught in an endless net of
technical complications.

Then Ashtekar jumps back to 3+1 dimensions and gives a more thorough introduc-
tion to the loop variables approach. He ends by going through some of the many open
problems and possible ways to attack them.

I have worn myself out trying to do justice to Bar-Natan’s work, so I will postpone
until next week a review of Kapranov and Voevodsky’s paper on 2-categories.
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Week 4

February 8, 1993

I will begin with a couple of small things and then talk about the work of Kapranov and
Voevodsky.

1) R. Sole, D. Lopez, M. Ginovart and J. Valls, “Self-organized criticality in Monte
Carlo simulated ecosystems”, Phys. Lett. A172 (1992), p. 56.

This is mainly of interest to me thanks to a reference to some earlier work on Con-
way’s game of Life. At MIT, Tom Toffoli, Norm Margolus, and grad students in the Physics
of Computation group build special-purpose computers for simulating cellular automata,
the so-called CAM machines. I have spent many enjoyable hours watching beautiful pat-
terns do their thing on a big-screen color TV while CAM 6 busily simulates them on a
256 × 256 lattice at the rate of many generations a second. (The CAM 8 chip was still
being debugged when I last checked.) More recently, Jim Gilliam, a grad student here
at UCR, found a very nice program for the game of Life on Xwindows, called xlife. On
my Sparcstation it is even bigger and faster than CAM6. One can zoom in and out, and,
zooming all the way out, one sees something vaguely reminiscent of nebulae of distant
stars twinkling in the night sky. . . My computer science pal, Nate Osgood, muttered
something about the author, Chuck Silvers, using cleverly optimized loops. It apparently
can be found using the program archie. Please don’t ask me for a copy, since it involves
many files.

The game of Life is actually one of the less fun cellular automata to watch, since,
contrary to its name, if one starts with a random configuration it almost always eventu-
ally lapses into an essentially static configuration (perhaps with some blinkers executing
simple periodic motions). I am pleased to find that this seemingly dull final state might
be fairly interesting in the study of self-organized criticality! Recall that this is the phe-
nomenon whereby a physical system naturally works its way into a state such that the
slightest disturbance can have an arbitrarily large effect. The classic example is a sand
dune, which apparently works its way towards slopes close to the critical one at which an
avalanche occurs. Drop one extra grain of sand on it and you can get a surprisingly wide
distribution of possible sizes for the resulting sandslide! Similar but more formidable
effects may be at work in earthquakes. The above paper cites

2) Per Bak, Kan Chen, and Michael Creutz, “Self-organized criticality in the ‘Game of
Life’”, Nature 342 (1989), 780–782.

which claims that in the final state of the game of Life, the density of clusters D(s) of
size s scales as about s−1.4, and that the probability that a small perturbation will cause
a flurry of activity lasting a time t scales as about t−1.6. I’m no expert, but I guess that
the fact that the latter is a power law rather than an exponential would be a signal of
self-organized criticality. But the paper also cites

3) Charles Bennett and Marc S. Bourzutschy,“‘Life’ not critical?”, Nature 350 (1991),
468.
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who claim that the work of Bac, Chen and Creutz is wrong. I haven’t gotten to read these
papers; if anyone wants to report on them I’d be interested.

The paper I read considers fancier variations on this theme, investigating the possi-
bility that ecosystems are also examples of self-organized criticality. It’s hard to know
how to make solid science out of this kind of thing, but I think there would be impor-
tant consequences if it turned out that the “balance of nature,” far from being a stable
equilibrium, was typically teetering on the brink of drastic change.

4) H. D. Zeh, “There are no quantum jumps, nor are there particles!”, Phys. Lett. A173
(1993), 189–192.

Having greatly enjoyed Zeh’s book The Physical Basis for the Direction of Time — perhaps
the clearest account of a famously murky subject — I naturally took a look at this particle
despite its overheated title. (Certainly exclamation marks in titles should add to one’s
crackpot index.) It is a nice little discussion of “quantum jumps” and the “collapse of the
wavefunction” that takes roughly the viewpoint I espouse, namely, that all one needs is
Schrödinger’s equation (and lots of hard work) to understand what’s going on in quan-
tum theory — no extra dynamical mechanisms. It’s not likely to convince anyone who
thinks otherwise, but it has references that might be useful no matter which side of the
debate one is on.

Also, this just in — what you’ve all been waiting for — another interpretation of
quantum mechanics! It’s a book by David Bohm and Basil Hiley, entitled The Undivided
Universe — An Ontological Interpretation of Quantum Theory. I have only seen an adver-
tisement so far; it’s published by Routledge. The contents include such curious things as
“the ontological interpretation of boson fields.” Read it at your own risk.

5) M. M. Kapranov and V. A. Voevodsky, “2-categories and Zamolodchikov tetrahe-
dra equations” in Algebraic Groups and their Generalization: Quantum and Infinite-
Dimensional Methods, University Park, PA (1991), eds. W. J. Haboush and B. J. Par-
shall, Proc. Sympos. Pure Math. 56, American Mathematical Society, Providence,
Rhode Island, 1994, pp. 177–259.

This serious and rather dry paper is the basis for a lot of physicists are just beginning
to try to do: burst from the confines of 3 dimensions, where knots and topological
quantum field theories like Chern–Simons theory live, to 3+1 dimensions, where we live.
The “incomplete version” I have now is 220 pages long, mostly commutative diagrams,
and doesn’t have much to say about physics. But I have a hunch that it will become
required reading for many people fairly soon, so I’d like to describe the main ideas in
fairly simple terms.

I will start from scratch and then gradually accelerate. First, what’s a category? A
category consists of a set of ‘objects’ and a set of ‘morphisms’. Every morphism has a
‘source’ object and a ‘target’ object. (The easiest example is the category in which the
objects are sets and the morphisms are functions. If f : X → Y , we call X the source
and Y the target.) Given objects X and Y , we write Hom(X,Y ) for the set of morphisms
‘from’ X ‘to’ Y (i.e., having X as source and Y as target).

The axioms for a category are that it consist of a set of objects and for any 2 objects
X and Y a set Hom(X,Y ) of morphisms from X to Y , and
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a) Given a morphism g in Hom(X,Y ) and a morphism f in Hom(Y,Z), there is mor-
phism which we call f ◦ g in Hom(X,Z). (This binary operation ◦ is called ‘com-
position’.)

b) Composition is associative: (f ◦ g) ◦ h = f ◦ (g ◦ h).

c) For each object X there is a morphism idX from X to X, called the ‘identity’ on X.

d) Given any f in Hom(X,Y ), f ◦ idX = f and idY ◦ f = f .

Again, the classic example is Set, the category with sets as objects and functions as
morphisms, and the usual composition as composition! But lots of the time in mathe-
matics one is some category or other, e.g.:

• Vect — vector spaces as objects, linear maps as morphisms

• Group — groups as objects, homomorphisms as morphisms

• Top — topological spaces as objects, continuous functions as morphisms

• Diff — smooth manifolds as objects, smooth maps as morphisms

• Ring — rings as objects, ring homomorphisms as morphisms

or in physics:

• Symp — symplectic manifolds as objects, symplectomorphisms as morphisms

• Poiss — Poisson manifolds as objects, Poisson maps as morphisms

• Hilb — Hilbert spaces as objects, unitary operators as morphisms

(The first two are categories in which one can do classical physics. The third is a category
in which one can do quantum physics.)

Now, what’s a 2-category? This has all the structure of a category but now there
are also “2-morphisms,” that is, morphisms between morphisms! This is rather dizzying
at first. Indeed, much of category theory is rather dizzying until one has some good
examples to lean on (at least for down-to-earth people such as myself), so let us get
some examples right away, and leave the definition to Kapranov and Voevodsky! My
favorite example comes from homotopy theory. Take a topological space X and let the
objects of our category be points of X. Given x and y in X, let Hom(x, y) be the set of
all unparametrized paths from x to y. We compose such paths simply by sticking a path
from x to y and a path from y to z to get a path from x to z, and we need unparametrized
paths to make composition associative. Now given two paths from x to y, say f and g, let
Hom(f, g), the set of 2-morphisms from f to g, be the set of unparametrized homotopies
from f to g — that is, ways of deforming the path f continuously to get the path g, while
leaving the endpoints fixed.

This is a very enlightening example since homotopies of paths are really just “paths
of paths,” making the name 2-morphism quite appropriate. (Some of you will already be
pondering 3-morphisms, 4-morphisms, but it’s too late, they’ve already been invented!
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I won’t discuss them here.) The notation for 2-morphisms is quite cute: given f, g in
Hom(x, y), we write F in Hom(f, g) as the following diagram:

x y

f

g

F

<latexit sha1_base64="lfo5N3fdI6+aHrjuxZxzNt16bnE="></latexit>

In other words, while ordinary morphisms are 1-dimensional objects (arrows), 2-morphisms
are 2-dimensional “cells” filling in the space between two ordinary morphisms. We thus
see that going up to “morphisms between morphisms” is closely related to going up to
higher dimensions. And this is really why “braided monoidal 2-categories” may play
as big a role in four-dimensional field theory as “braided monoidal categories” do in
three-dimensional field theory!

Rather than write down the axioms for a 2-category, which are in Kapranov and
Voevodsky, let me note the key new thing about 2-morphisms: there are two ways to
compose them, “horizontally” and “vertically”. First of all, given the following situation:

x y z

f

g

f 0

g0

F F 0

<latexit sha1_base64="75MkxE3Gpc3SEpn7kE2GQwnqirw="></latexit>

we can compose F and F ′ horizontally to get a 2-morphism from f ′ ◦ f to g ◦ g′. (Check
this out in the example of homotopies!) But also, given the following situation:

x y

f

g

h

F

G

<latexit sha1_base64="/+grh6mgj2o43o6K88XRjVvAi/w="></latexit>

(f, g, h in Hom(x, y), F in Hom(f, g), and G in Hom(g, h)), we can compose F and G
vertically to get a 2-morphism from f to g.

As Kapranov and Voevodsky note: “Thus 2-categories can be seen as belonging to the
realm of a new mathematical discipline which may be called 2-dimensional algebra and
contrasted with usual 1-dimensional algebra dealing with formulas which are written in
lines.” This is actually very important because already in the theory of braided monoidal
categories we began witnessing the rise of mathematics that incorporated aspects of
geometry into the notation itself.

The theory of 2-categories is not new; it was apparently invented by Ehresmann, Ben-
abou and Grothendieck in an effort to formalize the structure possessed by the category
of all categories. (If this notion seems dangerously close to Russell’s paradox, you are
right — but I will not worry about such issues in what follows.) This category has as its
objects categories and as its morphisms “functors” between categories. It is, in fact, a 2-
category, taking as the 2-morphisms “natural transformations” between functors. (For a
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brief intro to functors and natural transformations, try my webpage “categories”.) What
is new to Kapranov and Voevodsky is the notion of a monoidal 2-category — where
one can take tensor products of objects, morphisms, and 2-morphisms — and “braided”
monoidal 2-category — where one has “braidings” that switch around the two factors in
a tensor product.

Let me turn to the possible relevance of all this to mathematical physics. Here there is
a nice 2-category, namely the category of “2-tangles.” First recall the category of tangles:

The objects are simply the natural numbers {0, 1, 2, 3, . . .}. We think of the object n
as a horizontal row of n points. The morphisms in Hom(n,m) are tangles connecting a
row of n points above to a row of m points below. Rather than define “tangles” I will
simply draw pictures of some examples. Here is an element of Hom(2, 4):

and here is an element of Hom(4, 0):

Note that we can “compose” these tangles to get one in Hom(2, 0):

Now, given tangles f, g in Hom(m,n), a 2-morphism from f to g is a “2-tangle.” I won’t
define these either, but we may think of a 2-tangle from f to g roughly as a “movie”
whose first frame is the tangle f and last frame is the tangle g, and each of whose
intermediate frames is a tangle except at certain times when a catastrophe occurs. For
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example, here’s a 2-tangle shown as a movie. . .

Frame 1 Frame 2 Frame 3

Frame 4
(catastrophe!)

Frame 5 Frame 6

Well, it’ll never win an Academy Award, but this movie is pretty important. It’s a picture
of the 3-dimensional slices of a 2-dimensional surface in (3+1)-dimensional spacetime,
and this surface is perfectly smooth but has a saddle point which we are seeing in frame
4. It is one of what Carter and Saito (see “Week 2”) call the “elementary string interac-
tions.” The relevance to string theory is pretty obvious: we are seeing a movie of part of
a string worldsheet, which is a surface in (3+1)-dimensional spacetime. My interest in
2-tangles and 2-categories is precisely because they offer a bridge between string theory
and the loop variables approach to quantum gravity, which may actually be the same
thing in two different disguises. You heard it here first, folks!

The reader may have fun figuring out what the two ways of composing 2-morphisms
amount to in the category of 2-tangles.

There are, in fact, many clues as to the relation between string theory and 2-categories,
one being the Zamolodchikov equation. This is the analog of the Yang–Baxter equation
— an equation important in the theory of braids — one dimension up. It was discovered
by Zamolodchikov in 1980; a 1981 paper that might be a bit easier to get is

6) A. B. Zamolodchikov, “Tetrahedron equations and relativistic S-matrix for straight
strings in 2+1 dimensions,” Commun. Math. Phys. 79 (1981), 489–505.

(It plays a different role in the (3+1)-dimensional context, though.) Just as braided
monoidal categories are a good way to systematically find solutions of the Yang–Baxter
equation, braided monoidal 2-categories, as defined by Kapranov and Voevodsky, seem
to be a good way for finding solutions for the Zamolodchikov equation. (I will post in a
while about a new paper by Soibelman and Kazhdan that does this. Also see the paper
by Crane and Frenkel in “Week 2”.)

There are also lots of tantalizing ties between the loop variables approach to quantum
gravity and 2-categories; one can see some of these if one reads the work of Carter
and Saito in conjunction with my paper “Quantum gravity and the algebra of tangles”
(hep-th/9205007). I hope to make these a lot clearer as time goes by.
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Week 5

February 13, 1993

I think I’ll start out this week’s list of finds with an elementary introduction to Lie alge-
bras, so that people who aren’t “experts” can get the drift of what these are about. Then
I’ll gradually pick up speed. . .

1) Vyjayanathi Chari and Alexander Premet, “Indecomposable restricted representa-
tions of quantum sl2”, University of California at Riverside, preprint.

Vyjayanathi is our resident expert on quantum groups, and Sasha, who’s visiting, is
an expert on Lie algebras in characteristic p. They have been talking endlessly across the
hall from me and now I see that it has born fruit. This is a pretty technical paper and
I am afraid I’ll never really understand it, but I can see why it’s important, so I’ll try to
explain that!

Let me start with the prehistory, which is the sort of thing everyone should learn.
Recall what a Lie algebra is. . . a vector space with a “bracket” operation such that the
bracket [x, y] of any two vectors x and y is again a vector, and such that the following
hold:

a) skew-symmetry: [x, y] = −[y, x].

b) bilinearity: [x, ay] = a[x, y], [x, y + z] = [x, y] + [x, z]. (a is any number)

c) Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

These conditions, especially the third, may look sort of weird if you are not used
to them, but the examples make it all clear. The easiest example of a Lie algebra is
gl(n,C), which just means all n × n complex matrices with the bracket defined as the
“commutator”:

[x, y] = xy − yx.

Then straightforward calculations show a)–c) hold. . . so these conditions are really
encoding the essence of the commutator.

Now recall that the trace of a matrix, the sum of its diagonal entries, satisfies tr(xy) =
tr(yx). So the trace of any commutator is zero, and if we let sl(n,C) denote the matrices
with zero trace, we see that it’s a sub-Lie algebra of gl(n,C) — that is, if x and y are
in sl(n) so is [x, y], so we can think of sl(n,C) as a Lie algebra in its own right. Going
from sl(n,C) to gl(n,C) is essentially a trick for booting out the identity matrix, which
commutes with everything else (hence has vanishing commutators). The identity matrix
is the only one with this property, so it’s sort of weird, and it simplifies things to get rid
of it here.

The simplest of the sl(n,C)’s is the Lie algebra sl(2,C), affectionately known simply
as sl(2), which is a 3-dimensional Lie algebra with a basis given by matrices people call
E, F , and H for mysterious reasons:

E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
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You will never be an expert on Lie algebras until you know by heart that

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

Typically that’s the sort of remark I make before screwing up by a factor of two or some-
thing, so you’d better check! This is a cute little multiplication table. . . but very impor-
tant, since sl(2) is the primordial Lie algebra from which the whole theory of “simple”
Lie algebras unfolds.

Physicists are probably more familiar with a different basis of sl(2), the Pauli matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
For purposes of Lie algebra theory it’s actually better to divide each of these matrices by
i and call the resulting matrices I, J , and K, respectively. We then have

IJ = −JI = K, JK = −KJ = I, KI = −IK = J, I2 = J2 = K2 = −1

which is just the multiplication table of the quaternions! From the point of view of Lie
algebras, though, all that matters is

[I, J ] = 2K, [J,K] = 2I, [K, I] = 2J.

Given the relation of these things and cross products, it should be no surprise that the
Pauli matrices have a lot to with angular momentum around the x, y, and z axes in
quantum mechanics.

If we take all real linear combinations of E,F ,H we get a Lie algebra over the real
numbers called sl(2,R), and if we take all real linear combinations of I,J ,K we get a Lie
algebra over the reals called su(2). These two Lie algebras are two different “real forms”
of sl(2).

Now, people know just about everything about sl(2) that they might want to. Well,
there’s always something more, but I’m certainly personally satisfied! I recall when as
an impressionable student I saw a book by Serge Lang titled simply “SL(2,R)”, big and
fat and scary inside. I knew what SL(2,R) was, but not how one could think of a whole
book’s worth of things to write about it! A whole book on 2× 2 matrices??

Part of how one gets so much to say about a puny little Lie algebra like sl(2) is
by talking about its representations. What’s a representation? Well, first you have to
temporarily shelve the idea that sl(2) consists of 2 × 2 matrices, and think of it more
abstractly simply as a 3-dimensional vector space with basis E,F ,H, equipped with a
Lie algebra structure given by the multiplication table [H,E] = 2E, [H,F ] = −2F ,
[E,F ] = H. If this is how I’d originally defined it, it would then be a little theorem that
this Lie algebra has a “representation” as 2 × 2 matrices. And it would turn out to have
other representations too. For example, there’s a representation as 3 × 3 matrices given
by sending

E 7→

 0 1 0
0 0 2
0 0 0

 F 7→

 0 0 0
2 0 0
0 1 0

 H 7→

 2 0 0
0 0 0
0 0 −2
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In other words, these matrices satisfy the same commutation relations as E,F , and H
do.

More generally, and more precisely, we say an n-dimensional representation of a Lie
algebra L (over the complex numbers) is a linear function R from L to n × n matrices
such that

R([x, y]) = [R(x), R(y)]

for all x, y in L. Note that on the left the brackets are the brackets in L, while on the
right they denote the commutator of n× n matrices.

One good way to understand the essence of a Lie algebra is to figure out what repre-
sentations it has. And in quantum physics, Lie algebra representations are where it’s at:
the symmetries of the world are typically Lie groups, each Lie group has a corresponding
Lie algebra, the states of a quantum system are unit vectors in a Hilbert space, and if the
system has a certain Lie group of symmetries there will be a representation of the Lie
algebra on the Hilbert space. As any particle physicist can tell you, you can learn a lot
just by knowing which representation of your symmetry group a given particle has.

So the name of the game is classifying Lie algebra representations. . . and many tomes
have been written on this by now. To keep things from becoming too much of a mess it’s
crucial to make two observations. First, there’s an easy way to get new representations
by taking the “direct sum” of old ones: the sum of an n-dimensional representation and
an m-dimensional one is an (n+m)-dimensional one, for example. Another way, not so
easy, to get new representations from an old one is to look for “subrepresentations” of the
given representation. In particular, a direct sum of two representations has them as sub-
representations. (I won’t define “direct sum” and “subrepresentation” here. . . hopefully
those who don’t know will be tempted to look it up.)

So rather than classifying all representations, it’s good to start by classifying “irre-
ducible” representations — those that have no suprepresentations (other than them-
selves and the trivial 0-dimensional representation). This is sort of like finding prime
numbers. . . they are “building blocks” in representation theory. But things are a little
bit messier, alas. We say a representation is “completely reducible” if it is a direct sum
of irreducible representations. Unfortunately, not all representations need be completely
reducible!

Let’s consider the representations of sl(2,C). (The more sophisticated reader should
note that I am implicitly only considering finite- dimensional complex representations!)
Here life is as nice as could be: all representations are completely reducible, and there
is just one irreducible n-dimensional representation for each n, with the 2-dimensional
and 3-dimensional representations as above. (By the way, I really mean that there is
only one irreducible n-dimensional representation up to a certain equivalence relation!)
Physicists — who more often work with the real form su(2) — call these the spin-0, spin-
1
2 , spin-1, etc. representations. The “spin” of a particle is, in mathematical terms, just
the thing that tells you which representation of su(2) it corresponds to!

Now let me jump up several levels of sophistication. In the last few years people have
realized that Lie groups are just a special case of something called “quantum groups”. . .
nobody talks about “quantum Lie algebras” but that’s essentially a historical accident:
quantum groups are not groups, they’re a generalization of them, and they don’t have
Lie algebras, but they have a generalization of them — so-called quantized enveloping
algebras.
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Quantum groups can be formed from simple Lie algebras, and they depend on a pa-
rameter q, a nonzero complex parameter. This parameter — q is for quantum, naturally
— can be thought of as

e~

The exponential of Planck’s constant! When we set ~ = 0 we get q = 1, and we get back
to the “classical case” of plain old-fashioned Lie algebras and groups. Every representa-
tion of a quantum group gives an invariant of links (actually even tangles), and these
link invariants are functions of q. If we take the nth derivative of one of these invari-
ants with respect to ~ and evaluate it at ~ = 0 we get a “Vassiliev invariant of degree
n” (see “Week 3” for the definition). Better than that, when q is a root of unity each
quantum group gives us a 3-dimensional “topological quantum field theory,” or TQFT
known as Chern–Simons theory. In particular, we get an invariant of compact oriented
3-manifolds. So there is a hefty bunch of mathematical payoffs from quantum groups.
And there are good reasons to think of them as the right generalization of groups for
dealing with symmetries in the physics of 2 and 3 dimensions. If string theory or the
loop variables approach to quantum gravity have any truth to them, quantum groups
play a sneaky role in honest 4-dimensional physics too.

In particular, there is a quantum version of sl(2) called slq(2). When q = 1 we
essentially have the good old sl(2). Chari and Premet have just worked out a lot of the
representation theory of slq(2). First of all, it’s been known for some time that as long as
q is not a root of unity — that is, as long as we don’t have

qn = 1

for some integer n — the story is almost like that for ordinary sl(2). Namely, there is
one irreducible representation of each dimension, and all representations are completely
reducible. This fails at roots of unity — which turns out to be the reason why one can
cook up TQFTs in this case. It turns out that if q is an nth root of unity one can still
define representations of dimension 0,1,2,3, etc., more or less just like the classical case,
but only those of dimension 6 n are irreducible. There are, in fact, exactly n irreducible
representations, and the fact that there are only finitely many is what makes all sorts of
neat things happen. The k-dimensional representations with k > n are not completely
reducible. And, besides the representations that are analogous to the classical case, there
are a bunch more. They have not been completely classified — they are, according to
Chari, a mess! But she and Premet have classified a large batch of the “indecomposable”
ones, that is, the ones that aren’t direct sums of other ones. I guess I’ll leave it at that.

2) David Kazhdan and Iakov Soibelman, “Representations of the quantized func-
tion algebras, 2-categories and Zamolodchikov tetrahedra equations”, The Gelfand
Mathematical Seminars 1990–1992, Springer, Berlin, 1993, pp. 163–71.

In this terse paper, Kazhdan and Soibelman construct a braided monoidal 2-category
using quantum groups at roots of unity. As I’ve said a few times, people expect braided
monoidal 2-categories to play a role in generally covariant 4d physics analogous to what
braided monoidal categories do in 3d physics. In particular, one might hope to get
invariants of 4-dimensional manifolds, or of surfaces embedded in 4-manifolds, this way.
(See last week’s post for a little bit about the details.) I don’t feel I understand this
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construction well enough yet to want to say much about it, but it is clearly related to
the construction of a braided monoidal 2-category from the category of quantum group
representations given by Crane and Frenkel (see “Week 2”).

3) Adrian Ocneanu, “A note on simplicial dimension shifting”, available as hep-th/

9302028.

Ouch! This paper claims to show that the very charming 4d TQFT constructed by
Crane and Yetter in “A categorical construction of 4d topological quantum field theo-
ries” (hep-th/9301062) is trivial! In particular, he says the resulting invariant of com-
pact oriented 4-manifolds is identically equal to 1. If so, it’s back to the drawing board.
Crane and Yetter took the 3d TQFT coming from slq(2) at roots of unity and then used a
clever trick to get 3-manifolds from a simplicial decomposition of a 4-manifold to get a
4d TQFT. Ocneanu claims this trick, which he calls “simplicial dimension shifting,” only
gives trivial 4-manifold invariants.

I am not yet in a position to pass judgement on this, since both Crane/Yetter and
Ocneanu are rather sketchy in key places. If indeed Ocneanu is right, I think people
are going to have to get serious about facing up to the need for 2-categorical thinking
in 4-dimensional generally covariant physics. I had asked Crane, a big proponent of
2-categories, why they played no role in his 4d TQFT, and he said that indeed he felt
like the kid who took apart a watch, put it back together, and found it still worked even
though there was a piece left over. So maybe the watch didn’t really work without that
extra piece after all. In late March I will go to the Conference on Quantum Topology
thrown by Crane and Yetter (at Kansas State U. at Manhattan), and I’m sure everyone
will try to thrash this stuff out.

4) Abhay Ashtekar and Jerzy Lewandowski, “Representation theory of analytic holon-
omy C∗-algebras”, available as gr-qc/9311010.

This paper is a follow-up of the paper

5) Abhay Ashtekar and Chris Isham, “Representations of the holonomy algebras of
gravity and non-Abelian gauge theories”, Journal of Classical and Quantum Gravity
9 (1992), 1069–1100. Also available as hep-th/9202053.

and sort of complements another,

6) John Baez, “Link invariants, holonomy algebras and functional integration”, avail-
able as hep-th/9301063.

The idea here is to provide a firm mathematical foundation for the loop variables rep-
resentation of gauge theories, particularly quantum gravity. Ashtekar and Lewandowski
consider an algebra of gauge-invariant observables on the space of su(2) connections on
any real-analytic manifold, namely that generated by piecewise analytic Wilson loops.
This is the sort of thing meant by a “holonomy algebra”. They manage to construct an
explicit diffeomorphism-invariant state on this algebra. They also relate this algebra to a
similar algebra for sl(2) connections — the latter being what really comes up in quantum
gravity. And they do a number of other interesting things, all quite rigorously. My paper
dealt instead with an algebra generated by “regularized” or “smeared” Wilson loops, and
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showed that there was a 1-1 map from diffeomorphism-invariant states on this algebra
to invariants of framed links — thus showing that the loop variables picture, in which
states are given by link invariants, doesn’t really lose any of the physics present in tradi-
tional approaches to gauge theories. I am busy at work trying to combine Ashtekar and
Lewandowski’s ideas with my own and push this program further — my own personal
goal being to make the Chern–Simons path integral rigorous — it being one of those
mysterious “measures on the space of all connections mod gauge transformations” that
physicists like, which unfortunately aren’t really measures, but some kind of generaliza-
tion thereof. What it should be is a state (or continuous linear functional) on some kind
of holonomy algebra.
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Week 6

February 20, 1993

1) Alexander Vilenkin, “Quantum cosmology”, talk given at Texas/Pascos 1992 at
Berkeley, available as gr-qc/9302016.

This is, as Vilenkin notes, an elementary review of quantum cosmology. It won’t be news
to anyone who has kept up on that subject (except perhaps for a few speculations at the
end), but for those who haven’t been following this stuff, like myself, it might be a good
way to get started.

Let’s get warmed up. . . .
Quantizing gravity is mighty hard. For one thing, there’s the “problem of time” — the

lack of a distinguished time parameter in classical general relativity means that the usual
recipe for quantizing a dynamical system — “represent time evolution by the unitary
operators exp(−iHt) on the Hilbert space of states, where t is the time and H, the
Hamiltonian, is a self-adjoint operator” — breaks down! As Wheeler so picturesquely
put it, in general relativity we have “many-fingered time”; there are lots of ways of
pushing a spacelike surface forwards in time.

But if we simplify the heck out of the problem, we might make a little progress. (This
is a standard method in physics, and whether or not it’s really justified, it’s often the
only thing one can do!) For one thing, note that in the Big Bang cosmology there is
a distinguished “rest frame” (or more precisely, field of timelike vectors) given by the
galaxies, if we discount their small random motions. In reality these are maybe not so
small, and maybe not so random — such things as the “Virgo flow” show this — but we’re
talking strictly theory here, okay? — so don’t bother us with facts! So, if we imagine
that things go the way the simplest Big Bang models predict, the galaxies just sit there
like dots on a balloon that is being inflated, defining a notion of “rest” at each point
in spacetime. This gives a corresponding notion of time, since one can measure time
using clocks that are at rest relative to the galaxies. Then, since we are pretending the
universe is completely homogeneous and isotropic — and let’s say it’s a closed universe
in the shape of a 3-sphere, to be specific — the metric is given by

dt2 − r(t)2[(dψ)2 + (sinψ)2(dθ)2 + (sin θ)2(dϕ)2]

What does all this mean? Here r(t) is the radius of the universe as a function of time,
the following stuff is just the usual metric on the unit 3-sphere with hyperspherical
coordinates ψ, θ, ϕ generalizing the standard coordinates on the 2-sphere we all learn
in college:

(dψ)2 + (sinψ)2(dθ)2 + (sin θ)2(dϕ)2

and the fact that the metric on spacetime is dt2 minus a bunch of stuff reflects the fact
that spacetime geometry is “Lorentzian,” just as in flat Minkowski space the metric is

dt2 − dx2 − dy2 − dz2.

The name of the game in this simple sort of Big Bang cosmology is thus finding the
function r(t)! To do this, of course, we need to see what Einstein’s equations reduce
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to in this special case, and since Einstein’s equations tell us how spacetime curves in
response to the stress-energy tensor, this will depend on what sort of matter we have
around. We are assuming that it’s homogeneous and isotropic, whatever it is, so it turns
out that all we need to know is its density ρ and pressure P (which are functions of
time). We get the equations

r′′/r = −4π

3
(ρ+ 3P )

(r′)2 =
8π

3
ρr2 − 1

Here primes denote differentiation with respect to t, and I’m using units in which the
gravitational constant and speed of light are equal to 1.

Let’s simplify this even more. Let’s assume our matter is “dust,” which is the technical
term for zero pressure. We get two equations:

r′′/r = −4π

3
ρ

(r′)2 =
8π

3
ρr2 − 1

(1)

Now let’s take the second one, differentiate with respect to t,

2r′′r′ =
8π

3
(ρ′r2 + 2ρrr′)

plug in what the first equation said about r’ ’,

−8π

3
ρrr′ =

8π

3
(ρ′r2 + 2ρrr′)

clear out the crud, and lo:
3ρr′ = −ρ′r

or, more enlighteningly,
d(ρr3)

dt
= 0.

This is just “conservation of dust” — the dust density times the volume of the universe is
staying constant. This, by the way, is a special case of the fact that Einstein’s equations
automatically imply local conservation of energy (i.e., that the stress-energy tensor is
divergence-free).

Okay, so let’s say ρr3 = D, with D being the total amount of dust. Then we can
eliminate ρ from equations (1) and get:

r′′ = −4πD

3r2

(r′)2 − 8π

3

D

r
= −1

(2)

What does this mean? Well, the first one looks like it’s saying there’s a force trying to
make the universe collapse, and that the strength of this force is proportional to 1/r2.
Sound vaguely familiar? It’s actually misleadingly simple — if we had put in something
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besides dust it wouldn’t work quite this way — but as long as we don’t take it too
seriously, we can just think of this as gravity trying to get the universe to collapse. And
the second one looks like it’s saying that the “kinetic” energy proportional to (r′)2, plus
the “potential” energy proportional to −1/r, is constant! In other words, we have a nice
analogy between the Big Bang cosmology and a very old-fashioned system, a classical
particle in one dimension attracted to the origin by a 1/r2 force!

It’s easy enough to solve this equation, and easier still to figure it out qualitatively.
The key thing is that since the total “energy” in the second equation of (2) is negative,
there won’t be enough “energy” for r to go to infinity, that is, there’ll be a Big Bang and
then a big crunch. Here’s r as a function of t, roughly:

t

r

Figure 1

What goes up, must come down! This curve, which I haven’t drawn too well, is just
a cycloid, which is the curve traced out by a point on the rim of rolling wheel. So,
succumbing to romanticism momentarily we could call this picture one turn of the great
wheel of time. . . . But there is no reason to expect further turns, because the differential
equation simply becomes singular when r = 0. We may either say it doesn’t make sense
to speak of “before the Big Bang” or “after the big crunch” — or we can look for improved
laws that avoid these singularities. (I should repeat that we are dealing with unrealistic
models here, since for example there is no evidence that there is enough matter around
to “close the universe” and make this solution qualitatively valid — it may well be that
there’s a Big Bang but no big crunch. In this case, there’s only one singularity to worry
about, not two.)

People have certainly not been too ashamed to study the quantum theory of this
system (and souped-up variants) in an effort to get a little insight into quantum gravity.
We would expect that quantum effects wouldn’t matter much until the radius of the
universe is very small, but when it is very small they would matter a lot, and maybe
— one might hope — they would save the day, preventing the nasty singularities. I’m
not saying they do — this is hotly debated — but certainly some people hope they do.
Of course, serious quantum gravity should take into account the fact that geometry of
spacetime has all sorts of wiggles in it — it isn’t just a symmetrical sphere. This may
make a vast difference in how things work out. (For example, the big crunch would be
a lot more exciting if there were lots of black holes around by then.) The technical term
for the space of all metrics on space is “superspace” (sigh), and the toy models one gets
by ignoring all but finitely many degrees of freedom are called “minisuperspace” models.

Let’s look at a simple minisuperspace model. The simplest thing to try is to take the
classical equations of motion (2) and try to quantize them just like one would a particle
in a potential. This is a delicate business, by the way, because one can’t just take some
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classical equations of motion and quantize them in any routine way. There are lots of
methods of quantization, but all of them require a certain amount of case-by-case finesse.

The idea of “canonical quantization” of a classical system with one degree of freedom
— like our Big Bang model above, where the one degree of freedom is r — is to turn
the “position” (that’s r) into a multiplication operator and the “momentum” (often that’s
something like r′, but watch out!) into a differentation operator, say −i~ d

dr , so that we
get the “canonical commutation relations”

[−i~ d
dr
, r] = −i~.

We then take the formula for the energy, or Hamiltonian, in terms of position and mo-
mentum, and plug in these operators, so that the Hamiltonian becomes an operator.
(Here various “operator-ordering” problems can arise, because the position and momen-
tum commuted in the original classical system but not anymore!) To explain what I
mean, why don’t I just do it!

So: I said that the formula
(r′)2 − 8π

3

D

r
= −1 (3)

looks a lot like a formula of the form “kinetic energy plus potential energy is constant”.
Of course, we could multiply the whole equation by anything and get a valid equation,
so it’s not obvious that the “right” Hamiltonian is

(r′)2 − 8π

3

D

r

or (adding 1 doesn’t hurt)

(r′)2 − 8π

3

D

r
+ 1

In fact, note that multiplying the Hamiltonian by some function of r just amounts to
reparametrizing time, which is perfectly fine in general relativity. In fact, Vilenkin and
other before him have decided it’s better to multiply the Hamiltonian above by r2. Why?
Well, it has to do with figuring out what the right notion of “momentum” is correspond-
ing to the “position” r. Let’s do that. We use the old formula

p =
dL

dq′

relating momentum to the Lagrangian, where for us the position, usually called q, is
really r.

The Lagrangian of general relativity is the “Ricci scalar” R — a measure of curvature
of the metric — and in the present problem it turns out to be

R = 6

(
r′′

r
+

(r′)2

r2

)
But we are reducing the full field theory problem down to a problem with one degree of
freedom, so our Lagrangian should be the above integrated over the 3-sphere, which has
volume 16πr3/3, giving us

32π(r′′r2 + (r′)2r)
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However, the r′′ is a nuisance, and we only use the integral of the Lagrangian with
respect to time (that’s the action, which classically is extremized to get the equations of
motion), so let’s do an integration by parts, or in other words add a total divergence, to
get the Lagrangian

L = −32π(r′)2r.

Differentiating with respect to r′ we get the momentum “conjugate to r”,

p = −64πr′r.

Now I notice that Vilenkin uses as the momentum simply −r′r, somehow sweeping the
monstrous 64π under the rug. I have the feeling that this amounts to pushing this factor
into the definition of ~ in the canonical commutation relations. Since I was going to set
~ to 1 in a minute anyway, this is okay (honest). So let’s keep life simple and use

p = −r′r.

Okay! Now here’s the point, we want to exploit the analogy with good old quantum
mechanics, which typically has Hamiltonians containing something like p2. So let’s take
our preliminary Hamiltonian

(r′)2 − 8π

3

D

r
+ 1

and multiply it by r2, getting

H = p2 − 8πD

3
r + r2.

Hey, what’s this? A harmonic oscillator! (Slightly shifted by the term proportional to r.)
So the universe is just a harmonic oscillator. . . I guess that’s why they stressed that so
much in all my classes!

Actually, despite the fact that we are working with a very simple model of quantum
cosmology, it’s not quite that simple. First of all, recall our original classical equation,
(3). This constrained the energy to have a certain value. I.e., we are dealing not with
a Hamiltonian in the ordinary sense, but a “Hamiltonian constraint” — typical of sys-
tems with time reparametrization invariance. So our quantized equation says that the
“wavefunction of the universe,” ψ(r), must satisfy

Hψ = 0.

Also, unlike the ordinary harmonic oscillator we have the requirement that r > 0. In
other word, we’re working with a problem that’s like a harmonic oscillator and a “wall”
that keeps r > 0. Think of a particle in a potential like this:
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r

V (r)

Figure 2

Here V (r) = −(8πD/3)r + r2. The minimum of V is at r = 4πD/3 and the zeroes are
at r = 0 and 8πD/3. Classically, a particle with zero energy starting at r = 0 will roll to
the right and make it out to r = 4πD/3 before rolling back to r = 0. This is basically
the picture we had in Figure 1, except that we’ve reparametrized time so we have simple
harmonic motion instead of cycloid.

Quantum mechanically, however one must pick boundary conditions at r = 0 to make
the problem well-defined!

This is where the fur begins to fly!! Hawking and Vilenkin have very different ideas
about what the right boundary conditions are. And note that this is not a mere technical
issue, since they determine the wavefunction of the universe in this approach! I will
not discuss this since Vilenkin does so quite clearly, and if you understand what I have
written above you’ll be in a decent position to understand him. I will just note that
Vilenkin, rather than working with a universe full of “dust,” considers a universe in which
the dominant contribution to the stress-energy tensor is the cosmological constant, that
is, the negative energy density of a “false vacuum”, which believers in inflation (such as
Vilenkin) think powered the exponential growth of the universe at an early stage. So
his equations are slightly different from those above (and are only meant to apply to the
early history of the universe).

[Let me just interject a question to the experts if I may — since I’ve written this long
article primarily to educate myself. It would seem to me that the equation Hψ = 0
above would only have a normalizable solution if the boundary conditions were fine-
tuned! I.e., maybe the equation Hψ = 0 itself determines the boundary conditions!
This would be very nice; has anyone thought of this? It seems reasonable because,
with typical boundary conditions, the operator H above will have pure point spectrum
(only eigenvalues) and it would be rather special for one of them to be 0, allowing
a normalizable solution of Hψ = 0. Also, corrections and education of any sort are
welcomed. I would love to discuss this with some experts.]

Anyway, suppose we find some boundary conditions and calculate ψ, the “wavefunc-
tion of the universe.” (I like repeating that phrase because it sounds so momentous,
despite the fact that we are working with a laughably oversimplified toy model.) What
then? What are the implications for the man in the street?

Let me get quite vague at this point. Think of the radius of the universe as analogous
to a particle moving in the potential of Figure 2. In the current state of affairs classical
mechanics is an excellent approximation, so it seems to trace out a classical trajectory.
Of course it is really obeying the laws of quantum mechanics, so the trajectory is really

34



WEEK 6 FEBRUARY 20, 1993

a “wave packet” — technically, we use the WKB approximation to see how the wave
packet can seem like a classical trajectory. But near the Big Bang or big crunch, quantum
mechanics matters a lot: there the potential is rapidly varying (in our simple model it
just becomes a “wall”) and the wave packet may smear out noticeably. (Think of how
when you shoot an electron at a nucleus it bounces off in an unpredictable direction —
it’s wavefunction just tells you the probability that it’ll go this way or that!) So some
quantum cosmologists have suggested that if there is a big crunch, the universe will pop
back out in a highly unpredictable, random kind of way!

I should note that Vilenkin has a very different picture. Since this stuff makes large
numbers of assumptions with very little supporting evidence, it is science that’s just on
the brink of being mythology. Still, it’s very interesting.

2) Lee Smolin, “Finite, diffeomorphism invariant observables in quantum gravity”,
available as gr-qc/9302011.

The big problem in canonical quantization of gravity, once one gets beyond “mini-”
and “midisuperspace” models, is to find enough diffeomorphism-invariant observables.
There is a certain amount of argument about this stuff, and various approaches, but
one common viewpoint is that the “physical” observables, that is, the really observable
observables, in general relativity are those that are invariant under all diffeomorphisms
of spacetime. I.e., those that are independent of any choice of coordinates. For example,
saying “My position is (242, 2361, 12,−17)” is not diffeomorphism-invariant, but saying
“I’m having the time of my life” is. It’s hard to find lots of (tractable) diffeomorphism
invariant observables — or even any! Try figuring out how you would precisely describe
the shape of a rock without introducing any coordinates, and you’ll begin to see the
problem. (The quantum mechanical aspects make it harder.)

Rovelli came up a while back with a very clever angle on this problem. It’s rather
artificial but still a big start. Using a “field of clocks” he was able to come up with
interesting diffeomorphism invariant observables. The idea is simply that if you had
clocks all around you could say “when the bells rang 2 a.m. I was having the time of
my life” — and this would be a diffeomorphism-invariant statement, since rather than
referring to an abstract coordinate system it expresses the coincidence of two physical
occurences, just like “the baseball broke through the window”. Then he pushed this
idea to define “evolving constants of motion” — a deliberate oxymoron — to deal with
the famous “problem of time” in general relativity: how to treat time evolution in a
coordinate-free manner on a spacetime that’s not flat and, worse, whose geometry is
“uncertain” a la Heisenberg? This is treated, by the way, in

3) Carlo Rovelli, “Time in quantum gravity: an hypothesis”, Phys. Rev. D43 (1991),
442–456.

Also, an excellent and very thorough review of the problem of time and various
proposed solutions, including Rovelli’s, is given in

4) Chris J. Isham, “Canonical quantum gravity and the problem of time”, 125 pages,
available as gr-qc/9210011.

Anyway, in a paper I very briefly described in “Week 1”:
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5) Lee Smolin, “Time, measurement and information loss in quantum cosmology”,
available as gr-qc/9301016.

Smolin showed, how, using a clever trick sketched in the present paper to get “observ-
ables” invariant under spatial but not temporal observables, together with Rovelli’s idea,
one could define lots of real observables, invariant under spacetime diffeomorphisms
that is, thus making a serious bite into this problem.

I warn the reader that there is a fair amount that is not too realistic about these
methods. First there’s the “clock field” — this can actually be taken as a free massless
scalar field, but in so doing there is the likelihood of serious technical problems. Some
of these are discussed in

6) P. Hajicek, “Comment on ‘Time in quantum gravity — an hypothesis”’, Phys. Rev.
D44 (1991), 1337–1338.

(But I haven’t actually read this, just Isham’s description.) Also, the clever trick of the
present paper is to couple gravity to an antisymmetric tensor gauge field so that in addi-
tion to having loops as part of one’s “loop representation,” one has surfaces — a “surface
representation”. But this antisymmetric tensor gauge field is not the sort of thing that
actually seems to arise in physics (unless I’m missing something). Still, it’s a start. I think
I’ll finish by quoting Smolin’s abstract:

Two sets of spatially diffeomorphism invariant operators are constructed in the
loop representation formulation of quantum gravity. This is done by coupling
general relativity to an anti- symmetric tensor gauge field and using that field
to pick out sets of surfaces, with boundaries, in the spatial three manifold. The
two sets of observables then measure the areas of these surfaces and the Wilson
loops for the self-dual connection around their boundaries. The operators that
represent these observables are finite and background independent when con-
structed through a proper regularization procedure. Furthermore, the spectra
of the area operators are discrete so that the possible values that one can ob-
tain by a measurement of the area of a physical surface in quantum gravity are
valued in a discrete set that includes integral multiples of half the Planck area.
These results make possible the construction of a correspondence between any
three geometry whose curvature is small in Planck units and a diffeomorphism
invariant state of the gravitational and matter fields. This correspondence relies
on the approximation of the classical geometry by a piecewise flat Regge mani-
fold, which is then put in correspondence with a diffeomorphism invariant state
of the gravity-matter system in which the matter fields specify the faces of the
triangulation and the gravitational field is in an eigenstate of the operators that
measure their areas.

In the Space and Time marriage we have the greatest Boy meets Girl story
of the age. To our great-grandchildren this will be as poetical a union as the
ancient Greek marriage of Cupid and Psyche seems to us.

— Lawrence Durrell

36

https://arxiv.org/abs/gr-qc/9301016


WEEK 7 MARCH 1, 1993

Week 7

March 1, 1993

1) Abhay Ashtekar, “Mathematical problems of non-perturbative quantum general rel-
ativity” (lectures delivered at the 1992 Les Houches summer school on Gravitation
and Quantization), 87 pages, Plain TeX, available as gr-qc/9302024.

I described this paper in “Week 3”, but now it’s available from gr-qc. It’s a good quick
introduction to the loop representation of quantum gravity.

2) Abhay Ashtekar, Lectures on Non-perturbative Canonical Gravity, World Scientific
Press, 1991.

This book, which I finally obtained, is the introduction to the loop representation
of quantum gravity. What’s the loop representation? Well, this is a long story, so you
really should read the book. But just to get you going, let me describe Ashtekar’s “new
variables,” which form the basis for Rovelli and Smolin’s construction of the loop repre-
sentation.

First, recall that general relativity is usually thought of as a theory about a metric
on spacetime — more precisely, a Lorentzian metric. Here spacetime is a 4-dimensional
manifold, and a Lorentzian metric allows you to calculate the “dot product” of any two
tangent vectors at a point. This is in quotes because, while a normal dot product might
look like

(v0, v1, v2, v3) · (w0, w1, w2, w3) = v0w0 + v1w1 + v2w2 + v3w3

relative to some basis, for a Lorentzian metric we can always find a basis of the tangent
space such that

(v0, v1, v2, v3) · (w0, w1, w2, w3) = v0w0 − v1w1 − v2w2 − v3w3

Now the metric in general relativity defines a “connection,” which tells you a tangent
vector might “twist around” as you parallel translate it, that is, move it along while
trying to keep it from rotating unnecessarily. Here “twist around” is in quotes because,
since you are parallel translating the vector, it’s not really “twisting around” in the usual
sense, but it might seem that way relative to some coordinate system. For example, if you
used polar coordinates to describe parallel translation on the plane, it might seem that
the unit vector in the r direction “twisted around” towards the θ direction as you dragged
it along. But in another coordinate system — say the usual x-y system — it would not
appear to be “twisting around”. This fact is expressed by saying “the connection is not a
tensor”.

But from the connection we can cook up a big fat tensor, the “Riemann tensor” Rijkl,
which says how much the vector in the lth direction (here the indices range from 0 to 3)
twists towards the ith direction when you move it around a teeny little square in the j-k
plane. The Lagrangian in ordinary GR is just the integral of the “Ricci scalar curvature,”
R, which is gotten from the Riemann tensor by “contraction”, i.e. summing over the
indices in a certain way:

R = Riji
j
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where we are raising indices using the metric in a manner beloved by physicists and
feared by many mathematicians. If you integrate the Lagrangian over a region of space-
time you get the “action”, and in classical general relativity (in a vacuum, for simplicity)
one can formulate the laws of motion simply by saying: any teeny change in the met-
ric that vanishes on the boundary of the region should leave the action constant to first
order. In other words, the solutions of the equations of general relativity are the *sta-
tionary points* of the action. If you know how to do variational calculus you can derive
Einstein’s equations from this variational principle, as it’s called. Mathematicians will
be pleased to know that Hilbert beat Einstein to the punch here, so the integral of R is
called the “Einstein–Hilbert” action for general relativity.

But there’s another formulation of general relativity in terms of an action principle.
This is called the “Palatini” action — and actually I’m going to describe a slight variation
on it, that is conceptually simpler, and apparently appears for the first time in Ashtekar’s
book. The Palatini approach turns out to be more elegant and is a nice stepping-stone
to the Ashtekar approach. In the Palatini approach one thinks of general relativity not
as being a theory of a metric, but of a “tetrad” and an “so(3, 1) connection”. To explain
what these are, I will cut corners and assume all the fiber bundles lurking around are
trivial; the experts will easily be able to figure out the general case. So: an (orthonormal)
tetrad, or “vierbein,” is a just a kind of field on spacetime which at each point consists of
an (ordered) orthonormal basis of the tangent space. If we express the metric in terms
of a tetrad, it looks just like the formula for the standard “inner product”

(v0, v1, v2, v3) · (w0, w1, w2, w3) = v0w0 − v1w1 − v2w2 − v3w3

This allows us to identify the group of linear transformations of the tangent space that
preserve the metric with the group of linear transfomations preserving the standard
“inner product,” which is called SO(1, 3) since there’s one plus sign and three minuses.
And from the connection mentioned above one gets an SO(1, 3) connection, or, what’s
more or less the same thing, an so(1, 3)-valued 1-form, that is, a kind of field that can
eat a tangent vector at any point and spits out element of the Lie algebra so(1, 3).

What’s so(1, 3)? Well, elements of so(1, 3) include “infinitesimal” rotations and Lorentz
transformations, since SO(1, 3) is generated by rotations and Lorentz transformations.
More precisely, so(1, 3) is a 6-dimensional Lie algebra having as a basis the three in-
finitesimal rotations J1, J2, and J3 around the three axes, and the three infinitesimal
Lorentz transformations or “boosts” K1, K2, K3. The bracket in this most important Lie
algebra is given by

[Ji, Jj ] = Jk

[Ki,Kj ] = −Jk
[Ji,Kj ] = Kk

where (i, j, k) is a cyclic permutation of (1, 2, 3). (I hope I haven’t screwed up the signs.)
Note that the J ’s by themselves form a Lie subalgebra called so(3), the Lie algebra of
the rotation group SO(3). Note that so(3) is isomorphic to the the cute little Lie algebra
su(2) I described in my post “Week 5”; J1, J2, and J3 correspond to the guys I, J , and K
divided by two.

The so(1, 3) connection has a curvature, and using the tetrads again we can identify
this with the Riemann curvature tensor. So the Palatini trick is to rewrite the Einstein–
Hilbert action in terms of the curvature of the so(1, 3) connection and the tetrad field.
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This is called the Palatini action. Charmingly, even though the tetrad field is utterly
unphysical, we can treat it and the so(1, 3) connection as independent fields and, doing
calculus of variations to find stationary points of the action, we get equations equivalent
to Einstein’s equations.

Ashtekar’s “new variables” — from this point of view — rely on a curious and pro-
found fact about so(1, 3). Note that so(1, 3) is a Lie algebra over the real numbers. But if
we allow ourselves to form complex linear combinations of the J ’s and K ’s, thus:

Mi = (Ji + iKi)/2

Ni = (Ji − iKi)/2

(please don’t mix up the subscript i = 1, 2, 3 with the other i, the square root of minus
one) we get the following brackets:

[Mi,Mj ] = Mk

[Ni, Nj ] = Nk

[Mi, Nj ] = 0

I think the signs all work but I wouldn’t trust me if I were you. The wonderful thing
here is that the M ’s and N ’s commute with each other, and each set has commutation
relations just like the J ’s! The J ’s, recall, are infinitesimal rotations, and the Lie algebra
they span is so(3). So in a sense the Lie algebra of the Lorentz group can be “split” into
“left-handed” and “right-handed” copies of so(3), also known as “self-dual” and “anti-
self-dual” copies. This is, in fact, what lies behind the handedness of neutrinos, and
many other wonderful things.

But let me phrase this result more precisely. Since we allowed ourselves complex
linear combinations of the J ’s and K ’s, we are now working in the “complexification”
of the Lie algebra so(3, 1), and we have shown that this Lie algebra over the complex
numbers splits into two copies of so(3,C), the complexification of so(3).

Ashtekar came up with some “new variables” for general relativity in the context of
the Hamiltonian approach. Here we are working in the Lagrangian approach, where
things are simpler because they are “generally covariant,” not requiring a split of space-
time into space and time. The Lagrangian approach to the new variables is due to
Samuel, Jacobson and Smolin, and in this approach all they amount to is this: so(1, 3)
connection of the Palatini approach, think of the so(1, 3) as sitting inside the complexi-
fication thereof, and consider only the “right-handed” part! Thus, from an so(1, 3) con-
nection, we get a so(3,C) connection. The “new variables” are just the tetrad field and
this so(3,C) connection.

I have tried to keep down the indices but I think I will write down the Palatini La-
grangian and then the “new variables” Lagrangian, without explaining exactly what they
mean, just to show how amazingly similar-looking they are. In the Palatini approach we
have a tetrad field, which now we write in its full glory as eiI , and the curvature of the
so(1, 3) connection, which now we write as ΩIJij . The Lagrangian is then

eiIe
j
JΩIJij

(which we integrate against the usual volume form to get the action). In the new vari-
ables approach we have a tetrad field again, and we write the curvature of the so(3,C)
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connection as F IJij . (This turns out to be just the “right-handed” part of ΩIJij .) The
Lagrangian is

eiIe
j
JF

IJ
ij !

Miraculously, this also gives Einstein’s equations.
What’s utterly unclear from what I’ve said so far is why this helps so much in trying

to quantize gravity. I may eventually get around to writing about that, but for now, read
the book!

3) David Yetter and Louis Crane, “We are not stuck with gluing”, available as hep-th/
9302118.

Well, in “Week 2” I mentioned Crane and Yetter’s marvelous construction of a 4d topo-
logical quantum field theory using the representations of the quantum group SUq(2) —
and in “Week 5” I mentioned Ocneanu’s “proof” that the resulting 4-manifold invariants
were utterly trivial (equal to 1 for all 4-manifolds). Now Crane and Yetter have replied,
saying that their 4-manifold invariants are not trivial and that Ocneanu interpreted their
paper incorrectly. I look forward to the conference on quantum topology in Kansas at
the end of May, where the full story will doubtless come out.

4) R. Capovilla, J. Dell and T. Jacobson, “The initial value problem in light of Ashtekar’s
variables”, available as gr-qc/9302020.

The advantage of Ashtekar’s new variables is that they simplify the form of the constraint
equations one gets in the initial-value problem for general relativity. This is true both
of the classical and quantum theories. Rovelli and Smolin used this to find, for the first
time, lots of states of quantum gravity defined by link invariants. Here the above authors
are trying to apply the new variables to the classical theory.

5) Sergey Piunikhin, “Combinatorial expression for universal Vassiliev link invariant”,
available as hep-th/9302084.

Somebody ought to teach those Russians how to use the word “the” now that the cold
war is over. Anyway, this paper defines a kind of universal object for Vassiliev invariants,
which is sort of similar to what I was trying to do in

6) John Baez, “Link invariants of finite type and perturbation theory”, Lett. Math.
Phys. 26 (1992) 43–51. Also available as hep-th/9207041.

but more concrete, and (supposedly) simpler than Kontsevich’s approach. My parenthe-
sis simply indicates that I haven’t had time to figure out what’s going on here.
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Week 8

March 5, 1993

I was delighted to find that Louis Kauffman wants to speak at the workshop at UCR on
knots and quantum gravity; he’ll be talking on “Temperley–Lieb recoupling theory and
quantum invariants of links and manifolds”. His books

1) Louis Kauffman, On Knots, Annals of Mathematics Studies 115, Princeton U. Press,
Princeton, 1987.

and more recently

2) Louis Kauffman, Knots and Physics, World Scientific Press, Singapore, 1991.

are a lot of fun to read, and convinced me to turn my energies towards the intersection
of knot theory and mathematical physics. As you can see by the title of the series he’s
editing, he is a true believer the deep significance of knot theory. This was true even
before the Jones polynomial hit the mathematical physics scene, so he was well-placed to
discover the relationship between the Jones polynomial (and other new knot invariants)
and statistical mechanics, which seems to be what won him his fame. He is now the
editor of a journal, Journal of Knot Theory and its Ramifications.

He sent me a packet of articles and preprints which I will briefly discuss. If you read
any of the stuff below, please read the delightful reformulation of the 4-color theorem
in terms of cross products that he discovered! I am strongly tempted to assign it to my
linear algebra class for homework. . . .

3) Louis Kauffman, “Map coloring and the vector cross product”, J. Comb. Theory 48
(1990), 145–154.

Louis Kauffman, “Map coloring, q-deformed spin networks, and Turaev–Viro in-
variants for 3-manifolds”, Int. Jour. Mod. Phys. 6 (1992), 1765–1794.

Louis Kauffman, “An algebraic approach to the planar colouring problem”, Com-
mun. Math. Phys. 152 (1993), 565–590.

As we all know, the usual cross product of vectors in R3 is not associative, so the following
theorem is slightly interesting:

Theorem. Consider any two bracketings of a product of any finite number of
vectors, e.g.:

L = a× (b× ((c× d)× e) and R = ((a× b)× c)× (d× e).

Let i, j, and k be the usual canonical basis for R3:

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Then we may assign a, b, c, . . . values taken from {i, j, k} in such a way that
L = R and both are nonzero.
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But what’s really interesting is:

Meta-Theorem. The above proposition is equivalent to the 4-color theorem.
Recall that this theorem says that any map on the plane may be colored with
4 colors in such a way that no two regions with the same color share a border
(an edge).

What I mean here is that the only way known to prove this Theorem is to deduce
it from the 4-color theorem, and conversely, any proof of this Theorem would easily
give a proof of the 4-color theorem! As you all probably know, the 4-color theorem
was a difficult conjecture that resisted proof for about a century before succumbing to a
computer-based proof that required the consideration of many, many special cases:

4) Kenneth Appel and Wolfgang Haken, Every Planar Map is Four Colorable Contem-
porary Mathematics 98 American Mathematical Society, Providence Rhode Island,
1989.

So the Theorem above may be regarded as a profoundly subtle result about the “as-
sociativity” of the cross product!

Of course, I hope you all rush out now and find out how this Theorem is equivalent
to the 4-color theorem. For starters, let me note that it uses a result of Tait: first, to
prove the 4-color theorem it’s enough to prove it for maps where only 3 countries meet
at each vertex (since one can stick in a little new country at each vertex), and second,
4-coloring such a map is equivalent to coloring the edges with 3 colors in such a way that
each vertex has edges of all 3 colors adjoining it. The 3 colors correspond to i, j, and k!

Kauffman and Saleur (the latter a physicist) come up with another algebraic formula-
tion of the 4-color theorem in terms of the Temperley–Lieb algebra. The Temperley–Lieb
algebra TLn is a cute algebra with generators e1, . . . , en−1 and relations that depend on
a constant d called the “loop value”:

e2i = dei

eiei+1ei = ei

eiei−1ei = ei

eiej = ejei for |i− j| > 1.

The point of it becomes clear if we draw the ei as tangles on n strands. Let’s take n = 3
to keep life simple. Then e1 is

while e2 is
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In general, ei “folds over” the ith and (i+ 1)st strands. Note that if we square ei we get
a loop — e.g., e1 squared is

Here we are using the usual product of tangles (see my webpage “tangles”). Now the
rule in Temperley–Lieb land is that we can get rid of a loop if we multiply by the loop
value d; that is, the loop “equals” d. So e1 squared is just d times

which — since we are doing topology — is the same as e1. That’s why e2i = dei.
The other relations are even more obvious. For example, e1e2e1 is just

which, since we are doing topology, is just e1! Similarly, e2e1e2 = e1, and ei and ej
commute if they are far enough away to keep from running into each other.

As an exercise for combinatorists: figure out the dimension of TLn.
Okay, very cute, one might say, but so what? Well, this algebra was actually first dis-

covered in statistical mechanics, when Temperley and Lieb were solving a 2-dimensional
problem:
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5) H. N. V. Temperley and E. H. Lieb, “Relations between the ‘percolation’ and ‘color-
ing’ problem and other graph-theoretical problems associated with regular planar
lattices: some exact results on the ‘percolation’ problem”, Proc. Roy. Soc. Lond.
322 (1971), 251–280.

It gained a lot more fame when it appeared as the explanation for the Jones polyno-
mial invariant of knots — although Jones had been using it not for knot theory, but in
the study of von Neumann algebras, and the Jones polynomial was just an unexpected
spinoff. Its importance in knot theory comes from the fact that it is a quotient of the
group algebra of the braid group (as explained in Knots and Physics). It has also found a
lot of other applications; for example, I’ve used it in my paper on quantum gravity and
the algebra of tangles. So it is nice to see that there is also a formulation of the 4-color
theorem in terms of the Temperley–Lieb algebra (which I won’t present here).

6) Louis Kauffman, “Knots and physics”, Proc. Symp. Appl. Math. 45 (1992), 131–
246.

Louis Kauffman, “Spin networks, topology and discrete physics”, University of Illi-
nois at Chicago preprint.

Louis Kauffman,“Vassiliev invariants and the Jones polynomial”, University of Illi-
nois at Chicago preprint.

Louis Kauffman, “Gauss codes and quantum groups”, University of Illinois at Chicago
preprint.

Louis Kauffman and H. Saleur,“Fermions and link invariants”, Yale University preprint
YCTP-P21-91, July 5, 1991.

Louis Kauffman, “State models for link polynomials”, L’Enseignement Mathema-
tique, 36 (1990), 1–37.

F. Jaeger, Louis Kauffman and H. Saleur, “The Conway polynomial in R3 and in
thickened surfaces: a new determinant formulation”, preprint.

These are a variety of papers on knots, physics and everything. . . . The more free-
wheeling among you might enjoy the comments at the end of the first paper on “knot
epistemology.”

I am going to a conference on gravity at U.C. Santa Barbara on Friday and Saturday,
which I why I am posting this early, and why I have no time to describe the above
papers. I’ll talk about my usual obsessions, and hear what other people are up to, perhaps
bringing back some words of wisdom for next week’s “This Week’s Finds”.
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Week 9

March 12, 1993

1. Boguslaw Broda,“Surgical invariants of four-manifolds”, preprint available as hep-th/
9302092.

There a number of attempts underway to get invariants of four-dimensional mani-
folds (and 4d topological quantum field theories) by techniques analogous to those that
worked in three dimensions. The 3-manifold invariants and 3d topological quantum field
theories got going with the work of Witten on Chern–Simons theory, but since this was
not rigorous a number of ways were devised to make it so. These seem different at first
glance but all give the same answer. Two approaches that use a lot of category theory
are the Heegard splitting approach (due to Crane, Kohno and Kontsevich, in which one
writes a 3-manifold as two solid n-holed tori glued together by a diffeomorphism of their
boundaries), and the surgery on links approach (due to Reshetikhin and Turaev, in which
one builds up 3-manifolds by starting with the 3-sphere, cutting out thickened links and
gluing them back in a different way, allowing one to define invariants of 3-manifolds
from link invariants). In the case of 3 dimensions a nice paper relating the Heegard
splitting and the surgery on links approaches is

2) Sergey Piunikhin, “Reshetikhin-Turaev and Crane-Kohno-Kontsevich 3-manifold in-
variants coincide”, Journal of Knot Theory and its Ramifications 2 (1993), 65–95.

People are now trying to generalize all these ideas to 4-manifolds. There is already
an interesting bunch of 4-manifold invariants out there, the Donaldson invariants, which
are hard to compute, but were shown (heuristically) by Witten to be related to a quantum
field theory. Lately people have been trying to define invariants using category theory;
these may or may not turn out to be the same.

I’ve already been trying to keep you all updated on the story about Crane and Yetter’s
4d TQFT. This week I’ll discuss another approach, with a vast amount of help from Daniel
Ruberman, a topologist at Brandeis. Any errors in what I write on this are likely to be
due to my misunderstandings of what he said — caveat emptor! Broda’s paper is quite
terse — probably due to the race that is going on — and is based on:

3) E. Cesar de Sa, “A link calculus for 4-manifolds”, in Topology of Low-Dimensional
Manifolds, Proc. Second Sussex Conf., Springer Lecture Notes in Mathematics 722,
Springer, Berlin, 1979, pp. 16–30.

so I should start by describing what little I understand of de Sa’s work.
One can describe (compact, smooth) 4-manifolds in terms of handlebody decompo-

sition. This allows one to actually draw pictures representing 4-manifolds. A lot of times
when people first hear about topology they get they impression that it’s all about rub-
ber doughnuts, Möbius strips, and other Dali-esque wiggly objects in hyperspace. Then,
when they take courses in it, they are confronted with nasty separation axioms and coho-
mology theories! This is just to scare away outsiders! Handlebody theory really is about
wiggly objects in hyperspace, and it’s lots of fun — though to be good in it you need to
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know your point set topology and your algebraic topology, I’m afraid — and much better
than I do!

Recall:
Dn = unit ball in Rn

Sn = unit sphere in Rn+1

In particular note that S0 is just two points. Note that:

• the boundary of D4 is S3

• the boundary of D3 ×D1 is D3 × S0 ∪ S2 ×D1

• the boundary of D2 ×D2 is D2 × S1 ∪ S1 ×D2

• the boundary of D1 ×D3 is D1 × S2 ∪ S0 ×D3

• the boundary of D4 is S3

I have written this rather redundant chart in a way that makes the pattern very clear
and will come in handy below for those who aren’t used to this stuff.

To build up a 4-manifold we can start with a “0-handle,” D4, which has as boundary
S3.

Then we glue on “1-handles,” that is, copies of D3 × D1. Note that part of the
boundary of D1 × D3 is D3 × S0, which is two D3’s; when we glue on a 1-handle we
simply attach these two D3’s to the S3 by a diffeomorphism. The resulting space is not
really a smooth manifold, but it can be smoothed. It then becomes a smooth 4-manifold
with boundary.

Then we glue on “2-handles” by attaching copies of D2 ×D2 along the part of their
boundary that is D2 × S1. Then we smooth things out.

Then we glue on “3-handles” by attaching copies of D1 ×D3 along the part of their
boundary that is D1 × S2. Then we smooth things out.

Then we glue on “4-handles” by attaching copies of D4 along their boundary, i.e. S3.
We can get any compact oriented 4-manifold this way using attaching maps that are

compatible with the orientations. The reader who is new to this may enjoy constructing
2-manifolds in an analogous way. Compact oriented 2-manifolds with boundary are just
n-holed tori.

What’s cool is that with some tricks one can still draw what’s going in the case of
3-manifolds and 4-manifolds. Here I’ll just describe how it goes for 4-manifolds, since
that’s what Cesar de Sa and Broda are thinking about. By the way, a good introduction
to this stuff is

4) The Topology of 4-manifolds, by Robion C. Kirby, Springer Lecture Notes in Mathe-
matics 1374, 1989.

So — here is how we draw what’s going on. I apologize for being somewhat sketchy here
(sorry for the pun, too). I am a bit rushed since I’m heading off somewhere else next
weekend. . . and I am not as familiar with this stuff as I should be.

So, when we start with our 0-handle, or D4, we “draw” its boundary, S3. Think of
S3 as R3 and a point at infinity. Since we use perspective when drawing pictures of 3-d
objects, this boils down to pretending that our blackboard is a picture of S3!
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As we add handles we continue to “draw” what’s happening at the boundary of the 4-
manifold we have at each stage of the game. 1-handles are attached by gluing a D3×D1

onto the boundary along two D3’s — or balls — so we can just draw the two balls.
2-handles are attached by gluing a D2 ×D2 onto the boundary of the 4-manifold we

have so far along a D2 × S1 — or solid torus, so we just need to figure out how to draw
an embedded solid torus. Well, for this we just need to draw a knot (that is, an embed-
ded circle), and write an integer next to it saying how many times the embedded solid
torus “twists” — plus or minus depending on clockwise or counterclockwise — as we go
around the circle. In other words, an embedded solid torus is (up to diffeomorphism)
essentially the same as a framed knot. If we are attaching a bunch of 2-handles we need
to draw a framed link.

Things get a bit hairy in the case when one of the framed links goes through one of
the 1-handles that we’ve already added. It’s easier to draw this situation if we resort
to another method of drawing the 1-handles. It’s a bit more subtle, and took me quite
a while to be able to visualize (unfortunately I seem to have to visualize this stuff to
believe it). So let’s go back to the situation where we have D4, with S3 as its boundary,
and we are adding 1-handles. Instead of drawing two balls, we draw an unknotted circle
with a dot on it! The dot is just to distinguish this kind of circle from the framed links we
already have. But what the circle means is this. The circle is the boundary of an obvious
D2, and we can push the interior of this D2 (which is sitting in the S3) into the interior
of D4. If we then remove a neighborhood of the D2, what we have left is S1×D3, which
is just the result of adding a 1-handle to D4.

This is probably easier to visualize one dimension down: if we have a good old unit
ball, D3, and slap an interval, or D1, onto its boundary, and then push the interior of the
interval into the interior of the ball, and remove a neighborhood of the interval, what
we have left is just an S1 ×D2.

So in short, we can draw all the 1-handles by drawing unlinked, unknotted circles
with dots on them, and then draw all the 2-handles by drawing framed links that don’t
intersect these circles.

At this point, if you have never seen this before, you are probably dreading the 3-
handles and 4-handles. Luckily a theorem comes to our rescue! If we start at the other
end of our handlebody decomposition, as it were, we start with 4-handles and glue on
3-handles. If you ponder the chart and see what the pattern of what we’re doing is, you’ll
see that a single 4-handle with some 3-handles stuck on is just the same as a 0-handle
with some 1-handles stuck on. So when we now glue this thing (or things) onto the stuff
we’ve built out of 0-, 1-, and 2-handles, we are doing so using a diffeomorphism of its
boundary. But a theorem of Laudenbach and Poenaru,

5) F. Laudenbach and V. Poenaru, “A note on 4-dimensional handlebodies”, Bull.
Math. Soc. France 100 (1972), 337–344.

says that any such diffeomorphism extends to one of the interior. This means that it
doesn’t make a darn bit of difference which diffeomorphism we use to glue it on. In short,
all the information is contained in the 1- and 2-handles, so we can draw 4-manifolds by
first drawing a batch of unknotted unlinked circles with dots on them and then drawing
a framed link in the complement.

(A question for the experts, since I’m just learning this stuff: in the above we seem
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to be assuming that there’s only one 0-handle. Is this an okay assumption or do we need
something fancier if there’s more?)

Now a given 4-manifold may have lots of different handlebody decompositions. So,
as usual, we would like to have a finite set of “moves” that allow us to get between
any pair of handlebody decompositions of the same 4-manifold. Then we can construct
a 4-manifold invariant by cooking up a number from a handlebody decomposition —
presented as a picture as above, if we want — and showing that it doesn’t change under
these “moves”.

So, what de Sa did was precisely to find such a set of moves. (There, that’s what I
understand of his work!)

And what Broda did was precisely to use the Kauffman bracket invariant of framed
links to cook up an invariant of 4-manifolds from the handlebody decomposition —
which, note, involves lots of links. Recall that the Kauffman bracket assigns to each link
a polynomial in one variable, q. Here “q” is just the same q that appears in the quantum
group SUq(2). As I mentioned in “Week 5”, this acts quite differently when q is a root
of unity, and the 3d topological quantum field theories coming from quantum groups, as
well as Crane and Yetter’s 4d topological quantum field theory, come from considering
this root-of-unity case. So it’s no surprise that Broda requires q to be a root of unity.

Ruberman had some other remarks about Broda’s invariant, but I think I would prefer
to wait until I understand them. . . .

6) Abhay Ashtekar, Ranjeet S. Tate and Claes Uggla, “Minisuperspaces: symmetries
and quantization”, available as gr-qc/9302026.

Abhay Ashtekar, Ranjeet S. Tate and Claes Uggla, “Minisuperspaces: observables
and quantization”, available as gr-qc/9302027.

I was just at the Pacific Coast Gravity Meeting last weekend and heard Ranjeet Tate
talk on this work. Recall first of all that minisuperspaces are finite-dimensional approx-
imations to the phase space of general relativity, and are used to get some insight into
quantum gravity. I went through an example in “Week 6”. In these papers, the authors
quantize various “Bianchi type” minisuperspace models. The “Bianchi type” business
comes from a standard classification of homogeneous (but not necessarily isotropic) cos-
mologies and having a lot of symmetry. It is based in part on Bianchi’s classification of
3-dimensional Lie algebras into nine types. The second paper gives a pretty good review
of this stuff before diving into the quantization, and I should learn it!

The most exciting aspect of these papers, at least to the dilettante such as myself,
is that one can quantize these models and show that quantization does NOT typically
remove the singularities (“Big Bang” and/or “big crunch”). Of course, these models have
only finitely many degrees of freedom, and are only a caricature of full-fledged quantum
gravity, so one can still argue that real quantum gravity will get rid of the singularities.
But a number of general relativists are arguing that this is not the case, and we simply
have to learn to live with singularities. So it’s good to look at models, however simple,
where one can work things out in detail, and not just argue about generalities.

7) Alan D. Rendall, “Unique determination of an inner product by adjointness rela-
tions in the algebra of quantum observables”, Max-Planck-Institut für Astrophysik
preprint.
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I had known Rendall from his work on the perturbative expansion of the time evo-
lution operators in classical general relativity. He became interested in quantum gravity
a while ago and visited Ashtekar and Smolin at Syracuse University, since (as he said)
the best way to learn is by doing. There he wrote this paper on Ashtekar’s approach to
finding the right inner product for the space of states of quantum gravity. I had heard
about this paper, but hadn’t seen it until I met Rendall at the gravity meeting last week-
end. He gave me a copy and explained it. It is a simple and beautiful paper — such
nice mathematical results that I am afraid someone else may have found them earlier
somewhere.

Ashtekar’s idea is to fix the inner product by requiring that the physical observables,
which are operators on the space of states, be self-adjoint. Rendall shows the following.
Let A be a *-algebra acting on a vector space V . Let us say that an inner product on V
is “strongly admissable” if 1) the representation is a *-representation with respect to this
inner product, 2) for each element of A, the corresponding linear transformation on V is
bounded relative to the norm given by this inner product, and 3) the completion of V in
the inner product is a topologically irreducible representation of A. Rendall shows the
uniqueness of a strongly admissable inner product on any representation V of A (up to
a constant multiple). Of course, such an inner product need not exist, but when it does,
it is unique. This is as nice a result along these lines as one could hope for. He also has a
more complicated result that applies to unbounded operators. A good piece of work on
the foundations of quantum theory!

8) Arlen Anderson, “Thawing the frozen formalism: the difference between observ-
ables and what we observe”, preprint available as gr-qc/9211028.

There were a number of youngish folks giving talks at the gravity meeting who have
clearly been keeping up with the recent work on the problem of time and other concep-
tual problems in quantum gravity. In very brief terms, the problem of time is that in
general relativity, we have not a Hamiltonian in the traditional sense, but a “Hamilto-
nian constraint” H = 0, so when we quantize it superficially appears that there are no
dynamics whatsoever (as it seems like we have a zero Hamiltonian!). That’s the reason
for the term “frozen formalism” — and the desire to “thaw” it, or find the dynamics lurk-
ing in it. In fact, the Hamiltonian constraint is just a reflection of the fact that general
relativity has no preferred time coordinate, and we are just learning how to deal with
the quantum theory of such systems. For a good survey of the problem and some new
proposed solutions, I again refer everyone to Isham’s paper:

9) Chris J. Isham, “Canonical quantum gravity and the problem of time”, 125 pages,
available as gr-qc/9210011.

In particular, one interesting approach is due to Rovelli, and is called “evolving con-
stants of motion” (a deliberate and very accurate oxymoron). While there are serious
technical problems with this approach, it’s very natural from a physical point of view —
at least once you get used to it. I have the feeling that the younger physicists are, as
usual, getting used to it a lot more quickly than the older folks who have been pondering
the problem of time for many years. Anderson is one of these younger folks, and his
paper develops Rovelli’s approach in terms of in a toy model, namely the case of two
free particles satisfying the Schrödinger equation.
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10) Cayetano Di Bartolo, Rodolfo Gambini and Jorge Griego, “The extended loop group:
an infinite dimensional manifold associated with the loop space”, 42 pages, avail-
able as gr-qc/9303010.

Unfortunately I don’t have the time now to give this paper the discussion it deserves.
Gambini is one of the original inventors of the loop representation of gauge theories, so
his work is especially worth paying attention to. He explained the idea of this paper to
me a while back. Its aim is to provide a workable “calculus” for the loop representation
by enlarging the ordinary loop group to a larger group which is actually an infinite-
dimensional Lie group — the point being that the usual loop group doesn’t have a Lie
algebra, but this one does. As one might expect, the Lie algebra of this group is closely
related to the theory of Vassiliev invariants. The paper considers some applications to
quantum gravity and knot theory.

50

https://arxiv.org/abs/gr-qc/9303010


WEEK 10 MARCH 20, 1993

Week 10

March 20, 1993

The most substantial part of this issue is some remarks by Daniel Ruberman on the
paper I was talking about last time by Boguslaw Broda. They apparently show that
Broda’s invariant is not as new as it might appear. But they’re rather technical, so I’ll put
them near the end, and start off with something on the light side, and then note some
interesting progress on the Vassiliev invariant scene.

1) Marcia Bartusiak, “Beyond Einstein — is space loopy?”, Discover, April 1993.

In the airport in Montreal I ran into this article, which was the cover story, with an
upside-down picture of Einstein worked into a bunch of linked key-rings. I bought it —
how could I resist? — since it is perhaps the most “pop” exposition of the loop repre-
sentation of quantum gravity so far. Those interested in the popularization of modern
physics might want to compare

2) John Horgan, “Gravity quantized? A radical theory of gravity weaves space from
tiny loops”, Scientific American, September 1992.

Given the incredible hype concerning superstring theory, which seems to have faded
out by now, I sort of dread the same thing happening to the loop representation of
quantum gravity. It is intrinsically less hype-able, since it does not purport to be a theory
of everything, and it comes right after superstrings were supposed to have solved all the
mysteries of the universe. Also, its proponents are (so far) a more cautious breed than
the string theorists — note the question marks in both titles! But we will see. . . .

Marcia Bartusiak is a contributing editor of Discover and the author of a book on
current topics in astronomy and astrophysics, Thursday’s Universe, which I haven’t read.
She’ll be coming out with a book in June, Through a Universe Darkly, that’s supposed to
be about how theories of cosmology have changed down through the ages. She does a
decent job of sketching vaguely the outlines of the loop representation to an audience
who must be presumed ignorant of quantum theory and general relativity. Of course,
there is also a certain amount of human-interest stuff, with Ashtekar, Rovelli and Smolin
(quite rightly) coming off as the heroes of the story. There are, as usual, little boxes with
gee-whiz remarks like

WITH REAMS OF PAPER

SPREAD OUT

OVER THE KITCHEN TABLE

THEY FOUND

SOLUTION AFTER SOLUTION

FOR EQUATIONS

THOUGHT IMPOSSIBLE TO SOLVE

(which is, after all, true — nobody had previously found solutions to the constraint
equations in canonical quantum gravity, and all of a sudden here were lots of ’em!). And
there are some amusing discussions of personality: “Affable, creative, and easy-going,

51



WEEK 10 MARCH 20, 1993

Rovelli quickly settled into the role of go-between, helping mesh the analytic powers of
the quiet, contemplative Ashtekar with the creativity of the brash, impetuous Smolin.”
And discussions of how much messier Smolin’s office is than Ashtekar’s.

In any event, it’s a fun read, and I recommend it. Of course, I’m biased, so don’t trust
me.

3) Sergey Piunikhin,“Vassiliev invariants contain more information than all knot poly-
nomials”, preprint.

Sergey Piunikhin, “Turaev–Viro and Kauffman-Lins invariants for 3-manifolds co-
incide”, Journal of Knot Theory and its Ramifications 1 (1992), 105–135.

Sergey Piunikhin, “Different presentations of 3-manifold invariants arising in ra-
tional conformal field theory”, preprint.

Sergey Piunikhin, “Weights of Feynman diagrams, link polynomials and Vassiliev
knot invariants”, preprint.

Sergey Piunikhin “Reshetikhin–Turaev and Crane–Kohno–Kontsevich 3-manifold
invariants coincide”, preprint.

I received a packet of papers by Piunikhin a while ago. The most new and interesting
thing is the first paper listed above. In “Week 3” I noted a conjecture of Bar-Natan that
all Vassiliev invariants come from quantum group knot invariants (or in other words,
from Lie algebra representations.) Piunikhin claims to refute this by showing that there
is a Vassiliev invariant of degree 6 that does not. (However, other people have told me
his claim is misleading!) I have been too busy to read this paper yet.

4) Bernd Bruegmann, Bibliography of publications related to classical and quantum
gravity in terms of the Ashtekar variables, available as gr-qc/9303015.

Let me just quote the abstract; this should be a handy thing:

This bibliography attempts to give a comprehensive overview of all the literature
related to the Ashtekar variables. The original version was compiled by Peter
Huebner in 1989, and it has been subsequently updated by Gabriela Gonzalez
and Bernd Bruegmann. Information about additional literature, new preprints,
and especially corrections are always welcome.

5) Boguslaw Broda,“Surgical invariants of four-manifolds”, preprint available as hep-th/
9302092. (Revisited — see “Week 9”)

Let me briefly recall the setup: we describe a compact 4-manifold by a handlebody
decomposition, and represent this decomposition using a link in S3. The 2-handles
are represented by framed knots, while the 1-handles are represented by copies of the
unknot (which we may think of as having the zero framing). The 1-handles and 2-
handles play quite a different role in constructing the 4-manifold — which is why one
normally draws the former as copies of the unknot with a dot on them — but Broda’s
construction does NOT care about this. Broda simply takes the link, forgetting the dots,
and cooks up a number from it, using cabling and the Kauffman bracket at an root of
unity. Let’s call Broda’s invariant by b(M) — actually for each primitive rth root of unity,
we have br(M).
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Broda shows that this is a 4-manifold invariant by showing it doesn’t change under
the de Sa moves. One of these consists of adding or deleting a Hopf link

in which both components have the zero framing and one represents a 1-handle and the
other a 2-handle. This move depends on the fact that we can “cancel” a 1-handle and
2-handle pair, a special case of a general result in Morse theory.

But since Broda’s invariant doesn’t care which circles represent 1-handles and which
represent 2-handles, Broda’s invariant is also invariant under adding two 2-handles that
go this way. This amounts to taking a connected sum with S2 × S2. I.e., b(M) =
b(M#S2 × S2).

Now, Ruberman told me a while back that we must also have b(M) = b(M#CP2#−
CP2), that is, the invariant doesn’t change under taking a connected sum with a copy
of CP2 (complex projective 2-space) and an orientation-reversed copy of CP2. This
amounts to adding or deleting a Hopf link in which one component has the zero framing
and the other has framing 1. I didn’t understand this, so I pestered Ruberman some
more, and this is what he says (modulo minor edits). I have not had time to digest it yet:

The first question you asked was about the different framings on a 2-handle
which goes geometrically once over a 1-handle, i.e. makes a Hopf link in which
one of the circles is special (i.e is really a 1-handle, i.e. in Akbulut–Kirby’s nota-
tion is drawn with a dot.) The answer is that the framing doesn’t matter, since
the handles cancel. This is explained well (in the PL case) in Rourke-Sanderson’s
book. (Milnor’s book on the h-cobordism theorem explains it in terms of Morse
functions, in the smooth case.)

From this, it follows that b(M) = b(M#S2 × S2) = b(M#CP2# − CP2). For
M is unchanged if you add a cancelling 1,2 pair, independent of the framing on
the 2-handle. If you change the special circle to an ordinary one, b(M) doesn’t
change. On the other hand, M has been replaced by its sum with either S2 × S2

or CP2# − CP2, depending on whether the framing on the 2-handle is even or
odd. (Exercise: why is only the parity relevant?)

Now as I pointed out before, if one replaces all of the 1-handles (special circles) of
a 4-manifold with 2-handles, the invariant doesn’t change. This operation cor-
responds to doing surgery on the 4-manifold, along the cores of the 1-handles.
In particular, the manifold has changed by a cobordism. (This is a basic con-
struction; when you do surgery you produce a cobordism, in this case it’s M × I
with 2-handles attached to it along the circles which you surgered.)

From this, I will now show that Broda’s invariant is determined by the signature.
(This is in the orientable case. Actually it seems that his invariant is really an
invariant of an oriented manifold.) The argument above says that for any M ,
there is an M ′, with b(M) = b(M ′), where M ′ has no 1-handles, and where M

53



WEEK 10 MARCH 20, 1993

and M ′ are cobordant. In particular, M ′ is simply connected. So it suffices to
show that b(N) = b(N ′) if N and N ′ are simply connected.

So now you can assume you have two simply connected manifolds N,N ′ which
are cobordant via a 5-dimensional cobordism W, which you can also assume
simply connnected. By high-dimensional handlebody theory, you can get rid
of the 1-handles and 4-handles of W , and assume that all the 2-handles are
added, then all of the 3-handles. If you add all the 2-handles to N, you get
N#k(S2 × S2)#l(CP2#(−CP2)) for some k and l. (Here is where simple
connectivity is relevant; the attaching circle of a 2-handle is null-homotopic,
and therefore isotopic to an unknotted circle. It’s a simple exercise to see what
happens when you do surgery on a trivial circle, ie you add on S2 × S2 or
CP2# − CP2. On the other hand you get the same manifold as the result of
adding 2-handles to N ′. So

N#k(S2xS2)#l(CP2#(−CP2)) = N ′#k′(S2xS2)#l′(CP2#(−CP2)),

so by previous remarks b(N) = b(N ′), i.e b is a cobordism invariant.

Now: b is also multiplicative under connected sum, because connected sum just
takes the union of the link diagrams. The cobordism group is Z, detected by
the signature, so b must be a multiple of the signature, modulo some number.
(Maybe at this point I realize b should be br or some such). If you compute (as a
grad student Tian-jin Li did for me) br(CP2), you find that br lives in the group
of rth (or maybe 4rth; I’m at home and don’t have my note) roots of unity.

My conclusion: this invariant is a rather complicated way to compute the sig-
nature of a 4-manifold (modulo r or 4r) from a link diagram of the manifold.

There is an important moral of the story, which is perhaps not obvious to some-
one outside of 4-manifolds. Any invariant which purports to go beyond classical
ones (i.e. invariants of the intersection form) must treat CP2 and −CP2 very
differently. It seems to be the case that many manifolds which are different (i.e.
nondiffeomorphic) become diffeomorphic after you add on CP2. Thus any useful
invariant should get rather obliterated by adding CP2. On the other hand, non-
diffeomorphic manifolds seem to stay non-diffeomorphic, no matter how many
−CP2’s you add on. This phenomenon doesn’t seem to be exhibited by any of the
quantum-group type constructions for 3-manifolds; as it shouldn’t, since (from
the 3-manifold point of view) an unknot with framing + or -1 doesn’t change
the 3-manifold. So if you’re looking for a combinatorial invariant, it seems crit-
ical that you try to build in the asymmetry wrt orientation which 4-manifolds
seem to possess.

Exercise: do the nonorientable case. The answer should be that b is determined
by the Euler characteristic, mod 2.
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Week 11

March 23, 1993

I’m hitting the road again tomorrow and will be going to the Quantum Topology con-
ference in Kansas until Sunday, so I thought I’d post this week’s finds early. As a result
they’ll be pretty brief. Let me start with one that I mentioned in “Week 9” but is now
easier to get:

1) Alan D. Rendall, “Unique determination of an inner product by adjointness rela-
tions in the algebra of quantum observables”, available as gr-qc/9303026.

and then mention another thing I’ve gotten as a spinoff from the gravity conference at
UCSB:

2) Ranjeet S. Tate, An Algebraic Approach to the Quantization of Constrained Systems:
Finite Dimensional Examples, Ph.D. thesis, Physics Department, Syracuse University,
August 1992, SU-GP-92/8-1.

Both the technical problems of “canonical” quantum gravity and one of the main
conceptual problems — the problem of time — stem from the fact that general relativity
is a system in which the initial data have constraints. So improving our understanding of
quantizing constrained classical systems is important in understanding quantum gravity.

Let me say a few words about these constraints and what I mean by “canonical”
quantum gravity.

First consider the wave equation in 2 dimensions. This is an equation for a function
from R2 to R, say ϕ(t, x), where t is a timelike and x is a spacelike coordinate. The
equation is simply

d2ϕ

dt2
− d2ϕ

dx2
= 0.

Now this equation can be rewritten as an evolutionary equation for initial data as follows.
We consider pairs of functions (Q,P ) on R — which we think of ϕ and dϕ/dt on “space”,
that is, on a surface t = constant. And we rewrite the second-order equation above as a
first-order equation:

d

dt
(Q,P ) =

(
P,
d2Q

dx2

)
. (1)

This is a standard trick. We call the space of pairs (Q,P ) the “phase space” of the theory.
In canonical quantization, we treat this a lot like the space R2 of pairs (q, p) describing
the initial position and momentum of a particle. Note that for a harmonic oscillator we
have an equation a whole lot like (1):

d

dt
(q, p) = (p,−q).

This is why when we quantize the wave equation it’s a whole lot like the harmonic
oscillator.

Now in general relativity things are similar but more complicated. The analog of
the pairs (ϕ, dϕ/dt) are pairs (Q,P ) where Q is the metric on spacetime restricted to
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a spacelike hypersurface — that is, the “metric on space at a given time” — and P is
concocted from the extrinsic curvature of that hypersurface as it sits in spacetime. Now
the name of the game is to turn Einstein’s equation for the metric into a first-order
equation sort of like (1). The problem is, in general relativity there is no god-given
notion of time. So we need to pick a “lapse function” on our hypersurface, and a “shift
vector field” on our hypersurface, which say how we want to push our hypersurface
forwards in time. The lapse function says at each point how much we push it in the
normal direction, while the shift vector field says at each point how much we push it in
some tangential direction. These are utterly arbitrary and give us complete flexibility in
how we want to push the hypersurface forwards. Even if spacetime was flat, we could
push the hypersurface forwards in a dull way like:

new

old

or in a screwy way like

new

old

Of course, in general relativity spacetime is usually not flat, which makes it ultimately
impossible to decide what counts as a “dull way” and what counts as a “screwy way,”
which is why we simply allow all possible ways.

Anyway, having chosen a lapse function and shift vector field, we can rewrite Ein-
stein’s equations as an evolutionary equation. This is a bit of a mess, and it’s called the
ADM (Arnowitt–Deser–Misner) formalism. Schematically, it goes like

d

dt
(Q,P ) = (stuff1, stuff2). (2)

where both “stuff1” and “stuff2” depend on both Q and P in a pretty complex way.
But there is a catch. While the evolutionary equations are equivalent to 6 of Ein-

stein’s equations (Einstein’s equation for general relativity is really 10 scalar equations
packed into one tensor equation), there are 4 more of Einstein’s equations which turn
into constraints on Q and P . 1 of these constraints is called the Hamiltonian constraint
and is closely related to the lapse function; the other 3 are called the momentum or
diffeomorphism constraints and are closely related to the shift vector field.

For those of you who know Hamiltonian mechanics, the reason why the Hamiltonian
constraint is called what it is is that we can write it as

H(Q,P ) = 0

for some combination of Q and P , and this H(Q,P ) acts a lot like a Hamiltonian for
general relativity in that we can rewrite (2) using the Poisson brackets on the “phase
space” of all (Q,P ) pairs as

d

dt
Q = {P,H(Q,P )}

d

dt
P = {Q,H(Q,P )}.

56



WEEK 11 MARCH 23, 1993

The funny thing is that H is not zero on the space of all (Q,P ) pairs, so the equations
above are nontrivial, but it does vanish on the submanifold of pairs satisfying the con-
straints, so that, in a sense, “the Hamiltonian of general relativity is zero”. But one must
be careful in saying this because it can be confusing! It has confused lots of people wor-
rying about the problem of time in quantum gravity, where they naively think “What —
the Hamiltonian is zero? That means there’s no dynamics at all!”

The problem in quantizing general relativity in the “canonical” approach is largely
figuring out what to do with the constraints. It was Dirac who first seriously tackled
such problems, but the constraints in general relativity always seemed intractible (when
quantizing) until Ashtekar invented his “new variables” for quantum gravity, that all of a
sudden make the constraints look a lot simpler. Ashtekar also has certain generalizations
of Dirac’s general approach to quantizing systems with constraints, and part of what Tate
(who was a student of Ashtekar) is doing is to study a number of toy models to see how
Ashtekar’s ideas work.

I should note that there are lots of other ways to handle problems with constraints,
like BRST quantization, that aren’t mentioned here at all.

Well, I’m off to Kansas and I hope to return with a bunch of goodies and some gossip
about 4-manifold invariants, topological quantum field theories and the like. Lee Smolin
will be talking there too so I will try to extract some information about quantum gravity
from him.
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Week 12

April 10, 1993

I had a lot of fun at the “Quantum Topology” conference at Kansas State University, in
Manhattan (yes, that’s right, Manhattan, Kansas, the so-called “Little Apple”), and then
spent a week recovering. Now I’m back, ready for the next quarter. . .

The most novel idea I ran into at the conference was due to Oleg Viro, who, ironi-
cally, is right here at U. C. Riverside. He spoke on work with Turaev on generalizing the
Alexander module (a classical knot invariant) to get a similar sort of module from any
3-dimensional topological quantum field theory. A “topological quantum field theory,” or
TQFT for short, is (in the language of physics) basically just a generally covariant quan-
tum field theory, one that thinks all coordinate systems are equally good, just as general
relativity is a generally covariant classical field theory. For a more precise definition of
TQFTs (which even mathematicians who know nothing of physics can probably follow),
see my article “symmetries”. In any event, I don’t think Viro’s work exists in printed form
yet; I’ll let you all know when something appears.

The most lively talk was one by Louis Crane and David Yetter, the organizers of
the conference. As I noted a while back, they claimed to have constructed a FOUR-
dimensional TQFT based on some ideas of Ooguri, who was working on 4-dimensional
quantum gravity. This would be very exciting as long as it isn’t “trivial” in some sense,
because all the TQFTs developed so far only work in 3-dimensional spacetime. A rigorous
4-dimensional TQFT might bring us within striking distance of a theory of quantum
gravity — this is certainly Crane’s goal. Ocneanu, however, had fired off a note claiming
to prove that the Crane–Yetter TQFT was trivial, in the sense that the partition function of
the field theory for any compact oriented 4-manifold equalled 1! In a TQFT, the partition
function of the field theory on a compact manifold is a invariant of the manifold, and if
it equalled 1 for all manifolds, it would be an extremely dull invariant, hence a rather
trivial TQFT.

So, on popular demand, Crane and Yetter had a special talk at 8 pm in which they
described their TQFT and presented results of calculations that showed the invariant did
NOT equal 1 for all compact oriented 4-manifolds. So far they have only calculated it
in some special cases: S4, S3 × S1, and S2 × S2. Amusingly, Yetter ran through the
calculation in the simplest case, S4, in which the invariant does happen to equal 1. But
he persuaded most of us (me at least) that the invariant really is an invariant and that he
can calculate it. I say “persuade” rather than prove because he didn’t present a proof that
it’s an invariant; the current proof is grungy and computational, but Viro and Kauffman
(who were there) pointed out some ways that it could be made more slick, so we should
see a comprehensible proof one of these days. However, it’s still up in the air whether this
invariant might be “trivial” in some more sophisticated sense, e.g., maybe it’s a function
of well-known invariants like the signature and Euler number. Unfortunately, Ocneanu
decided at the last minute not to attend. Nor did Broda (inventor of another 4-manifold
invariant that Ruberman seems to have shown “trivial” in previous This Week’s Finds)
show up, though he had been going to.

On a slightly more technical note, Crane and Yetter’s TQFT depends on chopping up
the 4-manifold into simplices (roughly speaking, 4-dimensional versions of tetrahedra).
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Their calculation involves drawing projections of these beasts into the plane and applying
various rules; it was quite fun to watch Yetter do it on the blackboard. Turaev and Viro
had constructed such a “simplicial” TQFT in 3 dimensions, and Ooguri had been working
on simplicial quantum gravity. As I note below, Lee Smolin has a new scheme for doing 4-
dimensional quantum gravity using simplices. During the conference he was busy trying
to figure out the relation of his ideas to Crane and Yetter’s.

Also while at the conference, I found a terrible error in “Week 10” in my description
of

Sergey Piunikhin,“Vassiliev invariants contain more information than all knot
polynomials”, preprint.

I had said that Piunikhin had discovered a Vassiliev invariant that could distinguish
knots from their orientation-reversed versions. No! The problem was a very hasty read-
ing on my part, together with the following typo in the paper, that tricked my eyes:

Above constructed Vassiliev knot invariant w of order six does knot detect orien-
tation of knots.

Ugh! Also, people at the conference said that Piunikhin’s claim in this paper to have
found a Vassiliev invariant not coming from quantum group knot polynomials is mis-
leading. I don’t understand that yet.

Here are some papers that have recently shown up. . .

1) Karel Kuchar, “Canonical quantum gravity”, available as gr-qc/9304012.

Kuchar (pronounced Koo-kahsh, by the way) is one of the grand old men of quantum
gravity, one of the people who stuck with the subject for the many years when it seemed
absolutely hopeless, who now deserves some of the credit for the field’s current resur-
gence. He has always been very interested in the problem of time, and for anyone who
knows a little general relativity and quantum field theory, this is a very readable intro-
duction to some of the key problems in canonical quantum gravity. I should warn the
naive reader, however, that Kuchar’s views about the problem of time expressed in this
paper go strongly against those of many other experts! It is a controversial problem.

Briefly, many people believe that physical observables in quantum gravity should
commute with the Hamiltonian constraint (cf. “Week 11”); this means that they are time-
independent, or constants of motion, and this makes the dynamics of quantum gravity
hard to ferrett out. Kuchar calls such quantities “perennials.” But Rovelli has made a pro-
posal for how to recover dynamics from perennials, basically by considering 1-parameter
families At of perennials, ironically called “evolving constants of motion.” Kuchar argues
against this proposal on two grounds: first, he does not think physical observables need
to commute with the Hamiltonian constraint, and second, he argues that there may be
very few if any perennials. The latter point is much more convincing to me than the
former, at least at the classical level, where the presence of enough perennials would be
close to the complete integrability of general relativity, which is most unlikely. But on
the quantum level things are likely to be quite different, and Smolin has recently been
at work attempting to construct perennials in quantum gravity (cf. “Week 1”). As for
Kuchar’s former point, that observables in quantum gravity need not be perennials, his
arguments seem rather weak. In any event, read and enjoy, but realize that the subject
is a tricky one!
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2) John Fischer, “2-categories and 2-knots”, preprint, last revised Feb. 6 1993.

This is the easiest way to learn about the 2-category of 2-knots. Recall (from “Week 1”
and “Week 4”) that a 2-knot is a surface embedded in R4, which may visualized as a
“movie” of knots evolving in time. Fischer shows that the algebraic structure of 2-knots
is captured by a braided monoidal 2-category, and he describes this 2-category.

3) Mark Miller and Lee Smolin,“A new discretization of classical and quantum general
relativity”, available as gr-qc/9304005.

Here Smolin proposes a new simplicial approach to general relativity (there is an older
one known as the Regge calculus) which uses Ashtekar’s “new variables,” and works in
terms of the Capovilla–Dell–Jacobson version of the Lagrangian. Let me just quote the
abstract, I’m getting tired:

We propose a new discrete approximation to the Einstein equations, based on
the Capovilla–Dell–Jacobson form of the action for the Ashtekar variables. This
formulation is analogous to the Regge calculus in that it results from the applica-
tion of the exact equations to a restricted class of geometries. Both a Lagrangian
and Hamiltonian formulation are proposed and we report partial results about
the constraint algebra of the Hamiltonian formulation. We find that in the limit
that the SO(3) gauge symmetry of frame rotations is reduced to the abelian
U(1)3, the discrete versions of the diffeomorphism constraints commute with
each other and with the Hamiltonian constraint.

4) “Higher algebraic structures and quantization”, by Dan Freed, available as hep-th/
9212115.

This is about TQFTs and the high-powered algebra needed to do justice to the “ladder of
field theories” that one can obtain starting with a d-dimensional TQFT — gerbs, torsors,
n-categories and other such scary things. I am too beat to do this justice.
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Week 13

April 20, 1993

Well, folks, this’ll be the last “This Week’s Finds” for a while, since I’m getting rather
busy preparing for my conference on knots and quantum gravity, and I have a paper that
seems to be taking forever to finish.

1) Anthony W. Knapp, Elliptic Curves, Mathematical Notes, Princeton University Press,
1992.

This is a shockingly user-friendly introduction to a subject that can all too easily seem
intimidating. I’m certainly no expert but maybe just for that reason I should sketch a brief
“introduction to the introduction” that may lure some of you into studying this beautiful
subject.

What I will say will perhaps appeal to people who like complex analysis or mathe-
matical physics, but Knapp concentrates on the aspects related to number theory. For
other approaches one might try

2) Serge Lang, Elliptic Functions, 2nd edition, Springer, Berlin 1987.

3) Dale Husemoeller, Elliptic Curves, Springer, Berlin, 1987.

Okay, where to start? Well, how about this: the sine function is an analytic function
on the complex plane with the property that

sin(z + 2π) = sin z.

It also satisfies a nice differential equation

(sin′ z)2 = 1− (sin z)2

and for this reason, we could, if we hadn’t noticed the sine function otherwise, have run
into it when we tried to integrate

1√
1− u2

The differential equation above implies that the integral is nice to do by the substitution
u = sin z, and we get the answer arcsinu. If the sine function — or more generally, trig
functions — didn’t exist yet, we would have invented them when we tried to do integrals
involving square roots of quadratic polynomials.

Elliptic functions are a beautiful generalization of all of this stuff. Say we wanted,
just for the heck of it, an analytic function that was periodic not just in one direction on
the complex plane, like the sine function, but in two directions. For example, we might
want some function P (z) with

P (z + 2π) = P (z)

and also
P (z + 2πi) = P (z).
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This function would look just the same on each 2π-by-2π square:

<(z)

=(z)

2π

2π

so if we wanted, we could think of it as being a function on the torus formed by taking
one of these squares and identifying its top side with its bottom side, and its left side
with its right side.

More generally — while we’re fantasizing about this wonderful doubly-periodic func-
tion — we could ask for one that was periodic in any old two directions. That is, fixing
two numbers ω1 and ω2 that aren’t just real-valued multiples of each other, we could
hope to find an analytic function on the complex plane with ω1 and ω2 as periods:

P (z + ω1) = P (z)

P (z + ω2) = P (z).

Then P (z) would be the same at all points on the “lattice” of points nω1 + mω2, which
might look like the squares above or might be like

<(z)

=(z)

or some such thing.
Let’s think about this nice function P (z) we are fantasizing about. Alas, if it were

analytic on the whole plane (no poles), it would be bounded on each little parallelogram,
and since it’s doubly periodic, it would be a bounded analytic function on the complex
plane, hence constant by Liouville’s theorem. Well, so a constant function has all the
wonderful properties we want — but that’s too boring!
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So let’s allow it to have poles! But let’s keep it as nice as possible, so let’s have the
only poles occur at the lattice points

L = {nω1 +mω2}.

And let’s make the poles as nice as possible. Can we have each pole be of order one?
That is, can we make P (z) blow up like 1/(z − ω) at each lattice point ω in L? No,
because if it did, the integral of P around a nicely chosen parallelogram around the pole
would be zero, because the contributions from opposite sides of the parallelogram would
cancel by symmetry. (A fun exercise.) But by the Cauchy residue formula this means that
the residue of the pole vanishes, so it can’t be of order one.

Okay, try again. Let’s try to make the pole at each lattice point be of order two. How
can we cook up such a function? We might try something obvious: just sum up, for all ω
in the lattice L, the functions

1

(z − ω)2

We get something periodic with poles like 1/(z − ω)2 at each lattice point ω. But there’s
a big problem — the sum doesn’t converge! (Another fun exercise.)

Oh well, try again. Let’s act like physicists and renormalize the sum by subtracting
off an infinite constant! Just subtract the sum over all ω in L of 1/ω2. Well, all ω except
zero, anyway. This turns out to work, but we really should be careful about the order
of summation here: really, we should let P (z) be 1/z2 plus the sum for all nonzero ω in
the lattice L of 1/(z − ω)2 − 1/ω2. This sum does converge and the limit is a function
P (z) that’s analytic except for poles of order two at the lattice points. This is none other
than the Weierstrass elliptic function, usually written with a fancy Gothic P to intimidate
people. Note that it really depends on the two periods ω1 and ω2, not just z.

Now, it turns out that P (z) really is a cool generalization of the sine function. Namely,
it satisfies a differential equation like the one the sine does, but fancier:

P ′(z)2 = 4P (z)3 − g2P (z)− g3

where g2 and g3 are some constants that depend on the periods ω1 and ω2. Just as with
the sine function we can use the inverse of Weierstrass P function to do some integrals,
but this time we can do integrals involving square roots of cubic polynomials! If you look
in big nasty books of special functions or tables of integrals, you will see that there’s a big
theory of this kind of thing that was developed in the 1800’s — back when heavy-duty
calculus was hip.

There are, however, some other cool ways of thinking about what’s going on here.
First of all, remember that we can think of P (z) as a function on the torus. We can think
of this torus as being “coordinatized” — I use the word loosely — by P (z) and its first
derivative P ′(z). I.e., if we know x = P (z) and y = P ′(z) we can figure out where the
point z is on the torus. But of course x and y can’t be any old thing; the differential
equation above says they have to satisfy

y2 = 4x3 − g2x− g3.

Here x and y are complex numbers of course. But look what this means: it means that
if we look at the pairs of complex numbers (x, y) satisfying the above cubic equation,
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we get something that looks just like a torus! This is called an elliptic curve, since for
algebraic geometers a “curve” is the set of solutions (x, y) of some polynomial in two
complex variables — not two real variables.

So — an “elliptic curve” is basically just the solutions of a cubic equation in two
variables. Actually, we want to rule out curves that have singularities, that is, places
where there’s no unique tangent line to the curve, as in y2 = x3 or y2 = x2(x + 1) —
draw these in the real plane and you’ll see what I mean. Anyway, all elliptic curves can,
by change of variables, be made to look like our favorite one,

y2 = 4x3 − g2x− g3.

There are lots of more fancy ways of thinking about elliptic curves, and one is to think
of the fact that they look like a torus as the key part. In a book on algebraic geometry
you might see an elliptic curve as a curve with genus one (i.e., with one “handle,” like
a torus has). One nice thing about a torus is that is a group. That is, we know how to
add complex numbers, and we can add modulo elements of the lattice L, so the torus
becomes a group with addition mod L as the group operation. This is simple enough,
but it means that when we look at the solutions of

y2 = 4x3 − g2x− g3

they must form a group somehow, and viewed this way it’s not at all obvious! Nonethe-
less, there is a beautiful geometric description of the group operation in these terms —
I’ll leave this for Knapp to explain..

Let me wrap this up — the story goes on and on, but I’m getting tired — with a bit
about what it has to do with number theory. It has a lot to do with Diophantine equa-
tions, where one wants integer, or rational solutions to a polynomial equation. Suppose
that g2 and g3 are rational, and one has some solutions to the equation

y2 = 4x3 − g2x− g3.

Then it turns out that one can use the group operation on the elliptic curve to get new
solutions! Actually, it seems as if Diophantus knew this way back when in some special
cases. For example, for the problem

y(6− y) = x3 − x

Diophantus could start with the trivial solution (x, y) = (−1, 0), do some mysterious
stuff, and get the solution (17/9, 26/27). Knapp explains how this works in the Overview
section, but then more deeply later. Basically, it uses the fact that this curve is an elliptic
curve, and uses the group structure.

In fact, one can solve mighty hard-seeming Diophantine problems using these ideas.
Knapp talks a bit about a problem Fermat gave to Mersenne in 1643 — this increased
my respect for Fermat a bit. He asked, find a Pythagorean triple (X,Y, Z), that is:

X2 + Y 2 = Z2,

such that Z is a square number and X+Y is too! One can solve this using elliptic curves.
I don’t know if Mersenne got it — the answer is at the end of this post, but heavy-duty
number theorists out there might enjoy trying this one if they don’t know it already.

Some more stuff:

64



WEEK 13 APRIL 20, 1993

4) Jim Stasheff, “Closed string field theory, strong homotopy Lie algebras and the
operad actions of moduli spaces”, available as hep-th/9304061.

One conceptually pleasing approach to string theory is closed string field theory, where
one takes as the basic object unparametrized maps from circle into a manifold M repre-
senting “space”, i.e., elements of

Maps(S1,M)/Diff+(S1).

A state of closed string field theory would be roughly a function on the above set. Then
one tries to define all sorts of operations on these states, in order to define write down
ways the strings can interact. For example, there is a “convolution product” on these
functions which almost defines a Lie algebra structure. However, the Jacobi identity only
holds “up to homotopy,” so we have an algebraic structure called a homotopy Lie algebra.
Physicists would say that the Jacobi identity holds modulo a BRST exact term. This is
just the beginning of quite a big bunch of mathematics being developed by Stasheff,
Zwiebach, Getzler, Kapranov and many others. My main complaint with the physics is
that all these structures seem to depend on choosing a Riemannian metric on M — a
so-called “background metric.” Since string theory is supposed to include a theory of
quantum gravity it is annoying to have this God-given background metric stuck in at the
very start. Perhaps I just don’t understand this stuff. I am looking around for stuff on
background-independent closed string field theory, since I have lots of reason to believe
that it’s related to the loop representation of quantum gravity. Unfortunately, I scarcely
know the subject — I had hoped Stasheff’s work would help me, but it seems that this
metric always enters.

5) Sergey Matveev and Michael Polyak, “A geometrical presentation of the surface
mapping class group and surgery”, preprint.

This paper shows how to express the mapping class group of a surface in terms of tangles.
This gives a nice relationship between two approaches to 3d TQFTs (topological quantum
field theories): the Heegard decomposition approach, and the surgery on links approach.

6) Michael Polyak, “Invariants of 3-manifolds and conformal field theories”, preprint.

The main good thing about this paper in my opinion is that it simplifies the definition
of a modular tensor category. Recall that Moore and Seiberg showed how any string
theory (more precisely, any rational conformal field theory) gave rise to a modular tensor
category, and then Crane showed that any modular tensor category gave rise to a 3d
TQFT. Unfortunately a modular tensor category seems initially to be a rather baroque
mathematical object. In this paper Polyak shows how to get lots of the structure of a
modular tensor category from just the “fusion” and “braiding” operators, subject to some
mild conditions. I have a conjecture that all nonnegative link invariants (in the sense of
my paper on tangles and quantum gravity) give rise to modular tensor categories, and
this simplifies things to the point where maybe I might eventually be able to prove it.
There are lots of nice pictures here, too, by the way.
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Answer to puzzle:
X = 1061652293520

Y = 4565486027761

Z = 4687298610289
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Week 14

May 8, 1993

Things are moving very fast in the quantum gravity/4d topology game, so I feel I should
break my vow not to continue this series until after next weekend’s conference on Knots
and Quantum Gravity.

Maybe I should recall where things were when I left off. The physics problem mo-
tivating a lot of work in theoretical physics today is reconciling general relativity and
quantum theory. The key feature of general relativity is that time and space do not ap-
pear as a “background structure,” but rather are dynamical variables. In mathematical
terms, this just means that there is not a fixed metric; instead gravity is the metric, and
the metric evolves with time like any other physical field, satisfying some field equations
called the Einstein equations.

But it is worth stepping back from the mathematics and trying to put into simple
words why this makes general relativity so special. Of course, it’s very hard to put this
sort of thing into words. But roughly, we can say this: in Newtonian mechanics, there
is a universal notion of time, the “t” coordinate that appears in all the equations of
physics, and we assume that anyone with a decent watch will be able to keep in synch
with everyone else, so there is no confusion about what this “t” is (apart from choosing
when to call t = 0, which is a small sort of arbitrariness one has to live with). In special
relativity this is no longer true; watches moving relative to each other will no longer
stay in synch, so we need to pick an “inertial frame,” a notion of rest, in order to have
a “t” coordinate to play with. Once we pick this inertial frame, we can write the laws
of physics as equations involving “t”. This is not too bad, because there is only a finite-
parameter family of inertial frames, and simple recipes to translate between them, and
also because nothing going on will screw up the functioning of our (idealized) clocks:
that is, the “t” coordinate doesn’t give a damn about the state of the universe. That’s
what is meant by saying a “background structure” — it’s some aspect of the universe
that is unaffected by everything else that’s going on.

In general relativity, things get much more interesting: there is no such thing as an
inertial frame that defines coordinates on spacetime, because there is no way you can
get a lot of things at different places to remain at rest with each other — this is what is
meant by saying that spacetime is curved. You can measure time with your watch, so-
called “proper time,” but this applies only near you. More interestingly still, to compare
what your watch is doing to what someone else’s is doing, you actually need to know a
lot about the state of the universe, e.g., whether there are any heavy masses around that
are curving spacetime. The “metric,” whereby one measures distances and proper time,
depends on the state of the universe — or more properly, it is part of the state of the
universe.

Trying to do quantum theory in this context has always been too hard for people.
Part of the reason why is that built into the heart of traditional quantum theory is the
“Hamiltonian,” which describes the evolution of the state of the system relative to a God-
given “background” notion of “t”. Anyone who has taken quantum mechanics will know
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that the star of the show is the Schrödinger equation:

i
dψ

dt
= Hψ

saying how the wavefunction ψ changes with time in a way depending on the Hamilto-
nian H. No “t,” no “H” — this is one basic problem with trying to reconcile quantum
theory with general relativity.

Actually, it turns out that the analog to Schrödinger’s equation for quantum gravity
is the Wheeler–DeWitt equation. The Hamiltonian is replaced by an operator called the
“Hamiltonian constraint” and we have

Hψ = 0.

Note how this cleverly avoids mentioning “t”! The problem is, people still aren’t quite
sure what to do with the solutions to this equation — we’re so used to working with
Schrödinger’s equation.

Now in 1988 Witten wrote a paper in which he coined the term “topological quantum
field theory,” or TQFT, for short. This was meant to capture in a rigorous way what field
theories like quantum gravity should be like. Actually, Witten was working on a different
theory called Donaldson theory, which also has the property of having no background
structures. Shortly thereafter the mathematician Atiyah came up with a formal definition
of a TQFT. To get an idea of this definition, try my notes on “symmetries” and (if you
don’t know what categories are) “categories”. For a serious tour of TQFTs and the like,
try his book:

1) Michael Atiyah, The Geometry and Physics of Knots, Cambridge U. Press, Cambridge,
1990.

One can think of a TQFT as a framework in which a Wheeler–DeWitt-like equation gov-
erns the dynamics of a quantum field theory. Experts may snicker here, but it is true, if
not as enlightening as other things one can say.

I won’t bother to define TQFTs here, but I think Smolin put it very well when he said
the idea of TQFTs really helped us break out of our traditional idea of fields as being
something defined at every point of spacetime, wiggling around, and allowed us to see
field theory from many new angles. For example, TQFTs let us wiggle out of the old
conundrum of whether spacetime is continuous or discrete, because many TQFTs can be
equivalently described in either of two ways: via a continuum model of spacetime, or via
a discrete one in which spacetime is given a “simplicial structure,” like a big tetrahedral
tinkertoy lattice kind of thing. The latter idea appears to be due to Turaev and Viro,
although certainly physicists have had similar ideas for years, going back to Ponzano
and Regge, who worked on simplicial quantum gravity.

Now the odd thing is that while interesting 3d TQFTs have been found, the most
notable being Chern–Simons theory, nobody has quite been able to make 4d TQFTs rig-
orous. Witten’s original work on Donaldson theory has led to many interesting things,
but not yet a full-fledged TQFT in the rigorous sense of Atiyah. And quantum gravity
still resists being formulated as a TQFT.

A while back I noted that Crane and Yetter had invented a 4d TQFT using the simpli-
cial approach. There has been a lot of argument over whether this TQFT is interesting
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or “trivial.” Of course, trivial is not a precise concept. For a while Ocneanu claimed
that the partition function of every compact 4-manifold equalled 1 in this TQFT, which
counts as very trivial. But this appears not to be the case. Broda invented another 4d
TQFT and here on “This Week’s Finds” Ruberman showed it was trivial in the sense that
the partition function of any compact 4-manifold was a function of the “signature” of the
4-manifold. This is trivial because the signature is a well-understood invariant and if we
are trying to do something new and interesting that just isn’t good enough.

In the following paper:

2) Justin Roberts, “Skein theory and Turaev–Viro invariants”, Topology, 34, 771–787.
Available as https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.8587.

Roberts almost claims to show that the Crane–Yetter invariant is trivial in the same sense,
namely that the partition function of any compact 4-manifold is an exponential of the
signature. Now if Crane and Yetter’s own computations are correct, this cannot be the
case, but it could be an exponential of a linear combination of the signature and the Euler
characteristic, as far as I know. The catch is that Roberts does not normalize his version
of the Crane–Yetter invariant in the same way that Crane and Yetter do, so it is hard to
compare results. But Roberts says: “The normalisations here do not agree with those
in Crane and Yetter, and I have not checked the relationship. However, when dealing
with the [3d TQFT] invariants, different normalisations of the initial data change the
invariants by factors depending on standard topological invariants (for example Betti
numbers), so there is every reason to belive that these [4d TQFT] invariants are trivial
(that is, they differ from 1 only by standard invariant factors) in all normalisations.”

This is a bit of a disappointment, because Crane at least had hoped that their TQFT
might actually turn out to be quantum gravity. This was not idle dreaming; it was be-
cause the Crane–Yetter construction was a rigorous analog of some work by Ooguri on
simplicial quantum gravity.

Then, about a week ago, Rovelli put a paper onto the net:

3) Carlo Rovelli, “The basis of the Ponzano–Regge–Turaev–Viro–Ooguri model is the
loop representation basis”, available as hep-th/9304164.

This is a remarkable paper that I have not been able to absorb yet. First it goes over
3d quantum gravity — which has been made into a rigorous TQFT. It works with the
simplicial formulation of the theory. That is, we consider our (3-dimensional) spacetime
as being chopped up into tetrahedra, and assign to each edge a length, which is required
to be 0, 12 , 1,

3
2 , . . .. This idea of quantized edge-lengths goes back to 4d work of Pon-

zano and Regge, but recently Ooguri showed that in 3d this assumption gives the same
answers as Witten’s continuum approach to 3d quantum gravity. The “half-integers”
0, 12 , 1,

3
2 , . . . should remind physicists of spin, which is quantized in the same way, and

mathematically this is exactly what is going on: we are really labelling edges with repre-
sentations of the group SU(2), that is, spins. What Rovelli shows is that if one starts with
the loop representation of 3d quantum gravity (yet another approach), one can prove
it equivalent to Ooguri’s approach, and what’s more, using the loop representation one
can calculate the lengths of edges of triangles in a given state of space (space here is
a 2-dimensional triangulated surface) and show that lengths are quantized in units of
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the Planck length over 2. (Here the Planck length L is the fundamental length scale in
quantum gravity, about 1.6× 10−33 meters.)

And, most tantalizing of all, he sketches a generalization of the above to 4d. In 4d it
is known that in the loop representation of quantum gravity it is areas of surfaces that
are quantized in units of L2/2, rather than lengths. Rovelli considers an approach where
one chops 4-dimensional spacetime up into simplices and assigns to each 2-dimensional
face a half-integer area. He uses this to write down a formula for the inner product
in the Hilbert space of quantum gravity — thus, at least formally, answering the long-
standing “inner product problem” in quantum gravity. The problem is that, unlike in
3d quantum gravity, here one must sum over ways of dividing spacetime into simplices,
so the formula for the inner product involves a sum that does not obviously converge.
This is however sort of what one might expect, since in 4d quantum gravity, unlike 3d,
there are “local excitations” — local wigglings of the metric, if you will — and this makes
the Hilbert space be infinite-dimensional, whereas the 3d TQFTs have finite-dimensional
Hilbert spaces.

I think I’ll quote him here. It’s a bit technical in patches, but worth it. . .

We conclude with a consideration on the formal structure of 4-d quantum grav-
ity, which is important to understand the above construction. Standard quan-
tum field theories, as QED and QCD, as well as their generalizations like quan-
tum field theories on curved spaces and perturbative string theory, are defined
on metric spaces. Witten’s introduction of the topological quantum field theories
has shown that one can construct quantum field theories defined on a manifold
which has only its differential structure, and no fixed metric structure. The
theories introduced by Witten and axiomatized by Atiyah have the following pe-
culiar feature: they have a finite number of degrees of freedom, or, equivalently,
their quantum mechanical Hilbert spaces are finite dimensional; classically this
follows from the fact that the number of fields is equal to the number of gauge
transformations. However, not any diff-invariant field theory on a manifold has
a finite number of degrees of freedom. Witten’s gravity in 3-d is given by the
action

S[A,E] =

∫
F ∧ E

which has finite number of degrees of freedom. Consider the action

S[A,E] =

∫
F ∧ e ∧ e

in 3+1 dimensions, for a (self dual) SO(3, 1) connection A and a (real) one
form e with values in the vector representation of SO(3, 1). This theory has
a strong resemblance with its 2+1 dimensional analog: it is still defined on a
differential manifold without any fixed metric structure, and is diffeomorphism
invariant. We expect that a consistent quantization of such a theory should
be found along lines which are more similar to the quantization of the

∫
(F ∧

E), theory than to the quantization of theories on flat space, based on the
Wightman axioms namely on n-points functions and related objects. Still, the
theory

∫
(F ∧ e ∧ e) has genuine field degrees of freedom: its physical phase

space is infinite dimensional, and we expect that its Hilbert state space will
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also be infinite dimensional. There is a popular belief that a theory defined
on a differential manifold without metric and diffeomorphism invariant has
necessarily a finite number of degrees of freedom (“because thanks to general
covariance we can gauge away any local excitation”). This belief is of course
wrong. A theory as the one defined by the action

∫
(F ∧ e ∧ e) is a theory that

shares many features with the topological theories, in particular, no quantity
defined “in a specific point” is gauge invariant; but at the same time it has
genuinely infinite degrees of freedom. Indeed, this theory is of course nothing
but (Ashtekar’s form of) standard general relativity.

The fact that “local” quantities like the n-point functions are not appropriate
to describe quantum gravity non-perturbatively has been repeatedly noted in
the literature. As a consequence, the issue of what are the quantities in terms
of which a quantum theory of gravity can be constructed is a much debated
issue. The above discussion indicates a way to face the problem: The topological
quantum field theories studied by Witten and Atiyah provide a framework in
terms of which quantum gravity itself may be framed, in spite of the infinite
degrees of freedom. In particular, Atiyah’s axiomatization of the topological field
theories provides us with a clean way of formulating the problem. Of course,
we have to relax the requirement that the theory has a finite number of degrees
of freedom. These considerations leads us to propose that the correct general
axiomatic scheme for a physical quantum theory of gravity is simply Atiyah’s
set of axioms up to finite dimensionality of the Hilbert state space. We denote
a structure that satisfies all Atiyah’s axioms, except the finite dimensionality of
the state space, as a generalized topological theory.

The theory we have sketched is an example of such a generalized topological
theory. We associate to the connected components of the boundary of M the
infinite dimensional state space of the Loop Representation of quantum gravity.
Eq. 5 [the magic formula I alluded to — jb], then, provides a map, in Atiyah’s
sense, between the state spaces constructed on two of these boundary compo-
nents. Equivalently, it provides the definition of the Hilbert product in the state
space.

One could argue that the framework we have described cannot be consistent,
because it cannot allow us to recover the “broken phase of gravity” in which
we have a nondegenerate background metric: in the proposed framework one
has only non-local observables on the boundaries, while in the broken phase
a local field in M has non-vanishing vacuum expectation value. We think
that this argument is weak because it disregards the diffeomorphism invari-
ance of the theory: in classical general relativity no experiment can distinguish
a Minkowskian spacetime metric from a non-Minkowkian flat metric. The two
are physically equivalent, as two gauge-related Maxwell potentials. For the same
reason, no experiment could detect the absolute position of, say, a gravitational
wave, (while of course the position of an e.m. wave is observable in Maxwell
theory). Physical locality in general relativity is only defined as coincidence of
some physical variable with some other physical variable, while in non general
relativistic physics locality is defined with respect to a fixed metric structure. In
classical general relativity, there is no gauge-invariant obervable which is local
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in the coordinates. Thus, any observation can be described by means of the
value of the fields on arbitrary boundaries of spacetime. This is the correct con-
sequence of the fact that “thanks to general covariance we can gauge away any
local excitation”, and this is the reason for which one can have the ADM “frozen
time” formalism. The spacetime manifold of general relativity is, in a sense, a
much weaker physical object than the spacetime metric manifold of ordinary
theories. All the general relativistic physics can be read from the boundaries of
this manifold. At the same time, however, these boundaries still carry an infinite
dimensional number of degrees of freedom.

Next, let me take the liberty of describing some work of my own:

4) John Baez, “Diffeomorphism-invariant generalized measures on the space of con-
nections modulo gauge transformations”, Proceedings of the Conference on Quantum
Topology, ed. David N. Yetter, World Scientific Press, Singapore, 1994, pp. 21–43.
Also available as hep-th/9305045.

This is an extremely interesting paper by a very good mathematician. Whoops! Let’s be
objective here. In the loop representation of quantum gravity, states of quantum gravity
are given naively by certain “measures” on a space A/G of connections modulo gauge
transformations. The Chern–Simons path integral is also such a “measure”. In both cases,
the “measure” in question is invariant under diffeomorphisms of space. And in both
cases, the loop transform allows one to think of these measures as instead being functions
of multiloops (collections of loops in space). This is the origin of the relationship to knot
theory.

The problem, as always in quantum field theory, is that the notion of “measure” must
be taken with a big grain of salt — it’s not the sort of measure they taught you about in
real analysis. Instead, these measures are a kind of “generalized measure” that allows
you to integrate not all continuous functions on A/G but only those lying in an algebra
called the “holonomy algebra,” defined by Ashtekar, Isham and Lewandowski. To be pre-
cise and technical, this is the closure in the L∞ norm of the algebra of functions on A/G
generated by “Wilson loops,” or traced holonomies around loops. So what we are really
interested in is not diffeomorphism-invariant measures on A/G, but diffeomorphism
invariant elements of the dual of the holonomy algebra. I begin with a review of gener-
alized measures, introduce the holonomy algebra, and then do a bunch of new work in
which I show how to rigorously construct lots of diffeomorphism-invariant elements of
the dual of the holonomy algebra by doing lattice gauge theory on graphs embedded in
space. Again, as with the work discussed above, we see that the discrete and continuum
approaches to space go hand-in-hand! And we see that there are some interesting con-
nections between singularity theory and group representation theory showing up when
we try to understand “measures” on the space A/G.

The following is a part of a paper discussed in “Week 5”, now available from gr-qc:

5) Abhay Ashtekar and Jerzy Lewandowski,“Completeness of Wilson loop functionals
on the moduli space of SL(2,C) and SU(1, 1)-connections”, available as gr-qc/

9304044.

I didn’t discuss this aspect of the paper, so let me quote the abstract:
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The structure of the moduli spaces M := A/G of (all, not just flat) SL(2,C)
and SU(1, 1) connections on a n-manifold is analysed. For any topology on the
corresponding spaces A of all connections which satisfies the weak requirement
of compatibility with the affine structure of A, the moduli space M is shown
to be non-Hausdorff. It is then shown that the Wilson loop functionals — i.e.,
the traces of holonomies of connections around closed loops — are complete in
the sense that they suffice to separate all separable points of M . The methods
are general enough to allow the underlying n-manifold to be topologically non-
trivial and for connections to be defined on non-trivial bundles. The results have
implications for canonical quantum general relativity in 4 and 3 dimensions.

By the way, someone should extend this result to more general noncompact semisim-
ple Lie groups, and also show that for all compact semisimple Lie groups the Wilson
loop functionals in any faithful representation do separate points (this is known for the
fundamental representation of SU(n)). If I had a bunch of grad students I would get one
to do so.

The following was discussed in an earlier edition of this series, “Week 11”, but is now
available from gr-qc:

6) Ranjeet S. Tate, An Algebraic Approach to the Quantization of Constrained Systems:
Finite Dimensional Examples, Ph.D. Thesis, Department of Physics, Syracuse Uni-
versity, 124 pages, available as gr-qc/9304043.

I haven’t read the following one but it seems like an interesting application of loop
variables to more down-to-earth physics; Gambini was one of the originators of the loop
representation, and intended it for use in QCD:

6) Rodolfo Gambini and Leonardo Setaro, “SU(2) QCD in the path representation”,
available as hep-lat/9305001. (“hep-lat” is the computational and lattice physics
preprint list.)

Let me quote the abstract:

We introduce a path-dependent hamiltonian representation (the path represen-
tation) for SU(2) with fermions in 3 + 1 dimensions. The gauge-invariant
operators and hamiltonian are realized in a Hilbert space of open path and loop
functionals. We obtain a new type of relation, analogous to the Mandelstam
identity of second kind, that connects open path operators with loop operators.
Also, we describe the cluster approximation that permits to accomplish explicit
calculations of the vacuum energy density and the mass gap.
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Week 15

May 23, 1993

Last weekend we had a conference on Knots and Quantum Gravity here at Riverside.
I will briefly describe the talks, many of which will eventually appear in a conference
proceedings volume. I think that to be nice I will list these talks in order of how technical
my descriptions will be, rather than chronologically.

Oleg Viro spoke on “simplicial topological quantum field theories”. There has been
a lot of interest recently in constructing topological quantum field theories using trian-
gulations of manifolds. The most famous of these is due to Turaev and Viro. Witten
showed that this one is the same as quantum gravity in 2+1 dimensions. The nice thing
is that this gives an alternate description of the Turaev–Viro theory in terms of more tra-
ditional ideas from field theory, so the same theory has a “discrete” and a “continuum”
formulation — some evidence for my notion that quantum gravity will resolve the old “is
space continuous or discrete” argument by saying “both, and neither,” just as quantum
mechanics resolved the old “is light a wave or a particle” dispute! (Hegel would’ve loved
it.)

When constructing simplicial topological quantum field theories, one has to prove
that the answer you get is independent of the triangulation. Viro reviewed a couple sets
of “moves” whereby one can get between any two triangulations of the same manifold
— the Alexander moves, and the Pachner moves. He also discussed an alternate, and
more convenient, way of describing manifolds by “special spines”. Here the idea is as
follows. Pick a bunch of points in the manifold. From each one, start blowing a little
bubble, which grows bigger and bigger until it bumps into the other bubbles. The result
is something very much like a foam of soap bubbles, which generically have polyhedral
faces, with edges and vertices of a special sort. Look at a mess of foam sometime if you
don’t know what I mean: in 3 dimensions, three bubbles meet at an edge, and four at
a vertex. One can describe this situation purely combinatorially, and it contains all the
information about the manifold. There are a certain set of moves, the Matveev moves,
relating any two such “special spines” for the same manifold. One can figure out what
these moves might be by staring some foam and watching how the bubbles move.

Louis Kaufmann changed his talk from the announced subject and instead talked
about Vassiliev invariants of knots and their relation to perturbative Chern–Simons the-
ory. Let me just recall what all this is about. Chern–Simons theory is a TQFT (topological
quantum field theory) in 3 dimensions in which the field is a connection. In physical
terms, a connection is just a generalization of the vector potential in electromagnetism.
Recall that in 3 dimensional space, the vector potential is a vector field A whose curl
is the magnetic field. In quantum theory, the significance of the vector potential is as
follows. If we take a particle and carry it around a loop, its wavefunction gets multiplied
by a phase, that is, a complex number of absolute value 1. These “phases” form a group,
since the product of two phases is a phase. This group is called U(1), since we can think
of phases as 1 × 1 unitary matrices. A key idea in modern physics is to generalize the
heck out of electromagnetism by allowing other groups to play the role of phases. The
group we choose is called the “gauge group.” The second simplest choice after U(1) is
SU(2), the 2× 2 unitary matrices with determinant = 1.
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You can do Chern–Simons theory with any gauge group but it’s especially simple with
gauge group SU(2). An SU(2) connection is just a kind of field that lets one do “parallel
translation” around a loop in space and get an element of SU(2). Mathematicians call
this the holonomy of the connection around the loop. Physicists typically take the trace
of the group element (in this case, just the sum of the diagonal entries of the 2 × 2
matrix), and call that the “Wilson loop observable,” a function of the connection that
depends on the loop.

Now the great thing about Chern–Simons theory is that the theory is independent of
any choice of coordinates or background metric on spacetime. This is part of what we
mean by saying the theory is a TQFT. Another aspect of a TQFT is that there is a “vacuum
state” and we can calculate the expectation value of a Wilson loop in the vacuum state.
The idea one should have is that the connection is undergoing all sorts of “quantum
fluctuations” in the vacuum state, but that we can ask for the average value for the trace
of the connection of the holonomy around a loop in the vacuum state. Given a knot K,
we write this expectation value as 〈K〉. Now the great thing about Chern–Simons theory
is that the vacuum state does not care what coordinates you use to describe it. Thus
〈K〉 does not depend on the geometry of the knot K (which would take coordinates or a
metric to describe), but only on its topology. In other words, 〈K〉 is a knot invariant. In
fact we can define 〈K〉 not just for knots, but also for links (bunches of knots, possibly
intertangled), by taking the expectation value of the product of the Wilson loops, one
for each knot. So Chern–Simons theory really gives a link invariant. Witten showed that
this link invariant is just the Kauffman bracket, which is an invariant easily calculated
using the rules:

Rule 1: If K is the “empty link,” the link with NO components whatsoever — i.e.,
just the empty set — we have

〈K〉 = 1.

This is sort of a normalization rule.
Rule 2: If K ′ is obtained from K by adding an unlinked copy of the unknot (an

unknotted circle) to K,
〈K ′〉 = −(a2 + a−2)〈K〉.

Here a is an adjustable parameter that appears in Chern–Simons theory — a function of
the coupling constant.

Rule 3: Suppose K, L, and L′ are 3 knots or links differing at just one crossing (we’re
supposing them to be drawn as pictures in 2 dimensions). And suppose at this crossing
they look as follows:

K L L′

Any rotated version of this picture is fine too.
Then

〈K〉 = a〈L〉+ a−1〈L′〉.
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That’s it! I leave as an exercise for the reader to calculate 〈K〉 for the trefoil knot,

and get −A5 − A−3 − A−7. Then try the mirror-image trefoil, or “left-handed trefoil,”
and see what you get.

Now in quantum field theory people like doing perturbative calculations, and that’s
interesting here even though we know the exact answer. Namely, there is a coupling con-
stant c in Chern–Simons theory such that A = exp(c), and if one uses Feynman diagrams
and the rest of the usual machinery for quantum field theory and does a perturbative
calculation of the vacuum expectation value of Wilson loops, one gets the same answer,
but as a power series in c. The coefficient of the cn is a special sort of link invariant
called a “Vassiliev invariant” of degree n. I discussed these a lot in “Week 3” (see below
for how to get that article), so I won’t repeat myself here. In any event, Kauffman gave
a nice discussion of this sort of thing.

Viktor Ginzburg talked about his work with Milgram on Vassiliev invariants. He
had hoped to show that these were an almost complete set of knot invariants, able to
distinguish between any two knots that weren’t just orientation-reversed versions of each
other (here we equip the knots with an orientation, or field of arrows running along the
knot). He came to the conference, as he said, sadder and wiser. He presented a nice
result on Vassiliev invariants that might be a step towards proving completeness.

Dana Fine spoke on “Chern–Simons theory and the Wess–Zumino–Witten model”.
There is a very interesting “ladder of field theories” that contains “topological quantum
gravity” in 4 dimensions, Chern–Simons theory in 3 dimensions, and the Wess-Zumino-
witten model in 2 dimensions. Dana Fine spoke on the bottom 2 rungs of this ladder.
he described a very explicit, although still formal, reduction of the Chern–Simons path
integral (the integral one does to compute the expectation values I mentioned above) to
the path integral in the Wess–Zumino–Witten model. The relation between CS theory
and the WZW model is what witten used in his original argument that CS theory gives
interesting link invariants, so this is of interest in knot theory as well as physics.

On Saturday morning we had a nice trio of talks from the Syracuse gang, Syracuse
University being a hotbed of new work on quantum gravity. Ashtekar and Smolin are
there, as are a bunch of good grad students (Bernd Bruegmann was there until very
recently) and postdocs, including Jerzy Lewandowski and Renate Loll. The whole gang
is moving down to Penn State this summer, and they will be hiring Jorge Pullin, now at
Utah State. There are not many people working on quantum gravity — and not many
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jobs in the field — so Penn State will become arguably the center, at least in the US (let
us not forget Penrose, Hawking, Isham, et al!), for work on this subject.

Renate Loll spoke on the “Loop representation of gauge theory and gravity.” This was
an introduction to the ideas of Gambini, Trias, Rovelli, Smolin, et al on doing quantum
field theory solely in terms of Wilson loops. It is this approach that makes the connection
between quantum gravity and knot theory.

Abhay Ashtekar spoke on “Loop transforms.” The process of encoding a connection
in terms of all its Wilson loops is called the loop transform, and it can be regarded as
a nonlinear generalization of the Fourier transform. Ashtekar has led an effort to make
this transform thoroughly rigorous and mathematically respectable, and he discussed
this work.

Jorge Pullin spoke on “The quantum Einstein equations and the Jones polynomial”.
He outlined his work with Gambini and Bruegmann in which they show perturbatively
that the Kaufmann bracket (or, alternatively, Chern–Simons theory) gives a state of 4-d
quantum gravity. This is perhaps the most exciting aspect of the “ladder of field theories”
mentioned above, since it touches upon the real world — or at least comes darn close.

On Sunday, Gerald Johnson started things off with an introduction to his work on
making the Feynman path integral rigorous. This is relevant because a main problem
with Witten’s otherwise marvelous work is that the path integral in Chern–Simons theory
has not been made rigorous. Dana Fine’s talk offered one approach, and my own talk
offered another (based on my recent paper).

Perhaps the most novel talk was by Paolo Cotta-Ramusino (“4d quantum gravity and
knot theory”) describing his work with Maurizio Martellini on 4-dimensional TQFTs and
invariants of 2-knots, that is, embedded surfaces in R4 (or more general 4-manifolds).
This is an attempt to push the Wilson loop story up one dimension, in an effort to make
it applicable to theories similar to quantum gravity. These theories are the so-called “BF
theories,” whose Lagrangian is of the form tr(B ∧ F ), where B is a Lie algebra valued
2-form and F is the curvature of a connection. Martellini and Cotta-Ramusino’s work on
this is still in a preliminary stage but it seems rather promising.

Perhaps the most controversial talk was by Louis Crane, entitle “Quantum gravity,
spin geometry and categorical physics.” This was about his ideas on using category
theory to construct 4-dimensional TQFTs. He also emphasized the importance of TQFTs
that use triangulations but wind up being independent of the triangulation, thus slipping
through the discrete/continuous distinction. Many of his assertions provoked violent
reactions from the physicists present.

Finally, I spoke on “Strings, tangles and gauge fields,” beginning by pointing out
some relationships between closed string field theory and the loop representation of
quantum gravity, and then retreating to safer ground and describing my work on trying to
make the Chern–Simons path integral and the loop representation more mathematically
rigorous. I will write a paper on this subject this summer and try to further build up
my case for the conjecture that string theory and gauge field theory are in a sense dual
descriptions of certain TQFTs.

A rather technical introduction to currently interesting topics in closed string field
theory has just appeared:

1) Barton Zwiebach,“Closed string field theory — an introduction”, available as hep-th/
9305026.
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Unfortunately for me, he mainly treats theories of strings moving around on a man-
ifold with a background metric, while it seems that the loop representation of quantum
gravity is very like a “background-free” string field theory. A paper that recently came
out and appears to support my notions is the following:

2) S. G. Naculich, H. A. Riggs, and H. J. Schnitzer, “Two-dimensional Yang–Mills the-
ories are string theories”, available as hep-th/9305097.

Apparently this builds on work by Gross, Taylor, and Minahan which treated SU(n)
Yang–Mills theories in 2 dimensions as string theories, and does something similar for
the gauge groups SO(n) and Sp(n).

I have a pack of interesting papers to describe but I am already worn out, so I will put
that off until next week, except for the following paper by Smolin that I seem to have
neglected:

3) Lee Smolin, “What can we learn from the study of non-perturbative quantum gen-
eral relativity?’,’ available as gr-qc/9211019.

This is a nice introduction to current issues associated to the loop representation of
quantum gravity and nonperturbative quantum gravity in general. As should be evident
from my weekly reviews, the subject seems to be moving faster and faster, and it is best
to read some of the review papers like this one by Smolin if one wants to figure out
where things are now and where they might be heading.
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Week 16

May 30, 1993

A nice crop of papers has built up while I’ve been taking a break. . . In “Week 15” I talked
a bit about constructing topological quantum field theories starting with a triangulation
of spacetime, and how this seems to sneak around the old “is spacetime continuous or
discrete” argument. Let me describe a bit about one of the more mathematically elegant
physics papers I’ve run across in a while, which treats exactly this issue. Then I’ll describe
two review articles, one on gravity in 2+1 dimensions (which is closely related to the
lattice business), and one on Lagrangians for quantum gravity.

1) Stephen-wei Chung, Masafumi Fukuma and Alfred Shapere, “Structure of topolog-
ical lattice field theories in three dimensions”, available as hep-th/9305080.

What’s a 2-dimensional “topological lattice field theory”? According to the definition
used in this paper, it goes like this. First take a compact oriented 2-manifold without
boundary M , that is, an n-holed torus. (One could also discuss the case when there
is a boundary, but to keep life simple we won’t here.) We want to calculate a number
Z(M), the partition function of M , since the partition function is a basic ingredient in
Feynman’s approach to quantum field theory. We first triangulate M . . . so a patch might
look like:

Then “disassemble” M into separate triangles, like this:

Now assign to each edge of the disassembled version of M a “color” taken from a fixed
finite set S. Note that there are twice as many edges in the disassembled version of M
as in the original triangulation of M . Any way of assigning a color to each edge of the
disassembled M will be called a “coloring”. We think of a coloring as a “history of the
world” and we will compute Z(M) by summing a certain quantity over all colorings.
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To compute this quantity, we need two pieces of data that determine our theory.
First, for each i, j in S, we fix a complex number gij . We require that the matrix gij be
invertible. We define gij to be the matrix inverse of gij . We can raise and lower indices
with g as if it were a metric. The matrix g will be used when we glue two edges of the
disassembled M together in the process of rebuilding M . Second, for each i, j, k in S,
we fix a number cijk. This number comes in because each triangle has three edges.

Here’s how we calculate Z(M). Write down one index next to each edge of the
disassembled M — by “index” I mean something like i, j, k running over S. Then write
down the obvious factor of g for each pair of edges that get glued together when we
form M , and write down the obvious factor of c for each triangle in M . Finally, sum over
all colorings to get Z(M).

For example, if M were a torus that we triangulated with two triangles like this

— with opposite edges of the parallelogram identified — we would dissasemble M and
label the edges like this, say:

l m

j

i

kn

To form M we glue i to j, k to l, and m to n. So we write down

gijgklgmncjmlcink

and then sum over i, j, k, l,m, n to get Z(M). Notice that for this procedure to be well
defined it had better not matter whether we write gij or gji, since we have no way of
knowing which to use. So g had better be symmetric. Similarly, we had better have
cijk = cjki — invariance under cyclic permutations. Note that since M is oriented we
can (and will) require that we go around each triangle counterclockwise when writing
down things like cink, as we have done above.

Okay, this is a pretty scheme, but the real point is that it should be independent of
the triangulation of M we chose, for us to have something that deserves to be called
“topological.” This imposes extra conditions on g and c. Here it is handy to know that
we can get between any two triangulations of M using a sequence of two moves and
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their inverses. The first move is called the “(2,2) move.” It looks like this:

•

•

•

•

←→ •

•

•

•

It is called the (2,2) move since it really amounts to taking 2 faces of a tetrahedron and
replacing them with the other 2 faces! There is a similar (3,1) move that takes 3 faces of
a tetrahedron and replaces them with the other 1, as follows:

•

•

•

•
←→

•

•

•

(This drawing done by my friend Bruce Smith in a fit of insomnia!) These are examples
of the “Pachner moves,” and the same idea works in any dimension. But in 2 dimensions
we can use a move called the “bubble move” instead of the (3,1) move. Here is where
drawing vertices as •’s is crucial:

•

•

•

←→

•

•

On the left, we have two hideously deformed triangles (remember, this is topology!)
that are attached along TWO edges, leaving two edges exposed, and in the right we
have collapsed them down to a single edge. We leave it as a fun exercise to show that
you can do anything with the (2,2) move and the bubble move that you can do with the
(2,2) move and the (3,1) move.

Requiring that Z(M) be invariant under the (2,2) moves amounts to the following
equation — if you check it, you will make sure you understand what’s going on:

cuxyc
w
uz = cwxuc

u
yz.
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Here I have raised indices using the “metric” g. This equation looks sort of hairy, but it’s
actually something very nice in disguise. We need to tease out its inner essence! Suppose
we take a vector space A having the colors in S as a basis, and use the tensor ckij to define
a bilinear map from A×A to A. Then the equation above says this map is an associative
product! If you ponder the picture of the (2,2) move for a while, this should become
obvious to you. Think of each triangle as being a gadget that you can feed vectors into
from two sides and have the “product” pop out on the third side. Then the equation

•

•

•

•

= •

•

•

•

really is just associativity! To understand this in a deeper way, read Kapranov and Vo-
evodsky’s paper (reviewed in “Week 4”), especially the section on the “associahedron”.

Requiring that Z(M) be invariant under the bubble move amounts to the following:

cvxuc
u
yv = gxy

Here gxy is the matrix inverse of gxy. Again, I leave it as an exercise to show this is the
right equation. It is a formula expressing the “metric” g on A in terms of the product
on A! In fact, it has a beautiful algebraic interpretation: it says that the algebra A is
“semisimple.” A semisimple algebra is just a direct sum of matrix algebras, and in such
algebras the inner product g(a, b) of any two elements is just equal to tr(aT b), where aT

is the transpose of a.
So we discover a charming fact: there is a one-to-one correspondence between topo-

logical lattice field theories in 2 dimensions and finite-dimensional semsimple algebras
over the complex numbers!

Actually this was apparently already shown by

2) C. Bachas and P. M. S. Petropoulos, “Topological models on the lattice and a remark
on string theory cloning”, Commun. Math. Phys. 152 (1993) 191.

and

3) M. Fukuma, S. Hosono and H. Kawai, “Lattice topological field theory in two-
dimensions”, available as hep-th/921254.

The big result of the present paper is to generalize this to 3 dimensions. The authors
consider a specific definition of 3d topological lattice field theories in which one chops a
3d manifold up into tetrahedra and assigns colors to edges. They claim to get a one-to-
one correspondence between these and finite-dimensional Hopf algebras for which the
antipode squared is the identity! If you don’t know what a Hopf algebra is, let me simply
say it is a very beautiful sort of thing that has both a product and a “coproduct,” and they
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come up all the time in group theory, knot theory, and the study of quantum groups. So
we are seeing that there is a profound correspondence between topology and algebra,
with higher-dimensional topology giving more subtle algebra.

(In fact, I am a little worried that the authors haven’t stated the theorem quite pre-
cisely enough to have it be quite true, but it’s basically right — I am afraid only only gets
a particular class of Hopf algebras, those which are semisimple and cosemisimple. I may
be missing something.)

Let me conclude with a few very exciting open problems.
A. One could instead consider theories in which colors are only assigned to faces. This

turns out not to broaden the class of examples: any Hopf algebra has a dual Hopf algebra,
and one just gets the theory associated to the dual Hopf algebra this way! But if one
considers theories in which colors are assigned BOTH to edges AND faces one apparently
gets a larger class of 3d examples. What algebraic structure do these correspond to? B.
The Turaev–Viro theory of quantum gravity — described below — is a 3d topological
lattice field theory of some sort. Where does it fit into this picture? The authors ask
this question but don’t answer it. Also, a more difficult problem — where does Chern–
Simons gauge theory fit into this picture? C. The 64,000 dollar question: how does all
this generalize to 4 dimensions? What sort of algebraic structure corresponds to a 4d
topological lattice field theory? It is becoming increasingly clear that 4d field theories
will involve some kind of “higher algebra” that we are only beginning to understand.

4) Steven Carlip, “Six ways to quantize (2+1)-dimensional gravity”, available as gr-qc/
9305020.

While we have no real way to quantize gravity in 3+1 dimensions — although lots of
good ideas — we have six, count ’em, six, ways to do it in 2+1 dimensions! Sometimes
this sort of thing makes one yearn to be a physicist in some other, lower-dimensional
universe. However, lest one make such wish prematurely to a genie passing by, one
should note that life in 2+1 dimensions is boring compared to our 3+1-dimensional
world. The reason can be seen from the following count of the number of independent
components of the Riemann tensor Rijkl which vanishes when spacetime is flat, and the
Einstein tensor, which vanishes when the vacuum Einstein equations hold:

dimension Riemann Einstein

1 0 0
2 1 1
3 6 6
4 20 10

What this means is that, until one gets up to dimension 4, the vacuum Einstein equa-
tions imply that spacetime is flat. That means that there are no gravitational waves in
empty space; there are only global, topological effects. Typically this means that if space
is compact there are only finitely many degrees of freedom. This means that 2+1 quan-
tum gravity is really quantum mechanics, not full-fledged quantum field theory (which
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deals with local excitations — wiggles in the metric and such — and infinitely many
degrees of freedom). The good news is, this means that 2+1 gravity is somewhat under-
standable — no nasty infinities or ill-defined integrals needed, etc.. The bad news is, it
means 2+1 gravity is not too much like 3+1 gravity. But still, many of the most puzzling
qualitative features of quantum gravity are present in the 2+1 case. In particular, one
has a testing ground in which to look at the interlocking triad of problems that stump us
in the 3+1 case: the problem of time, the problem of observables, and the inner product
problem. In brief these are: what is time evolution in quantum gravity, what are the
observables in quantum gravity, and what is the inner product on the space of states
of quantum gravity? As you can see, we are overwhelmingly ignorant about quantum
gravity! I think that work on 2+1 gravity has given us some interesting clues about these
problems.

Carlip describes 6 approaches to 2+1 gravity. I’ll list them and comment on them
briefly below. But one point to make is that these approaches have not all been shown to
be equivalent; on the contrary, they seem to give different answers. Part of the problem in
my opinion is that we do not have enough criteria for a “good” theory of 2+1 quantum
gravity. Certainly one would like to see that in the ~ → 0 limit the theory reduces to
classical gravity in some sense or other (but this is a bit vague). Perhaps another thing
one could hope for is that the theory be a 2+1-dimensional TQFT. I am not sure which
of the approaches below give a TQFT (although #6 definitely does and probably so does
#2):

#1 Reduced ADM phase space quantization The “ADM” or Arnowitt–Deser–Misner
formalism amounts to what people would typically call canonical quantization: one
writes down a description of the phase space of quantum gravity in terms of initial
data, figures out the Poisson brackets of functions on this phase space, and then tries to
quantize by turning them into commutators. In gravity the roles of “position” and “mo-
mentum” variables are played by the metric on space at a given time, and the extrinsic
curvature (or more precisely, something cooked up from it).

#2 Chern–Simons theory/Connection representation This is essentially the 2+1
analog of Ashtekar’s approach in 3+1 dimensions, in that a connection and triad field
play the main role, rather than the metric. However, in 2+1 dimensions we can lump
the triad field and the connection together to get an “ISO(2, 1) connection” — where
ISO(2, 1) is mildly terrifying notation for the Poinaré group in 2+1 dimensions (or “in-
homogeneous Lorentz group,” hence the “I”). The action for the theory then becomes
the Chern–Simons action, as noted by Witten.

#3 Covariant canonical quantization This might sound oxymoronic to some, but
what it means is that the phase space of solutions is describe in a manifestly covariant
way, rather than in terms of initial data, and then one tries to turn Poisson brackets into
commutators.

#4 Loop representation The loop representation of quantum gravity starts with
the connection representation and then takes traces of holonomies around loops — so-
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called Wilson loops — as the basic variables to quantize. This suffers irritating technical
problems in 2+1 dimensions, as noted in the following recent paper:

5) Donald Marolf, An illustration of 2+1 gravity loop transform troubles, available as
gr-qc/9305015.

I know that Ashtekar and Loll are attacking these problems this right now; Loll discussed
this a bit in a lecture she gave in my seminar.

#5 The Wheeler–DeWitt equation Here we proceed as in approach #1 but attempt
to impose the Hamiltonian and diffeomorphism constraints after quantizing. That is, we
start with an overly large phase space of initial data for general relativity — overly large
because a given solution of Einstein’s equations will have many different initial data
on different spacelike slices — quantize by turning Poisson brackets into commutators,
and then try to take care of the mistake we made by defining the “physical” states to be
those annihilated by certain operators, the Hamiltonian and diffeomorphism constraints.
I gave a brief intro to this in “Week 11”. This is the most traditional approach in 3+1
gravity.

#6 Lattice approaches These are closely related to the topological lattice field
theories described above. Here we treat spacetime as discrete, that is, as a kind of lattice.
One approach here is due to Regge and Ponzano, and recently worked out rigorously
by Turaev and Viro. To get going in this theory, you “triangulate” your 3-dimensional
spacetime, that is, chop it into tetrahedra. All we need to work with is this “simplicial
complex” consisting of tetrahedra, their triangular faces, their line-segment edges, and
the vertex points. We assume for simplicity that spacetime is compact, so we can use
finitely many tetrahedra. Thus everything in sight is finite and discrete. A “history of the
world” in this theory amounts to labelling each edge with a length, or “spin”, that must
be 0, 12 , 1,

3
2 , . . . or j/2. There are thus finitely many possible histories. To do calculations

in this theory, we follow Feynman’s procedure and “sum over histories” — write down
a formula for the quantity we are interested in, and add up its value for all histories,
weighted by a quantity depending on the history, the exponential of the action of that
history, to obtain the vacuum expectation value of the quantity. The formula for the
action is very familiar to folks knowledgeable about quantum theory. Each tetrahedron
has 6 edges labelled by spins, and we calculate a quantity called the “6j symbol” from
these spins and then add it up for all tetrahedra. In the Turaev–Viro version, we have
replaced the gauge group SU(2) by the corresponding quantum group, with the quantum
parameter q a root of unity, so there are only finitely many irreducible representations,
or spins, to sum over. (See “Week 5” for the vaguest of introductions to quantum groups
and their representations!) The beauty of this theory is that the answer one gets is
independent of the triangulation one has chosen.

While I’m at it, let me list some key references to the subject of lattice 2+1 gravity, a
subject I’m fascinated by these days.

The grandaddy of them all, the Ponzano–Regge paper, is:

6) G. Ponzano and T. Regge, “Semiclassical limits of Racach coefficients”, in F. Bloch
(ed.), Spectroscopic and Group Theoretical Methods in Physics, Amsterdam: North-
Holland 1968.
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Then there are:

7) Edward Witten, “(2+1)-dimensional gravity as an exactly soluble system”, Nucl.
Phys. B311 (1988), 46–78.

8) V. G. Turaev and O. Y. Viro, “State sum invariants of 3-manifolds and quantum
6j-symbols”, Topology 31 (1992), 865–902.

Also Ooguri wrote a paper on 3+1 lattice gravity that has been quite influential:

9) Hirosi Ooguri, “Topological lattice models in four dimensions”, Mod. Phys. Lett. A7
(1992), 2799–2810. Available as hep-th/9205090.

And there is also the recent paper by Rovelli, which I discussed in “Week 14”. This is
very readable (once you know what’s going on!) and conceptual.

10) Peter Peldan, “Actions for gravity, with generalizations: a review”, 61 pages, avail-
able as gr-qc/9305011.

The classic action principle for general relativity is the Einstein–Hilbert action: the
Ricci scalar times the volume form associated to the metric. An important modification,
often called the Palatini action, takes a connection and tetrad (aka vierbein or frame
field) as basic. More recently, Plebanski invented an action using the self-dual part of the
connection and a tetrad field; this turns out to be closely related to an action naturally
associated with the Ashtekar “new variables” (a self-dual connection and tetrad field),
although this was realized only subsequently by Capovilla, Dell, and Jacobson. More
recently still, there is the Capovilla-Dell-Jacobson action. These new action principles
shed a very interesting new light on gravity, particularly when it comes to quantizing it.
Of course it must be remembered that actions that give the same classical dynamics can
(and typically DO) give different quantum theories. So a traditionalist might question
whether these new actions give the “right” quantum theory of gravity. Of course, the
correct response to such a traditionalist is “well, you come up with the ‘right’ quantum
theory of gravity and then we can compare!” The point is that the good old Einstein–
Hilbert action is extremely intractable when it comes to quantization — so perhaps it is
not the “right” one, and any quantization is more enlightening than none at this stage.

Peldan presents a grand tour of the various Lagrangian formulations of gravity, and
on page 3 of this large manuscript there is a large diagram of the main Lagrangian
and Hamiltonian approaches to gravity in 3+1 dimensions, while on page 35 there is a
somewhat smaller chart for 2+1 gravity. (A very brief preliminary warmup on some of
these formulations appears in my earlier article, “Week 7”.) I plan on going through this
carefully in order to be able to make up for years of neglect on my part of this sort of
thing.
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Week 17

June 13, 1993

This’ll be the last “This Week’s Finds” for a few weeks, as I am going up to disappear until
July. I’ve gotten some requests for introductory material on gauge theory, knot theory,
general relativity, TQFTs and such recently, so I just made a list of some of my favorite
books on this kind of thing — with an emphasis on the readable ones.

Also, just as a little plug here, a graduate student here at UCR (Javier Muniain) and
I are turning my course notes from this year into a book called “Gauge Fields, Knots and
Gravity,” meant to be an elementary introduction to these subjects. This will eventually
be published by World Scientific if all goes well. It will gently remind the reader about
manifolds, differential forms, Lagrangians, etc., develop a little gauge theory, knot the-
ory, and general relativity, and at the very end it’ll get to the relationship between knot
theory and quantum gravity — at which point one could read more serious stuff on the
subject.

A while back Lee Rudolph asked my opinion of the following article:

1) Arthur Jaffe and Frank Quinn, “Theoretical mathematics: toward a cultural syn-
thesis of mathematics and theoretical physics”, Bull. Amer. Math. Soc. 29 (1993),
1–13. Available as arXiv:math/9307227.

People who are seriously into mathematical physics will know that with string theory
the interaction between mathematicians and physicists, especially mathematicians who
haven’t traditionally been close to physics (e.g. algebraic geometers), has strengthened
steadily for the last 10 years or so. Physicists are coming up with lots of exciting mathe-
matical “results” — often not rigorously proved! — and mathematicians are getting very
interested. Let me quote the abstract:

Is speculative mathematics dangerous? Recent interactions between physics
and mathematics pose the question with some force: traditional mathemati-
cal norms discourage speculation; but it is the fabric of theoretical physics. In
practice there can be benefits, but there can also be unpleasant and destructive
consequences. Serious caution is required, and the issue should be considered
before, rather than after obvious damage occurs. With the hazards carefully in
mind, we propose a framework that should allow a healthy and a positive role
for speculation.

Replies have been solicited, so there may be a debate on this timely subject in the
AMS Bulletin. This subject has a great potential for flame wars — or, as Greeks and
academics refer to them, “polemics.” Luckily Jaffe and Quinn take a rather careful and
balanced tone. I think anyone interested in the culture of mathematics and physics
should take a look at this.

Now for two books:

2) DeWitt L. Sumner, New Scientific Applications of Geometry and Topology, Proc. Symp.
Appl. Math. 45, AMS.
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This volume has a variety of introductory papers on applications of knot theory; the
titles are roughly “Evolution of DNA topology,” “Geometry and topology of DNA and
DNA-protein interactions,” “Knot theory and DNA,” “Topology of polymers,” “Knots and
Chemistry,” and “Knots and physics.”

3) Louis Kauffman and Sostenes Lins, Temperley–Lieb Recoupling Theory and Invariants
of 3-Manifolds, Princeton: Princeton U. Press, 1994.

This is an elegant exposition of the 3-manifold invariants obtained from the quantum
group SUq(2) — or in other words, from Chern–Simons theory. In part this is a polishing
of existing work, but it also contains some interesting new ideas.

And now for some papers:

4) M. Carfora, M. Martellini and A. Marzuoli, “12j-symbols and four-dimensional
quantum gravity”, Dipartimento di Fisica, Universita di Roma “La Sapienza” preprint.

This is an attempt to do for 4d quantum gravity what Regge, Ponzano and company
so nicely did for 3d quantum gravity (see “Week 16”) — describe it using triangulated
manifolds and angular momentum theory.

5) Y. S. Soibelman, “Selected topics in quantum groups”, Lectures for the European
School of Group Theory, Harvard University preprint.

This is a nice review of Soibelman’s work on quantum groups, quantum spheres, and
other aspects of “quantum geometry.”

6) J. Scott Carter and Masahico Saito , “Braids and movies”, Journal of Knot Theory
and Its Ramifications 5 (1996), 589–608.

Just as every knot or link is given as the closure of a braid — for example, the trefoil
knot
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is the closure of

— every “2-knot” or “2-link” — that is, a surface embedded in R4, is the closure of a “2-
braid”. Just as there are “Markov moves” that say when two links come from the same
braid, there are moves for 2-braids — as discussed here.

7) Danny Birmingham and Mark Rakowski, “Combinatorial invariants from four di-
mensional lattice models: II”, available as hep-th/9305022.

The previous paper obtains some invariants of 4-manifolds by triangulating them and
doing a kind of “state sum” much like those I described in “Week 16”. This paper shows
those invariants are trivial — at least for compact manifolds, where one just gets the
answer “1”. This seems to be happening a lot lately.

8) Boguslaw Broda, “A note on the four-dimensional Kirby calculus”, available as
hep-th/9305101.

An earlier attempt by Broda to construct 4-manifold invariants along similar lines was
discussed here in “Week 9” and “Week 10” — the upshot being that the invariant was
trivial. This is a new attempt and Broda has told me that the arguments for the earlier
invariant being trivial do not apply. Here’s hoping!

9) H.-J. Matschull, “Solutions to the Wheeler DeWitt constraint of canonical gravity
coupled to scalar matter fields”, available as gr-qc/9305025.

One very important technical issue in the loop representation of quantum gravity is how
to introduce matter fields into the picture. Let me quote:

It is shown that the Wheeler DeWitt constraint of canonical gravity coupled to
Klein Gordon scalar fields and expressed in terms of Ashtekar’s variables admits
formal solutions which are parametrized by loops in the three dimensional hy-
persurface and which are extensions of the well known Wilson loop solutions
found by Jacobson, Rovelli and Smolin.

10) Luis J. Garay, “Hilbert space of wormholes”, available as gr-qc/9306002.

I think I’ll just quote the abstract on this one:

Wormhole boundary conditions for the Wheeler–DeWitt equation can be derived
from the path integral formulation. It is proposed that the wormhole wave
function must be square integrable in the maximal analytic extension of min-
isuperspace. Quantum wormholes can be invested with a Hilbert space struc-
ture, the inner product being naturally induced by the minisuperspace metric,
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in which the Wheeler–DeWitt operator is essentially self–adjoint. This provides
us with a kind of probabilistic interpretation. In particular, giant wormholes
will give extremely small contributions to any wormhole state. We also study
the whole spectrum of the Wheeler–DeWitt operator and its role in the calcula-
tion of Green’s functions and effective low energy interactions.

11) Vipul Periwal, “Chern–Simons theory as topological closed string”, available as
hep-th/9305115.

Lately people have been getting interested in gauge theories that can be interpreted as
closed string field theories. I mentioned one recent paper along these lines in “Week
15”, which considers Yang–Mills in 2 dimensions. (This was not the first paper to do
so, I should emphasize.) A while back Witten wrote a paper on Chern–Simons gauge
theory in 3 dimensions as a background-free open string field theory, but I was unable
to understand it. This paper seems conceptually simpler, although it uses some serious
mathematics. I think I might be able to understand it. It starts:

The perturbative expansion of any quantum field theory (qft) with fields trans-
forming in the adjoint representation of SU(N) is a topological expansion in
surfaces, with N−2 playing the role of a handle-counting parameter. For N
large, one hopes that the dynamics of the qft is approximated by the sum (al-
beit largely intractable) of all planar diagrams. The topological classification of
diagrams has nothing a priori to do with approximating the dynamics with a
theory of strings evolving in spacetime.

Gross (see also refs. . . ) has shown recently that the large N expansion does
actually provide a way of associating a theory of strings in QCD. Maps of two-
dimensional string worldsheets into two-dimensional spacetimes are necessarily
somewhat constricted. What one would like is a qft with fields transforming in
the adjoint representation in d > 2, which is at the same time exactly solvable.
One could then, in principle, attempt to associate a theory of strings with such
a qft by exhibiting a ‘sum over connected surfaces’ interpretation for the free
energy of the qft. There is no guaranty that such an association will exist.

The author argues that Chern–Simons theory is a “rara avis among QFTs” for which
such an association exists. He takes the free energy for SU(N) Chern–Simons theory on
S3, does a large-N expansion on it, and shows that the coefficient of the N2−2g term is
the (virtual) Euler characteristics of the moduli space of surfaces with g handles. I wish
I understood this better at a very pedestrian level! E.g., is there some string-theoretic
reason why one might expect the free energy to be of this form? Anyway, then he
considers T 3, and gets something related to surfaces with a single puncture in them.

90

https://arxiv.org/abs/hep-th/9305115


WEEK 18 SEPTEMBER 11, 1993

Week 18

September 11, 1993

I will be resuming this series of articles this fall, though perhaps not at a rate of one
“Week” per week, as I’ll be pretty busy. For those of you who haven’t seen this series
before, let me explain. It’s meant to be a guide to some papers, mostly in preprint form,
that I have found interesting. I should emphasize that it’s an utterly personal and biased
selection — if more people did this sort of thing, we might get a fairer sample, but I’ll be
unashamed in focussing on my own obsessions, which these days lean towards quantum
gravity, topological quantum field theories, knot theory, and the like.

Quite a pile of papers has built up over the summer, but I will start by describing
what I did over my summer vacation:

1) John Baez, “Strings, loops, knots, and gauge fields”, available as hep-th/9309067.

When I tell layfolk that I’m working on the loop representation of quantum gravity, and
try to describe its relation to knot theory, I usually say that in this approach one thinks
of space, not as a smoothly curved manifold (well, I try not to say “manifold”), but as a
bunch of knots linked up with each other. If thy have been exposed to physics popular-
izations they will usually ask me at this point if I’m talking about superstring theory. To
which I used to respond, somewhat annoyed, that no, it was quite different. Superstring
theory, I explained, is a grandiose “theory of everything” that tries to describe all known
forces and particles, and lots more, too, as being vibrating loops of string hurling around
in 349-dimensional space. (Well, maybe just 10, or 26.) It is a complicated mishmash of
all previous failed approaches to unifying gravity with the other forces: Yang–Mills the-
ory, Kaluza-Klein models, strings, and supersymmetry. (The last is a symmetry principle
that postulates for every particle another one, a mysterious “superpartner,” despite the
fact that no such superpartners have been seen.) And it has made no testable predic-
tions as of yet. The loop representation of quantum gravity, on the other hand, is a much
more conservative project. It simply attempts to use some new mathematics to reconcile
two theories which both seem true, but up to now have been as immiscible as oil and
water: quantum field theory, and general relativity. If it works, it will still be only the
first step towards unifying gravity with the other forces. If the questioner has the gall to
ask if it has made any testable predictions, I say that so far it is essentially a mathematics
project. On the one hand, here are Einstein’s equations; on the other hand, here are the
rules of thumb for “quantizing” some equations. Is there a consistent and elegant way
of applying those rules to those equations? People have tried for 40 years or so without
real success, but quite possibly they just weren’t being clever enough, since the rules of
thumb leave a lot of scope for creativity. Then a physicist named Ashtekar came along
and reformulated Einstein’s equations using some new variables (usually known by ex-
perts as the “new variables”). This made the equations look much more like those that
describe the other forces in physics. This led to renewed hope that Einstein’s equations
might be consistently quantized after all. Then physicists named Rovelli and Smolin ,
working with Ashtekar, made yet another change of variables, based on the new vari-
ables. Rovelli and Smolin’s variables were labelled by loops in space, so they are called
the loop variables. These loops are quite unlike strings, since they are merely mathe-
matical artifacts for playing with Einstein’s equations, not actual little objects whizzing
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about. But using them, Rovelli and Smolin were able to quantize Einstein’s equations
and actually find a lot of solutions! However, they were making up a lot of new mathe-
matics as they went along, and, as usual in theoretical physics, it wasn’t 100% rigorous
(which, as we know, is like the the woman who could trace her descent from William
the Conqueror with only two gaps). So I, as a mathematician, got interested in this and
am trying to help out and see how much of this apparently wonderful development is
for real. . . .

The odd thing is that there are a lot of mathematical connections between string
theory and the loop representation. Gradually, as time went on, I became more and
more convinced that maybe the layfolk were right — maybe the loop representation of
quantum gravity really WAS string theory in disguise, or vice versa. This made a little
embarrassed by how much I had been making fun of string theory. Still, it could be a very
good thing. On the one hand, the loop representation of quantum gravity is much more
well-motivated from basic physical principles than string theory — it’s not as baroque
— a point I still adhere to. So maybe one could use it to understand string theory a lot
more clearly. On the other hand, string theory really attempts to explain, not just gravity,
but a whole lot more — so maybe it might help people see what the loop representation
of quantum gravity has to do with the other forces and particles (if in fact it actually
works).

I decided to write a paper about this, and as I did some research I was intrigued
to find more and more connections between the two approaches, to the point where
it is clear that while they are presently very distinct, they come from the same root,
historically speaking.

Here’s what I wound up saying:

The notion of a deep relationship between string theories and gauge theories is
far from new. String theory first arose as a model of hadron interactions. Un-
fortunately this theory had a number of undesirable features; in particular, it
predicted massless spin-2 particles. It was soon supplanted by quantum chromo-
dynamics (QCD), which models the strong force by an SU(3) Yang–Mills field.
However, string models continued to be popular as an approximation of the con-
fining phase of QCD. Two quarks in a meson, for example, can be thought of as
connected by a string-like flux tube in which the gauge field is concentrated,
while an excitation of the gauge field alone can be thought of as a looped flux
tube. This is essentially a modern reincarnation of Faraday’s notion of “field
lines,” but it can be formalized using the notion of Wilson loops. If A denotes
a classical gauge field, or connection, a Wilson loop is simply the trace of the
holonomy of A around a loop in space. If instead A denotes a quantized gauge
field, the Wilson loop may be reinterpreted as an operator on the Hilbert space
of states, and applying this operator to the vacuum state one obtains a state in
which the Yang–Mills analog of the electric field flows around the loop.

In the late 1970’s, Makeenko and Migdal, Nambu, Polyakov, and others at-
tempted to derive equations of string dynamics as an approximation to the
Yang–Mills equation, using Wilson loops. More recently, D. Gross and oth-
ers have been able to exactly reformulate Yang–Mills theory in 2-dimensional
spacetime as a string theory by writing an asymptotic series for the vacuum ex-
pectation values of Wilson loops as a sum over maps from surfaces (the string
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worldsheet) to spacetime. This development raises the hope that other gauge
theories might also be isomorphic to string theories. For example, recent work
by Witten and Periwal suggests that Chern–Simons theory in 3 dimensions is
also equivalent to a string theory.

String theory eventually became popular as a theory of everything because the
massless spin-2 particles it predicted could be interpreted as the gravitons one
obtains by quantizing the spacetime metric perturbatively about a fixed “back-
ground” metric. Since string theory appears to avoid the renormalization prob-
lems in perturbative quantum gravity, it is a strong candidate for a theory unify-
ing gravity with the other forces. However, while classical general relativity is an
elegant geometrical theory relying on no background structure for its formula-
tion, it has proved difficult to describe string theory along these lines. Typically
one begins with a fixed background structure and writes down a string field
theory in terms of this; only afterwards can one investigate its background inde-
pendence. The clarity of a manifestly background-free approach to string theory
would be highly desirable.

On the other hand, attempts to formulate Yang–Mills theory in terms of Wilson
loops eventually led to a full-fledged “loop representation” of gauge theories,
thanks to the work of Gambini, Trias, and others. After Ashtekar formulated
quantum gravity as a sort of gauge theory using the “new variables,” Rovelli and
Smolin were able to use the loop representation to study quantum gravity non-
perturbatively in a manifestly background-free formalism. While superficially
quite different from modern string theory, this approach to quantum gravity
has many points of similarity, thanks to its common origin. In particular, it
uses the device of Wilson loops to construct a space of states consisting of “multi-
loop invariants,” which assign an amplitude to any collection of loops in space.
The resemblance of these states to wavefunctions of a string field theory is strik-
ing. It is natural, therefore, to ask whether the loop representation of quantum
gravity might be a string theory in disguise — or vice versa.

The present paper does not attempt a definitive answer to this question. Rather,
we begin by describing a general framework relating gauge theories and string
theories, and then consider a variety of examples. Our treatment of examples
is also meant to serve as a review of Yang–Mills theory in 2 dimensions and
quantum gravity in 3 and 4 dimensions.

I should add that the sort of string theory I talk about in this paper is fairly crude
compared to that which afficionados of the subject usually concern themselves with. It
treats strings only as maps from a surface (the string worldsheet) into spacetime, and
only cares about such maps up to diffeomorphism, i.e., smooth change of coordinates.
In most modern string theory the string worldsheet is equipped with more geometrical
structure (a conformal structure) — it looks locally like the complex plane, so one can
talk about holomorphic functions on it and the like. This is why string theorists are al-
ways muttering about conformal field theory. But the sort of string theory that Gross and
others (Taylor, Minahan, and Polychronakos, particularly) have been using to describe
2d Yang–Mills theory does not require a conformal structure on the string worldsheet,
so it’s at least possible that more interesting theories like 4d quantum gravity can be for-
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mulated as string theories without reference to conformal structures. (Of course, if one
integrates over all conformal structures, that’s a way of referring to conformal structures
without actually picking one.) I guess I’m rambling on here a bit, but this is really the
most mysterious point as far as I’m concerned.

One hint of what might be going on is as follows. And here, I’m afraid, I will be
quite technical. As noted by Witten and formalized by Moore, Seiberg, and Crane, a
rational conformal field theory gives rise to a particularly beautiful sort of category called
a modular tensor category. This contains, as it were, the barest essence of the theory.
Any modular tensor category gives rise in turn to a 3d topological quantum field theory
— examples of which are Chern–Simons theory and quantum gravity in 3 dimensions.
And Crane and Frenkel have shown (or perhaps it’s fairer to say that if they ever finish
their paper they will have shown) that the nicest modular tensor categories give rise
to braided tensor 2-categories, which should, if there be justice, give 4d topological
quantum field theories. (For more information on all these wonderful things — which
no doubt seem utterly intimidating to the uninitiated — check out previous “This Week’s
Finds.”) Quantum gravity in 4 dimensions is presumably something roughly of this sort,
if it exists. So what I’m hinting at, in brief, is that a bunch of category theory may
provide the links between modern string theory with its conformal fields and the loop
representation of quantum gravity. This is not as outre as it may appear. The categories
being discussed here are really just ways of talking about symmetries (see my stuff on
categories and symmetries for more on this). As usual in physics, the clearest way to
grasp the connection between two seemingly disparate problems is often by recognizing
that they have the same symmetries.
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Week 19

September 27, 1993

I will now start catching up on some of the papers that have accumulated over the
summer. This time I’ll say a bit about recent developments in quantum field theory and
4-dimensional topology.

The quantum field theories that describe three of the forces of nature (electromag-
netic, strong and weak) depend for their formulation on a fixed metric on spacetime —
that is, a way of measuring distance and time. Indeed, it seems pretty close to being true
that spacetime is R4, and that the “interval” between any two points in 4-dimensional
space is given by the Minkowski metric

dt2 − dx2 − dy2 − dz2

where dt is the change in the time, or t, coordinate, dx is the change in the spatial x
coordinate, and so on. However, it’s apparently not quite true. In fact, the presence of
matter or energy distorts this metric a little, and the effect of the resulting “curvature of
spacetime” is perceived as gravity. This is the basic idea of general relativity, which is
nicely illustrated by the way in which the presence of the sun bends starlight that passes
nearby.

Gravity is thus quite different from the other forces, at least to our limited under-
standing. The other forces we have quantum theories of, and these theories depend on a
fixed (that is, pre-given) metric. We have no quantum theory of gravity yet, only a clas-
sical theory, and this theory is precisely a set of equations describing a variable metric,
that is, one dependent upon the state of the universe. These are, of course, Einstein’s
equations.

In fact it is no coincidence that we have no quantum theory of gravity. For most of
the last 50 years or so physicists have been working very hard at inventing and under-
standing quantum field theories that rely for their formulation on a fixed metric. Indeed,
physicists spent huge amounts of effort trying to make a theory of quantum gravity along
essentially these lines! This is what one calls “perturbative” quantum gravity. Here one
says, “Well, we know the metric isn’t quite the Minkowski metric, but it’s awfully close,
so we’ll write it as the Minksowski metric plus a small perturbation, derive equations
for this perturbation from Einstein’s equations, and make a quantum field theory based
on those equations.” That way we could use the good old Minkowski metric as a “back-
ground metric” and thus use all the methods that work for other quantum field theories.
This was awfully fishy from the standpoint of elegance, but if it had worked it might have
been a very good thing, and indeed we learned a lot from its failure to work. Mainly,
though, we learned that we need to bite the bullet and figure out how to do quantum
field theory without any background metric.

A recent big step was made when people (in particular Witten and Atiyah) formu-
lated the notion of a “topological quantum field theory.” This is a precise list of prop-
erties one would like a quantum field theory independent of any background metric to
satisfy. A wish list, as it were. One of the best-understood examples of such a “TQFT” is
Chern–Simons theory. This is a quantum field theory that makes sense in 3-dimensional
spacetime, not 4d spacetime, so in a sense it has no shot at being “true.” However, it
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connects up to honest 4d physics in some very interesting ways, it serves as warmup for
more serious physics yet to come, AND it has done wonders for the study of topology.

It is also worth noting that one particular case of Chern–Simons theory is equivalent
to quantum gravity in 3d spacetime. Here I am being a bit sloppy; there are various
ways of doing quantum gravity in 3 dimensions and they are not all equivalent, but
the approach that relates to Chern–Simons theory is, in my opinion, the nicest. This
approach to 3d quantum gravity was the advantage that it can also be described using a
“triangulation” of spacetime. In other words, if we prefer the discrete to the continuum,
we can “triangulate” it, or cut it up into tetrahedra, and formulate the theory solely in
terms of this triangulation. Of course, it’s pretty common in numerical simulations to
approximate spacetime by a lattice or grid like this. What’s amazing here is that one gets
exact answers that are independent of the triangulation one picks. The idea for doing this
goes back to Ponzano and Regge, but it was all done quite rigorously for 3d quantum
gravity by Turaev and Viro just a few years ago. In particular, they were able to show the
3d quantum gravity is a TQFT using only triangulations, no “continuum” stuff.

It is tempting to try to do something like this for 4 dimensions. But it is unlikely to be
so simple. A number of people have recently tried to construct 4d TQFTs copying tricks
that worked in 3d. Some papers along these lines that I have mentioned before are:

Louis Crane and David Yetter, “A categorical construction of 4d topological
quantum field theories”, available as hep-th/9301062. (Week 2)

Boguslaw Broda, “Surgical invariants of four-manifolds”, available as hep-th/
9302092. (Week 9 and Week 10)

(I have listed which “Week” I discussed these in case anyone wants to go back and check
out some of the details.)

These papers ran into stiff opposition as soon as they came out! First Ocneanu
claimed that the Crane–Yetter construction was trivial, in the sense that the number
it associated to any compact 4-dimensional spacetime manifold was 1. (This number
is called the partition function of the quantum field theory, and having it be 1 for all
spacetimes means the theory is deadly dull.)

Adrian Ocneanu, “A note on simplicial dimension shifting”, available as hep-th/
9302028. (“Week 5”)

Crane and Yetter wrote a rebuttal noting that Ocneanu was not dealing with quite the
same theory:

David Yetter and Louis Crane, “We are not stuck with gluing”, available as
hep-th/9302118. (Week 7)

They also presented, at their conference this spring, calculations showing that their par-
tition function was not equal to 1 for certain examples.

In my discussions of Broda’s work I extensively quoted some correspondence with
Dan Ruberman, who showed that in Broda’s original construction, the partition function
of a 4-dimensional manifold was just a function of its signature and possibly some Betti
numbers — these being well-known invariants, it’s not especially exciting from the point
of view of topology. This was also shown by Justin Roberts:
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Justin Roberts, “Skein theory and Turaev–Viro invariants”, Topology, 34, 771–
787. Available as https://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.138.8587. (Week 14)

He suggested that the Crane–Yetter partition function was also a function of the signature
and Betti numbers, but did not check their precise normalization conventions, and so did
not quite prove this. However, more recently Crane and Yetter, together with Kauffman,
have shown this themselves:

1) Louis Crane, Louis H. Kauffman and David N. Yetter, “Evaluating the Crane–Yetter
Invariant”, available as hep-th/9309063.

Abstract: We provide an explicit formula for the invariant of 4-manifolds intro-
duced by Crane and Yetter (in hep-th/9301062). A consequence of our result
is the existence of a combinatorial formula for the signature of a 4-manifold
in terms of local data from a triangulation. Potential physical applications of
our result exist in light of the fact that the Crane–Yetter invariant is a rigorous
version of ideas of Ooguri on B ∧ F theory.

They also have shown that Broda’s original construction, and also a souped-up construc-
tion of his, give a partition function that depends only on the signature:

2) Louis Crane, Louis H. Kauffman and David N. Yetter, “On the Classicality of Broda’s
SU(2) Invariants of 4-Manifolds”, available as hep-th/9309102.

Abstract: Recent work of Roberts has shown that the first surgical 4-manifold in-
variant of Broda and (up to an unspecified normalization factor) the state-sum
invariant arising from the TQFT of Crane–Yetter are equivalent to the signa-
ture of the 4-manifold. Subsequently Broda defined another surgical invariant
in which the 1- and 2- handles are treated differently. We use a refinement of
Roberts’ techniques developed by the authors in hep-th/9309063 to show that
the “improved” surgical invariant of Broda also depends only on the signature
and Euler character.

Now let me say just a little bit about what this episode might mean for physics as
well as mathematics. The key is the “B ∧ F ” theory alluded to above. This is a quantum
field theory that makes sense in 4 dimensions. I have found that the nicest place to read
about it is:

3) Gary Horowitz, “Exactly soluble diffeomorphism-invariant theories”, Commun. Math.
Phys. 125 (1989), 417–437.

This theory is a kind of simplified version of 4d quantum gravity that is a lot closer
in character to Chern–Simons theory. Like Chern–Simons theory, there are no “local
degrees of freedom” — every solution looks pretty much like every other one as long
as we don’t take a big tour of space and notice that funny things happen when we go
around a noncontractible loop, which is the sort of thing that can only exist if space has
a nontrivial topology. 4d quantum gravity, on the other hand, should have loads of local
degrees of freedom — the local curving of spacetime!
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What Crane and Yetter were dreaming of doing was constructing 4d quantum gravity
as a TQFT using triangulations of spacetime. What they really did, it turns out, was to
construct B ∧ F theory as a TQFT using triangulations. (Broda constructed it another
way.) On the one hand, the simplicity of B ∧ F theory compared to honest-to-goodness
4d quantum gravity makes it possible to understand it a lot better, and calculate it out
explicitly. On the other hand, B ∧ F theory is so simple that it doesn’t tell us much
new about topology, at least not the topology of 4-dimensional manifolds per se. Via
Donaldson theory and the work of Kronheimer and Mrowka it’s probably telling us a lot
about the topology of 2-dimensional surfaces embedded in 4-dimensional manifolds —
but alas, I don’t understand this stuff very well yet!

Getting our hands on 4d quantum gravity as a TQFT along these lines is still, there-
fore, an unfinished business. But we are, at last, able to study some examples of 4d
TQFTs and ponder more deeply what it means to do quantum field theory without any
background metric. The real thing missing is local degrees of freedom. Without them,
any model is really just a “toy model” not much like physics as we know it. The loop
representation of quantum gravity has these local degrees of freedom (to the extent that
we understand the loop representation!), and so the challenge (well, one challenge!) is
to better relate it to what we know about TQFTs.
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Week 20

October 2, 1993

I think I’ll depart from my usual concerns this week and talk about a book I’d been
meaning to get my hands on for ages:

1) John H. Conway and Neil J. A. Sloane, Sphere Packings, Lattices and Groups, second
edition, Grundlehren der mathematischen Wissenschaften 290, Springer, Berlin,
1993.

This is a mind-boggling book. I have always regarded research in combinatorics as
a pleasure I must deny myself, for the study of the discrete presents endless beautiful
tapestries in which one could easily lose oneself for life, and I regard this as a kind of
self-indulgence when there is, after all, the physical universe out there waiting to be
understood. Of course, it’s good that someone does combinatorics, since even the most
obscure corners have a strong tendency to become useful eventually — and if they write
books about it, I can have my cake and eat it too, by reading about it. Conway and Sloane
are two masters of combinatorics, and this book is like a dessert tray piled so high with
delicacies that it’s hard to know where to begin. Rather than attempt to describe it, let
me simply show you a few things I found in it. The book is 679 pages long, so what I’ll
say is only the most minute sample!

Let’s begin with sphere packings. Say one is stacking cannonballs on one’s lawn,
which is a quaint custom now that cannons have been replaced by far more horrible
weapons. A nice way to do it is to lay out a triangle of cannonballs thus:

and then set down another triangle of cannonballs on top of the first layer, one in every
other hole, thus:
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and another:

and finally one on top — which I won’t attempt to draw. (Actually all the figures here
were made by Simon Burton.) Very nice stack! There are many mathematical reflections
it could lead one to, one of which is: is this the densest possible way one can pack spheres
of equal radius? The density is π/

√
18 = .7405 . . .; can one do better? Apparently it was

Kepler who first conjectured that the answer is “no.” This is a famous hard problem. In
1991 W.-Y. Hsiang announced that he had a proof, but I am not sure how many experts
have read it and been convinced.

This packing is a very regular sort of packing, what people call a lattice packing. A
lattice is a discrete subset of n-dimensional Euclidean space closed under addition, and
the packing above corresponds to a lattice called the “face-centered cubic” or fcc lattice,
which is the set of all points (x, y, z) where x, y, and z are integers adding up to an even
number. (One might have a bit of fun drawing some of those points and seeing why they
do the job.) Naturally, because of their regularity lattice packings are easier to study
than non-lattice ones. In fact, Gauss showed in 1831 that the fcc lattice is the densest
of all lattice packings of spheres in 3 dimensions. This justifies the practice of stacking
grapefruit this way in the supermarket.

Let’s take a bit closer look at what’s going on here. Imagine an fcc lattice going off
infinitely in all directions. . . each sphere is touching 12 others: 6 in its own layer, as it
were, 3 in the layer above and 3 in the layer below. If we only pay attention to a given
sphere and those touching it we see something like:

If we remove the central sphere to clean up the picture a bit, the centers of the remaining
are the vertices of a shape called the cuboctahedron:
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It has 12 vertices, 8 triangular faces, and 6 square faces. One can get it either by cutting
off the corners of a cube just right, or by cutting off the corners of an octahedron!

Let’s return to thinking about the 12 spheres touching the central one. This raises
another question: is 12 the largest number of equal-radius spheres able to touch a given
one? This is the “kissing spheres” problem — not quite the same as the packing problem!
In 1694, Newton conjectured that 12 was the largest number one could achieve. His
correspondent, David Gregory, thought 13 might be possible. It turns out that Newton
was right (some proofs appeared in the late 1800’s), but it is important to realize that
Gregory’s guess was not as dumb as it might sound!

Why? Well, there’s another way to get 12 spheres to touch a central one. Namely,
locate them at the vertices of a (regular) icosahedron. If one wants to get to know the
icosahedron a bit better one might read my article Some Thoughts on the Number Six.
But I hope you have an icosahedron available, or at least a good mental image of one. It’s
easy to describe the vertices of the icosahedron mathematically in terms of the golden
ratio, √

5 + 1

2
= 1.61803398874989484820458683437 . . .

This usually goes by the name of “Φ”, or sometimes “τ”. The magic properties of Φ are
too numerous to list here, but what counts is that one gets the 12 vertices of a (regular)
icosahedron by taking the points

(±Φ,±1, 0),

(±1, 0,±Φ),

(0,±Φ,±1).

This is easy to check.
Now the interesting thing is that when one gets 12 spheres to touch a central one

using the icosahedron, the 12 sphere don’t touch each other! There’s room to move ’em
around a bit, and perhaps (thought Gregory) even enough room to stick in another one!
Well, Gregory was wrong, but one can do something pretty cool with this wiggle room.
First, though, let’s check that there really is a little space between those outer spheres.
First, compute the distance between neighboring vertices of the icosahedron by taking
two and working it out:

‖(Φ, 1, 0)− (Φ,−1, 0)‖ = 2

Then, compute the distance from any of the vertices to the origin, which is the center of
the central sphere:

‖(Φ, 1, 0)‖ =
√

Φ2 + 1

Using the charming fact that Φ2 = Φ + 1 this simplifies to
√

Φ + 2, but then I guess we
just need to grind it out: √

Φ + 2 = 1.902 . . .

The point is that this is less than 2, so two neighboring spheres surrounding the central
one are farther from each other than from the central one, i.e., they don’t touch.

Now here’s an interesting question: say we labelled the 12 spheres touching the
central one with numbers 1-12. Is there enough room to roll these spheres around,
always touching the central one, and permute the spheres 1-12 in an interesting way?
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Notice that it’s trivially easy to roll them around in a way that amounts to rotating the
icosahedron, but are there more interesting permutations one can get?

Recall that the group of permutations of 12 things is called S12, and it has

12! = 479001600

elements. The rotational symmetry group of the icosahedron is much smaller. One can
count its elements as follows: pick a vertex and say which new vertex it gets rotated
to — there are 12 possibilities — and then note that there are 5 ways that could have
happened, for a total of 60. In fact (as I show in the article “Six”) the rotational symmetry
group of the icosahedron is A5, the group of even permutations of 5 things. So we have a
nice embedding of the group A5 into S12, but we are hoping that by some clever wiggling
we can get a bigger subgroup of S12 as the group of permutations we can achieve by
rolling spheres around.

In fact, one can achieve all EVEN permutations of the 12 spheres this way! In other
words, we get the group A12, with

12!

2
= 239500800

elements. How? Well, I wish I could draw an icosahedron for you, but I can’t really do
so well on this medium. The best way is to draw a top view:

and a bottom view:

Now, if we take the top 6 spheres and bunch them up so they are all touching, and the
bottom 6 spheres and bunch them up so they all touch, we can, in fact, twist the top 6
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counterclockwise around 1/5 of a turn. That is, we can map

to

I haven’t actually done this, or even proved I can, but Conway and Sloane say so. And
then the point is that all of A12 is generated by “twists” of this form. Conway and Sloane
give a sophisticated and quick proof of this fact, which I can’t resist mentioning. Readers
who don’t know much group theory can skip the next paragraph!

First, let t(i) be the element of S12 corresponding to the clockwise twist about the
ith vertex of the icosahedron (so that what’s drawn above is t(1)). This is a 5-cycle,
and we need to show these 12 5-cycles generate A12. Consider the subgroup generated
by elements of the form t(i)t(j)−1 — a clockwise twist followed by a counterclockwise
twist. This is the Mathieu group M12, a most remarkable group! In particular, its action
on the vertices of the icosahedron is able to map any 5 vertices to any 5 others (we say
it’s quintuply transitive), so by conjugating t(i) with elements of the Mathieu group we
can get any 5-cycle in S12. Then we use the fact that A12 is generated by the 5-cycles.

Anyway, what this indicates is that there is an interesting relation between the icosa-
hedron and a certain finite group, the Mathieu group M12. This group has

12!/7! = 95040

elements and it is a “simple” group, in the technical sense. The simple groups are to finite
groups roughly as the prime numbers are to the counting numbers; that is, they are the
elementary building blocks from which other finite groups are made (although one has
to specify how one gloms them together to get other groups). One of the remarkable
achievements of this century is the classification of these simple groups. In addition to
various infinite families of simple groups, like the alternating groups An (consisting of
even permutations) there are a finite number of “sporadic” simple groups such as the
Mathieu groups, the Fischer groups, the Suzuki groups, and, biggest of all, the Monster
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group, which has

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

= 808017424794512875886459904961710757005754368000000000

elements!
Here’s a fun story about this number.
In the 1970s, the mathematicians Fricke, Ogg and Thompson were studying the quo-

tient of the hyperbolic plane by various subgroups of SL(2,R) — the group of 2× 2 real
matrices with determinant one — which acts as isometries of the hyperbolic plane. Sit-
ting inside SL(2,R) is the group of 2 × 2 integer matrices with determinant one, called
SL(2,Z). Sitting inside that is the group Γ0(p) consisting of matrices whose lower left
corner is congruent to zero mod p for the prime p. But Fricke, Ogg and Thompson were
actually considering a somewhat larger group Γ0(p)+, which is the normalizer of Γ0(p)
inside SL(2,R).

If you don’t know what this stuff means, don’t worry! The point is that they asked
this question: if we take the quotient of the hyperbolic plane by this group Γ0(p)+,
when does the resulting Riemann surface have genus zero? And the real point is that
they found the answer was: precisely when p is 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41,
47, 59 or 71.

Later, Ogg went to a talk on the Monster and noticed that these primes were precisely
the prime factors of the size of the Monster! He wrote a paper offering a bottle of Jack
Daniels whiskey to anyone who could explain this fact. This was the beginning of a
subject which Conway dubbed “Monstrous Moonshine”: the mysterious relation between
the Monster group, the group SL(2,R), and Riemann surfaces.

It turns out that lying behind Monstrous Moonshine is a certain string theory hav-
ing the Monster as symmetries, and this was the key to understanding many strange
“coincidences”.

So, the sporadic groups are telling us something very deep and mysterious about
the universe, since they are very complicated and yet somehow a basic, intrinsic part of
the weave of mathematics. Conway and Sloane have a lot to say about them and their
relations to lattices and error-correcting codes. For more about Monstrous Moonshine
and string theory, the reader should try this:

2) Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex Operator Algebras and
the Monster, Academic Press, New York, 1988.

Rather than attempt to describe this work, which I am not really qualified to do (not
that that usually stops me!), I think I will finish up by describing a charming connection
between the beloved icosahedron and a lattice in 8 dimensions that goes by the name of
E8. I’ll be a bit more technical here.

The group of rotational symmetries of the icosahedron is, as we have said, A5. This is
a subgroup of the 3d rotation group SO(3). As all physicists know, whether they know it
or not, the group SO(3) has the group SU(2) of 2× 2 unitary matrices with determinant
1 as its double cover. So we can find a corresponding double cover of A5 as a subgroup
of SU(2); this has twice as many elements as A5, for a total of 120.

Now the group SU(2) has a nice description as the group of unit quaternions, that is,
things of the form

a+ bI + cJ + dK
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where a, b, c, d are real numbers with a2 + b2 + c2 + d2 = 1, and I,J , and K satisfy

IJ = −JI = K, JK = −KJ = I, KI = −IK = J, I2 = J2 = K2 = −1

(Physicists in the 20th century usually use the Pauli matrices instead, which are basically
the same thing; for the relationship, read “Week 5”.)

It’s natural to ask what the double cover of A5 looks like explicitly in terms of the
unit quaternions. Conway and Sloane give a nice description. Let’s write (a, b, c, d) for
a + bI + cJ + dK, write Φ for the golden ratio as before, and φ for the inverse of the
golden ratio:

φ = Φ−1 = Φ− 1 = 0.61803398874989484820458683437 . . .

Then the elements of the double cover of A5 are of the form

(±1, 0, 0, 0),

(±1

2
,±1

2
,±1

2
,±1

2
),

(0,±1

2
,±φ/2,±Φ/2).

and everything else that can be gotten by even permutations of the coordinates. (Check
that there are 120 and that they are closed under multiplication!)

Charming, but what does it have to do with E8? Well, note that if we take all finite
sums of elements of the double cover of A5 we get a subring of the quaternions that
Conway and Sloane calls the “icosians.” Any icosian is of the form

a+ bI + cJ + dK

where a,b,c, and d live in the “golden field” Q(Φ) — this is the field of numbers of the
form

x+
√

5y

where x and y are rational. Thus we can think of an icosian as an 8-tuple of rational
numbers. We don’t get all 8-tuples, however, but only those lying in a given lattice.

In fact, we can put a norm on the icosians as follows. First of all, there is usual
quaternionic norm

‖a+ bI + cJ + dK‖2 = a2 + b2 + c2 + d2

But for an icosian this is always of the form x +
√

5y for some rational x and y. It turns
out we can define a new norm on the icosians by setting

|a+ bI + cJ + dK|2 = x+ y.

With respect to this norm, the icosians form a lattice that fits isometrically in 8-dimensional
Euclidean space and is the famous one called E8! E8 is known to yield the densest lat-
tice packing of spheres in 8 dimensions, a fact that is not only useful for 8-dimensional
greengrocers, but also is apparently used in error-correcting codes in a number of com-
mercially available modems! (If anyone knows which modems use E8, let me know — I
might just buy one!) The density with which one can pack spheres in 8 dimensions using
E8, by the way, is π4/384, or about .2537.
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Group theorists and some physicists, of course, will know that E8 is also the root
lattice of the largest exceptional Lie group, also known as E8. This appears as the gauge
group in some string theories. While I find those string theories a bit baroque for my
taste, there is clearly a lot of marvelous mathematics floating around here, and anyone
who wants more might start with Conway and Sloane.

Addendum: I had written:

Now here’s an interesting question: say we labelled the 12 spheres touching
the central one with numbers 1-12. Is there enough room to roll these spheres
around, always touching the central one, and permute the spheres 1-12 in an
interesting way? Notice that it’s trivially easy to roll them around in a way that
amounts to rotating the icosahedron, but are there more interesting permuta-
tions one can get?

In fact, one can achieve all EVEN permutations of the 12 spheres this way!

I got some email from Conway saying that in fact one get ALL permutations of the
12 spheres. The point is this. One can start with the 12 spheres touching the central one
arranged so their centers are at the vertics of an icosahedron. Then one can roll them
around so their centers lie at the vertices of a cuboctahedron:

At this point they touch each other, but one can indeed get to this position. There is a
nice picture of how to do this in Conway and Sloane’s book, but you might enjoy figuring
it out.

Now if we rotate the cuboctahedron around the axis pointing towards the reader, we
get an odd permutation of the 12 spheres, with cycle structure (123)(456)(789101112).
So one can in fact get all of S12 if one lets the 12 spheres “just touch.” If one thinks about
it a bit, the method described in the previous post gets all of A12 without the 12 spheres
touching at all. Conway says he doesn’t know if one can get all of S12 without the 12
spheres touching each other at all. So this might be a fun problem to work on. I bet the
answer is “no”.

Conway says the permutation problem came up before a lecture he gave at U. of
Penn. a while ago, that he solved it during the lecture, and told Jim Propp about it
afterwards.

Someone with much better intuition about these things than I have might want to
consider similar “rolling spheres permutation problems” in higher dimensions. E.g., what
permutations can one can achieve in 4 dimensions, where it is possible to get 24 spheres
to touch a central one? (In 4d it is not known whether one can get 25 to touch, but
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25 is an upper bound.) Greg Kuperberg informs me that the known method for having
24 spheres touch the central sphere is rigid, so that only the “obvious” permutations are
possible starting from this arrangement.

The only other cases where the rolling spheres permutation problem appears to be
solved is in dimensions 1 and 2 (boring), 8, and 24. I described the E8 lattice in 8
dimensions in “This Week’s Finds.” In the corresponding lattice packing, each sphere
touches 240 others. This is, up to rotation, the only way to get 240 spheres to touch a
central one in 8 dimensions. (Also, one cannot get more than 240 to touch the central
one.) So the subgroup of S240 that one can get by rolling 240 spheres around a central
one is precisely the “obvious” subgroup, that is, the subgroup of SO(8) that preserves the
E8 lattice. This turns out to be just the Weyl group of E8, which has

214 · 35 · 52 · 7 = 696729600

elements.
Dimension 24 is probably the most interesting for lattice theory, and here the densest

lattice packing is the Leech lattice. I am somewhat sorry not to have even mentioned
the Leech lattice in my article, since this is the real star of Conway and Sloan’s book.
The Leech lattice is probably related to the appearance of 26-dimensional spacetime in
string theory; to get it, start with the unique even unimodular lattice in 26-dimensional
Minkowski space, and then look at M , the set of vectors in the lattice perpendicular to
the vector w = (70, 1, 2, 3, ..., 24). This is a null vector since

12 + 22 + ...+ 242 = 702,

i.e., it is perpendicular to itself. Taking the quotient of M by w itself, we get the Leech
lattice. In this lattice each sphere touches 196560 others, which is the most one can
attain, and again this is the only way to get 196560 spheres to touch a central one in
24 dimensions. This should be obvious by visualizing it. :-) So again the answer to the
rolling spheres permutation problem is the subgroup of SO(24) that preserves the Leech
lattice. The isomorphism group of the Leech lattice is an interesting group called Co0 or
.0 (pronounced “dotto”). It has

222 · 39 · 54 · 72 · 11 · 13 · 23 = 8315553613086720000

elements. The Monster group can also be produced using the Leech lattice.
Please don’t be fooled into thinking I understand this stuff!
Jim Buddenhagen raised another interesting point:

Since 13 unit spheres can’t quite all touch a unit sphere, one may ask how much
bigger the central sphere must be to allow all 13 to touch.

In 1951 K. Schutte and B. L. van der Waerden found an arrangement of the
13 unit spheres that allows all of them to touch a central sphere of radius r =
1.04557 . . . This is thought to be optimal but has not been proved optimal.

This r is an algebraic number and is a root of the polynomial

4096x16 − 18432x12 + 24576x10 − 13952x8 + 4096x6 − 608x4 + 32x2 + 1

They computed r but did not publish the polynomial.
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Week 21

October 10, 1993

Louis Kauffman is editing a series of volumes called “Series on Knots and Everything,”
published by World Scientific. The first volume was his own book, Knots and Physics.
Right now I’d like to talk about the second volume, by Carter. I got to know Carter
and Saito when it started seeming that a deeper understanding of string theory and the
loop representation of quantum gravity might require understanding how 2-dimensional
surfaces can be embedded in 4-dimensional spacetime. The study of this subject quickly
leads into some very fascinating algebra, such as the “Zamolodchikov tetrahedron equa-
tions” (which first appeared in string theory). A nice review of this subject and their
work on it will appear in a while:

1) J. Scott Carter and Masahico Saito, “Knotted surfaces, braid movies, and beyond”,
in Knots and Quantum Gravity, ed. John Baez, Oxford U. Press, Oxford, 1994.

but for the non-expert, a great way to get started is:

2) J. Scott Carter, How Surfaces Intersect in Space: An Introduction to Topology, World
Scientific Press, Singapore, 1993.

You can tell this isn’t a run-of-the-mill introductory topology book as soon as you
read the little blurb about the author on the back dustjacket. Occaisionally there will
be tantalizing personal details in these blurbs that indicate that the author is not just
a mathematical automaton; for example, on the back of Hartshorne’s famous text on
algebraic topology it says “He has travelled widely, speakes several foreign languages,
and is an experienced mountain climber. He is also an accomplished amateur musician;
has played the flute for many years, and during his last visit to Kyoto, he began studying
the shakuhachi.” This somehow fits with the austere and slightly intimidating quality of
the text itself. The tone of the blurb on the back of Scott Carter’s book could not be more
different: “When he is not drawing pictures, cooking, or playing with Legos, he is writing
songs and playing guitar for his band The Anteaters who have recorded an eight-song
cassette published by Lobe Current Music.” This is a book that invites the reader into
topology without taking itself too seriously.

I remember first reading about topology as the study of doughnuts, Möbius strips
and the like, and then being in a way disappointed as an undergrad – although in an-
other way quite excited – when it seemed that what topologists really did was a lot of
“diagram-chasing,” the algebraic technique widely used in homology and homotopy the-
ory. Once, however, as a grad student, I took a course in “geometric topology” by Tim
Cochran, and was immensely pleased to find that some topologists really did draw wild
pictures of many-handled doughnuts and the like in 4 dimensions, and prove things by
sliding handles around. The nice thing about this book is that it is readable by any un-
dergraduate — it doesn’t assume or even mention the definition of a topological space!
— but covers some very nontrivial geometric topology. It is not a substitute for the usual
introductory course; instead, it concentrates on the study of surfaces embedded or im-
mersed in 3 and 4 dimensional space, and shows how much there is to ponder about
them. It is packed with pictures and is lots of fun to read.
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The intrinsic topology of surfaces is very simple. The simplest one is the sphere (by
which, of course, mathematicians mean the surface of a ball, not the ball itself). The next
is the torus, that is, the surface of the doughnut. One can also think of the torus as what
you get by taking a square and gluing together the edges as below:

II

II

H H

gluing the two horizontal edges together so the double arrows match up, and gluing the
two vertical edges together so the single arrows match up. There is also a two-handled
torus, and so on. The number of handles is called the “genus.” All these surfaces are
orientable, that is, one can define a consistent notion of “right” and “left” on them, so
that if one writes a little word on them and slides the word around it’ll never come back
mirror-imaged. And in fact, all orientable surfaces are just n-handled tori, so they are
classified by their genus.

A nice example of a nonorientable surface is the projective plane. One way to visual-
ize this is to take the surface of the sphere and “identify” opposite points, that is, decree
them “the same” by fiat. Imagine, for example, a globe in which antipodal points have
been identified. If one writes a word on the north pole and then slides it down through
the Americas to Ecuador, since the southern hemisphere has been identified with the
northern one, we can think of it popping out over around India somewhere (sorry, my
geography is a little rusty when it comes to antipodes!), but we will see when we slide
it back to the north pole that it has been reversed, and is now written backwards! We
see from this not only that the projective plane is nonorientable, but that it has another
description: simply take a disc and identify opposite points along the boundary. Since
we’re doing topology, a square is just as good as a disc, so we can think of the projective
plane as the result of identifying the points on the boundary of a square as follows:

JJ

II

H N

Another famous example of a nonorientable surface is the Klein bottle, which is given
by

JJ

II

H H
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We can take either the Klein bottle or the projective plane and get more nonorientable
surfaces by adding handles. Every nonorientable surface is of one of these forms. I’ve
included a few more basic facts about the classification of surfaces as puzzles at the end
of this article.

Now, the intrinsic topology of surfaces considers them as abstract spaces in their own
right, but the “extrinsic topology” of them considers the ways they may be mapped into
other spaces — for example, 3- or 4-dimensional Euclidean space. And here things get
much more interesting and subtle. For example, while one can embed any orientable
surface in 3d space, one cannot embed any of the nonorientable ones. Here an embed-
ding is a 1-1 continuous map. However, one can immerse the non-orientable ones. An
immersion is a map that is locally an embedding, but not necessarily globally; e.g., a
figure 8 is an immersion of the circle in the plane. There’s a standard way of immersing
the Klein bottle in 3d space with a circle of “double points,” that is, places where the
immersion is 2-1. One can easily turn this immersion into an embedding of the Klein
bottle 4d space by representing the 4th coordinate by how red the surface is and having
the Klein bottle blush as it passes through itself. In fact, one can embed any surface into
4d space.

While one can’t embed the nonorientable surfaces in 3d space, it is interesting to see
how close one can come. The simplest way an immersion can fail to be an embedding is
by having double points. Another simple way is to have triple points. Carter discusses a
charming immersion of the projective plane in 3d space that only has curves of double
points and a single triple point. This is known as “Boy’s surface.” A somewhat sneakier
way immersions fail to be embeddings is by having “branch points.” Think, for example,
of the function

√
z on the complex plane. This is a two-valued function, so its graph

consists of two “sheets” which glom together in a funny way at z = 0, the branch point.
Carter also talks about another neat immersion of the projective plane in R3 that just has
double points and a branch point — the “cross cap.” Another immersion, the “Roman
surface,” has both triple points and a branch point.

The general question, then, is what sort of embeddings and immersions different
surfaces admit in 3 and 4 dimensions, and how to classify these. If we are studying
embeddings into 4 dimensions, a nice technique is that of movies. Calling the 4th coor-
dinate “time,” we can draw slices at different times and get frames of a movie. Most of
the frames of a movie of an embedded surface will show simply a bunch of knots. At a

110



WEEK 21 OCTOBER 10, 1993

few times, however, a “catastrophe” will occur, e.g.:

Frame 1 Frame 2 Frame 3

Frame 4
(catastrophe!)

Frame 5 Frame 6

However, there are always many different movies of essentially the same embedding.
We can, however, always relate these by a sequence of transformations called “movie
moves.” I wish I could draw these, but it would take too long, so look at Carter’s book!

And while you’re at it, check out the index. You will enjoy finding the excuses he has
for such entries as “hipster jive,” “math jail,” “basket shaped thingy,” and “chocolate.”
Heck, I can’t resist one. . . on page 81: “Mathematicians use the term “word” to mean
any finite sequence of letters or numbers. This practice can freak out (disturb) people
who are not hip to the lingo (aware of the terminology).”

I should add that the following book also has a lot of interesting pictures of surfaces
in it:

3) George Francis, A Topological Picturebook, Springer, Berlin, 1987.

Problems:

A. Take a projective plane and cut out a little disc. Show that what’s left is a Möbius
strip.

B. Take two projective planes, cut out a little disc from each one and attach them
along the resulting circles. This is called taking the “connected sum” of two projective
planes. Show that the result is a Klein bottle. In symbols, P + P = K, or 2P = K.

C. Now take the connected sum of a projective plane and a Klein bottle. Show that
this is the same as a projective plane with a handle attached. A projective plane with a
handle attached is just the connected sum of a projective plane and a torus, so we have:
3P = P +K = P + T .

D. Show: 4P = K +K = K + T .
E. Show: (2n+ 1)P = P + nT .
F. Show: (2n+ 2)P = K + nT .
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Week 22

October 16, 1993

Lately I’ve been having fun in this series discussing some things that I don’t really know
much about, like lattice packings of spheres. Next week I’ll get back to subjects that I
actually know something about, but today I want to talk about the 4-color theorem, the
golden mean, the silver root, knots and quantum field theory. I know a bit about some
of these subjects, but I’ve only become interested in the 4-color theorem recently, thanks
to my friend Bruce Smith, who has a hobby of trying to prove it, and Louis Kauffman’s
recent work connecting it to knot theory. The sources for what follows are:

1) Thomas L. Saaty and Paul C. Kainen, The Four-Color Problem: Assault and Conquest,
McGraw-Hill, 1977.

and

2) Louis Kauffman, “Map coloring and the vector cross product”, J. Comb. Theory B
48 (1990), 45.

Louis Kauffman, “Map coloring, 1-deformed spin networks, and Turaev–Viro in-
variants for 3-manifolds”, Int. Jour. of Mod. Phys. B, 6 (1992), 1765–1794.

Louis Kauffman and H. Saleur, “An algebraic approach to the planar colouring prob-
lem”, Yale University preprint YCTP-P27-91, November 8, 1991.

(I discussed this work of Kauffman already in “Week 8”, where I described a way to
reformulate the 4-color theorem as a property of the vector cross product.)

Where to start? Well, probably back in October, 1852. When Francis Guthrie was
coloring a map of England, he wondered whether it was always possible to color maps
with only 4 colors in such a way that no two countries (or counties!) touching with a
common stretch of boundary were given the same color. Guthrie’s brother passed the
question on to De Morgan, who passed it on to students and other mathematicians, and
in 1878 Cayley publicized it in the Proceedings of the London Mathematical Society.

In just one year, Kempe was able to prove it. Whoops! In 1890 Heawood found an
error in Kempe’s proof. And then the real fun starts. . . .

But I don’t want to tell the whole story leading up to how Appel and Haken proved
it in 1976 (with the help of a computer calculation involving 1010 operations and taking
1200 hours). I don’t even understand the structure of the Appel–Haken proof — for that,
one should probably try:

3) Kenneth Appel and Wolfgang Haken, Every Planar Map is Four Colorable, Con-
temporary Mathematics 98, American Mathematical Society, Providence, Rhode
Island, 1989.

Instead, I’d like to talk about some tantalizing hints of relationships between the 4-color
theorem and physics!
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First, note that to prove the 4-color theorem, it suffices to consider the case where
only three countries meet at any “corner,” since if more meet, say four:

we can stick in a little country at each corner:

so that now only three meet at each corner. If we can color the resulting map, it’s easy
to check that the same coloring with the little countries deleted gives a coloring of the
original map.

Let us talk in the language of graph theory, calling the map a “graph,” the countries
“faces,” their borders “edges,” and the corners “vertices.” What we’ve basically shown
is it suffices to consider trivalent planar graphs without loops — that is, graphs on the
plane that have three edges meeting at any vertex, and never have both ends of the same
edge incident to the same vertex.

Now, it’s easy to see that 4-coloring the faces of such a graph is equivalent to 3-
coloring the edges in such a way that no two edges incident to the same vertex have the
same color. For suppose we have a 4-coloring of faces with colors 1, i, j, and k. Wait —
you say — those don’t look like colors, they look like the quaternions. True! Now color
each edge either i, j, or k according to product of the the colors of the two faces it is
incident to, where we define products by:

1i = i1 = i, 1j = j1 = j, 1k = k1 = k

ij = ji = k, jk = kj = i, ki = ik = j.

These are almost the rules for multiplying quaternions, but with some minus signs miss-
ing. Since today (October 16th, 1993) is the 150th birthday of the quaternions, I suppose
I should remind the reader what the right signs are:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1.

Anyway, I leave it to the reader to check that this trick really gives us a 3-coloring of the
edges, and conversely that a 3-coloring of the edges gives a 4-coloring of the faces.
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So, we see that the edge-coloring formulation of the 4-color problem points to some
relation with the quaternions, or, pretty much the same thing, the group SU(2)! (For
what SU(2) has to do with quaternions, see “Week 5”.) Those wrong signs look distress-
ing, but in the following paper Penrose showed they weren’t really so bad:

4) Roger Penrose, “Applications of negative dimensional tensors”, in Combinatorial
Mathematics and its Applications, ed. D. J. A. Welsh, Academic Press, 1971.

Namely, he showed one could count the number of ways to 3-color the edges of a
planar graph as follows. Consider all ways of labelling the edges with the quaternions
i, j, and k. For each vertex, take the product of the quaternions at the three incident
edges in counterclockwise order and then multiply by i, getting either i or −i. Take the
product of these plus-or-minus-i’s over all vertices of the graph. And THEN sum over all
labellings!

This recipe may sound complicated, but only if you haven’t ever studied statistical
mechanics of lattice systems. It’s exactly the same as how one computes the “partition
function” of such a system — the partition function being the philosopher’s stone of
statistical mechanics, since one can squeeze out so much information from it. (If we
could compute the partition function of water we could derive its melting point.) To
compute a partition one sums over states (labellings of edges) the product of the expo-
nentials of interaction energies (corresponding to vertices). The statistical mechanics of
2-dimensional systems is closely connected to all sorts of nice subjects like knot theory
and quantum groups, so we should suspect already that something interesting is going
on here. It’s especially nice that Penrose’s formula makes sense for arbitrary trivalent
graphs (although it does not count their 3-colorings unless they’re planar), and satisfies
some juicy “skein relations” reminiscent of those satisfied by the quantum group knot in-
variants. Namely, we can recursively calculate Penrose’s number for any trivalent graph
using the following three rules:

1) Wherever you see

you can replace it with

−

In other words, replace the problem of computing Penrose’s number for the original
graph by the problem computing the difference of the Penrose numbers for the two
graphs with the above changes made. For knot theory fans I should emphasize that
we are talking about abstract graphs here, not graphs in 3d space, so there’s no real
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difference between an “overcrossing” and an “undercrossing” — i.e., we could have
said

instead of

above, and it wouldn’t matter.

2) If you do this you will start getting weird loops that have NO vertices on them. You
are allowed to dispose of such a loop if you correct for that by multiplying by 3.
(This is not magic, this is just because there were 3 ways to color that loop!)

3) Finally, when you are down to the empty graph, use the rule that the empty graph
equals 1.

Greg Kuperberg pointed out to me that this is a case of the quantum group knot
invariant called the Yamada polynomal. This is associated to the spin-1 representation
of the quantum group SU(2), and it is a polynomial in a variable q that represents e~,
where ~ is Planck’s constant. But the “Penrose number” is just the value at q = 1 of the
Yamada polynomial — the “classical case” when ~ = 0. This makes perfect sense if one
knows about quantum group knot invariants: the factor of 3 in rule B above comes from
the fact that the spin-1 representation of SU(2) is 3-dimensional; this representation is
really just another way of talking about the vector space spanned by the quaternions i,
j, and k. Also, quantum group knot invariants fail to distinguish between overcrossings
and undercrossings when ~ = 0.

Now let me turn to a different but related issue. Consider the problem of trying to
color the vertices of a graph with n colors in such a way that no two vertices at opposite
ends of any given edge have the same color. Let P (n) denote the number of such n-
colorings. This turns out to be a polynomial in n — it’s not hard to see using recursion
relations similar to the skein relations above. It also turns out that the 4-color theorem
is equivalent to saying that the vertices of any planar graph can be 4-colored. (To see
this, just use the idea of the “dual graph” of a graph — the vertices of the one being in
1-1 correspondence with the edges of the other.) So another way to state the 4-color
theorem is that for no planar graph does the polynomial P (n) have a root at n = 4.

P (n) is called the “chromatic polynomial” and has been intensively investigated. One
very curious thing is this. Remember the golden mean

Φ =

√
5 + 1

2
= 1.61803398874989484820458683437 . . .?

Well, Φ+1 is never a root of the chromatic polynomial of a graph! (Unless the polynomial
vanishes identically, which happens just when the graph has loops.) The proof is not all
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that hard, and it’s in Saaty and Kainen’s book. However — and here’s where things
get really interesting — in 1965, Hall, Siry and Vanderslice figured out the chromatic
polynomial of a truncated icosahedron. (This looks like a soccer ball or buckyball.) They
found that of the four real roots that weren’t integers, one agreed with Φ + 1 up to 8
decimal places! Of course, here one might think the 5-fold symmetry of the situation was
secretly playing a role. But in 1966 Barri tabulated a bunch of chromatic polynomials
in her thesis, and in 1969 Berman and Tutte noticed that most of them had a root that
agreed with Φ + 1 up to at least 5 decimal places.

This curious situation was at least partially explained by Tutte in 1970. He showed
that for a triangular planar graph (that is, one all of whose faces are triangles) with n
vertices one has

|P (Φ + 1)| 6 Φ5−n.

This is apparently not a complete explanation, though, because the truncated icosahedron
is not triangular.

This is not an isolated freak curiosity, either! In 1974 Beraha suggested checking out
the behavior of chromatic polynomials at what are now called the “Beraha numbers”

B(n) = 4 cos2(π/n).

These are
B(1) = 4

B(2) = 0

B(3) = 1

B(4) = 2

B(5) = Φ + 1

B(6) = 3

B(7) = S

etc.. Note by the way that B(n) approaches 4 as n approaches ∞. (What’s S, you ask?
Well, folks call B(7) the “silver root,” a term I find most poetic and eagerly want to
spread!

S = 3.246979603717467061050009768008479621265 . . .

If anyone knows charming properties of the silver root, I’d be interested.) Anyway, it
turns out that the roots of chromatic polynomials seem to cluster near Beraha numbers.
For example, the four nonintegral real roots of the chromatic polynomial of the truncated
icosahedron are awfully close to B(5), B(7), B(8) and B(9). Beraha made the following
conjecture: let Pi be a sequence of chromatic polynomials of graphs such whose number
of vertices approaches ∞ as i → ∞. Suppose ri is a real root of Pi and suppose the ri
approach some number x. Then x is a Beraha number.

In work in the late 60’s and early 70’s, Tutte proved some results showing that there
really was a deep connection between chromatic polynomials and the Beraha numbers.

Well, to make a long story short (I’m getting tired), the Beraha numbers also have a
lot to do with the quantum group SU(2). This actually goes back to some important work
of Jones right before he discovered the first of the quantum group knot polynomials, the
Jones polynomial. He found that – pardon the jargon burst – the Markov trace on the
Temperley–Lieb algebra is only nonnegative when the Markov parameter is the reciprocal
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of a Beraha number or less than 1/4. When the relationship of all this stuff to quantum
groups became clear, people realized that this was due to the special natural of quantum
groups when q is an nth root of unity (this winds up corresponding to the Beraha number
B(n).)

This all leads up to a paper that, unfortunately, I have not yet read, in part because
our library doesn’t get this journal!

5) H. Saleur, “Zeroes of chromatic polynomials: a new approach to the Beraha con-
jecture using quantum groups”, Commun. Math. Phys. 132 (1990) 657.

This apparently gives a “physicist’s proof” of the Beraha conjecture, and makes use
of conformal field theory, that is, quantum field theory in 2 dimensions that is invariant
under conformal transformations.

I should say more: about what quantum groups have to do with conformal field the-
ory and knot polynomials, about the Kauffman/Saleur translation of the 4-color theorem
into a statement about the Temperley–Lieb algebra, etc.. But I won’t! It’s time for dinner.
Next week, if all goes according to plan, I’ll move on to another puzzle in 2-dimensional
topology — the Andrews–Curtis conjecture — and Frank Quinn’s ideas on tackling that
using quantum field theory.
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Week 23

October 24, 1993

I will soon revert to my older style, in which I list piles of new papers as they accumulate
on my desk. This time, though, I want to describe Frank Quinn’s work on the Andrews–
Curtis conjecture using topological quantum field theories (TQFTs), as promised. Then,
if you’ll pardon me, I’ll list the contents of a book I’ve just finished editing. It is such a
relief to be done that I cannot resist.

So —

1) Frank Quinn, “Topological quantum invariants and the Andrews–Curtis conjecture
(Progress report)”, preprint, Sept. 1993.

2) Frank Quinn, “Lectures on axiomatic topological quantum field theory”, to appear
in the proceedings of the Park City Geometry Institute.

3) Wolfgang Metzler, “On the Andrews–Curtis conjecture and related problems”, in
Combinatorial Methods in Topology and Algebraic Geometry, Contemporary Mathe-
matics 44, AMS, 1985.

Last week I described — in a pretty sketchy way — how the 4-color theorem and
the Beraha conjecture are related to TQFTs. These can be regarded as two very hard
problems in 2-dimensional topology — one solved by a mixture of cleverness and ex-
treme brute force, the other still open. There is another hard problem in 2-dimensional
topology called the Andrews–Curtis conjecture, which Quinn is working on using TQFT
methods, which I’ll talk about this time. I don’t know too much about this stuff, so I hope
any experts out there will correct my inevitable mistakes.

Actually, this conjecture is easiest to describe in a purely algebraic way, so I’ll start
there. Hopefully most of you know the concept of a “presentation” of a group in terms
of generators and relations. For example, the group Zn (integers mod n) has the pre-
sentation 〈x | xn〉. This means, roughly, that we form all products of the “generator” x
and its inverse, and then mod out by the “relation” xn = 1. A bit more interesting is the
dihedral group Dn of symmetries of a regular n-gon, counting rotations and reflections,
with presentation 〈x, y | xn, y2, (xy)2〉. Here x corresponds to a clockwise rotation by
(1/n)-th of a turn, and y corresponds to a reflection.

A group always has lots of different presentations, so a natural problem is to decide
whether two different presentations give the same group (or, strictly speaking, isomor-
phic groups). It’d be nice to have an algorithm for deciding this question. But it’s a
famous result of mathematical logic that there is no such algorithm!

If two presentations give the same group, one can get from one to the other by a
sequence of the following easy steps, called Tietze moves:

1) Throw in an extra new generator x together with the extra new relation xg−1

where g is a product of the previous generators and their inverses.

2) The inverse of 1) — remove a generator x together with the relation xg−1, if
possible (the relation xg−1 needs to be there!).
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3) Throw in a new relation that’s a consequence of existing relations.

4) The inverse of 2) — remove a relation that’s a consequence of other relations.

So if one has two presentations and wants to see if they give same group, you could
always set up a program that blindly tries using these Tietze moves in all possible ways
to transform one presentation into the other. If they are the same it’ll eventually catch
on! But if they’re not it’ll chug on forever. There’s no algorithmic way to tell when it
should give up and admit the two presentations give different groups! — which is why
we say there is no “decision procedure” for this problem.

In one form, the Andrews–Curtis conjecture goes as follows. Remember that the
trivial group is the group with just the identity element; it has a presentation 〈x | x〉.
Suppose we have some other “balanced” presentation of the trivial group, that is a pre-
sentation with just as many generators as relations: 〈x1, ..., xn | r1, ..., rn〉. Then the
conjecture is that it can be reduced to the presentation 〈x | x〉 by a sequence of the
following moves that keep the presentation balanced:

1) Throw in an extra new generator x together with the extra new relation x.

2) The inverse of 1).

3) Permute the relations

4) Change r1 to r−11

5) Change r1 to r1r2

6) Change r1 to gr1g−1 for any g.

The experts seem to think this conjecture is probably false — but nobody has dis-
proved it. Metzler lists a few presentations of the trivial group that might be counterex-
amples: nobody has ever found a way to use moves 1)-6) to boil them down to the
presentation 〈x | x〉. For example,

〈a, b | b5a−4, aba(bab)−1〉.

Try it!
The Andrews–Curtis conjecture is interesting mainly for its implications in topology.

When they first stated their conjecture they noted a number of topological consequences,
and the referee of the paper noted one more. For example, it would shed some light
on the Poinaré conjecture (although not settle it) as follows. Recall that the Poinaré
conjecture says every 3-dimensional manifold homotopic to a 3-sphere is homeomorphic
to a 3-sphere. The Andrews–Curtis conjecture implies that if the Poinaré conjecture is
false, any counterexample can in fact be embedded (topologically) in R4!

It was the referee (does anyone know who that was?) who noted that the Andrews–
Curtis conjecture can be formulated in terms of “CW complexes.” This is how Quinn
thinks about it, so I suppose I should say what those are.

A 0-complex is simply a set of points given the discrete topology. We call the points
“0-cells.” To get a 1-complex, we take a set of “1-cells,” that is, closed unit intervals, and
glue their ends on to the 0-cells in any way we want. In other words, we get a graph,
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possibly with some edges having both ends at the same vertex. To get a 2-complex, we
take a set of “2-cells,” that is, 2-dimensional closed disks, and glue their boundaries onto
our 1-complex by any continuous map. And so on, with the “n-cells” being just copies of
the closed unit ball in Rn.

CW complexes were invented by J. H. C. Whitehead in 1949 and are a key tool in
algebraic topology. (The word “CW,” by the way, seems to come from “closure-finite”
and “weak” – as in “weak topology.”) They are a nice class of topological spaces since on
the one hand, being built up by gluing simple pieces together, one can really understand
them, and on the other hand, they are actually quite general. In fact, if one is interested
in the usual invariants studied in algebraic topology (homology and cohomology groups,
homotopy groups and the like), CW complexes are pretty much good enough. More
precisely, Whitehead proved a “CW approximation theorem” saying that any halfway
decent topological space (i.e., any “compactly generated” space) is “weakly homotopy
equivalent” to a CW complex. I won’t burden you with the definitions here; I learned
this stuff once upon a time from

4) George W. Whitehead, Elements of Homotopy Theory, Springer, Berlin, 1978.

Anyway, the Andrews–Curtis conjecture can be thought of as being about 2-complexes.
In fact, a group presentation can be regarded as instructions for building up a 2-complex
— start with a point, glue on 1-cells, one for each generator (obtaining a “bouquet of
circles”) and then glue on 2-cells, one for each relation, attaching their boundaries to the
1-cells in the manner presecribed by the relation. This 2-complex will have fundamen-
tal group equal to the group given by the presentation. The moves 1)-6) above can be
thought of as operations on these 2-complexes. So one can translate the Andrews–Curtis
conjecture into a statement about 2-complexes. And at this point I guess I’m going to
start getting more technical. . .

One topological statement of the Andrews–Curtis conjecture is that “if two 2-complexes
are simply equivalent then one can be 2-deformed to the other.” I don’t understand this
as well as I want, so I won’t explain it; instead, I’ll briefly explain the (weaker?) version
corresponding more closely to the algebraic statement above, namely “if X is a con-
tractible 2-complex, it can be 2-deformed to a point.” Being “contractible” means that
as far as homotopy theory goes X is just like a point. (E.g., the unit disk is contractible,
while the circle is not.) And a “2-deformation” roughly means a sequence of moves con-
sisting of adding or deleting 1-cells or 2-cells in a way that doesn’t affect things as far as
homotopy goes, or doing homotopies of attaching maps of 2-cells. The interesting thing
about these formulations of the Andrews–Curtis conjecture is that their analogs for n > 2
are true and in fact were shown by J. H. C. Whitehead in 1939!

Quinn’s goal is to cook up invariants of 2-complexes that might detect counterexam-
ples to the Andrews–Curtis conjecture, i.e., invariants under 2-deformation. He wants
to do it using 1+1-dimensional TQFTs of a sort that assign vector spaces to 1-complexes
and linear maps to 2-complexes. Traditionally, TQFTs assign vector spaces to n-manifolds
and linear maps to (n+1)-manifolds. Quinn calls his TQFTs “modular” because they have
a lot of formal similarities to the kind of TQFTs that come up in string theory (where the
modular group reigns supreme). He gives a thorough axiomatic description of modular
TQFTs in his lecture notes, and this is actually the most fascinating aspect for me, more
so than the Andrews–Curtis conjecture per se, since it bears on physics.
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The problem with coming up with an TQFT invariant that can catch counterexam-
ples to the Andrews–Curtis conjecture is an interesting “stabilization” property that 2-
complexes have. Namely, if two 2-complexes are simply equivalent, one can can wedge
them both with some large number k of 2-spheres and get complexes which are 2-
deformable to each other. It turns out that this means we want to find a TQFT such
that Z(S2)k = 0. And so Quinn considers TQFTs based, not on the complex numbers,
but on integers mod p.

A TQFT of his sort amounts to finding a symmetric tensor category of vector spaces
and an object A in this category with some special properties corresponding to the fact
that it is the vector space corresponding to the unit interval [0, 1], which is the basic
1-complex from which one can build up more fancy ones. The kind of category he uses
has been described by:

5) Sergei Gelfand and David Kazhdan, “Examples of tensor categories”, Invent. Math.
109 (1992), 595–617.

It is formed by starting with the category of representations of an algebraic group in
characteristic p, and then making a semisimple category out of this in a manner strongly
reminiscent of what they do in the theory of quantum groups at roots of unity. (See
“Week 5” for a bit more about this.) The object A is taken to be the sum of one copy
of each irreducible representation. (Again, this is strikingly reminiscent, and no doubt
based on, what occurs in the physics of the Wess–Zumino–Witten model, where quantum
groups at roots of unity play the role a finite group is playing here.)

So, to round off a long story, Quinn and Ivelini Bobtcheva are currently engaged in
some rather massive computer calculations in order to actually explicitly obtain the data
necessary to calculate in the TQFTs of this form. They have been looking at the groups
SL(2), SL(3), Sp(4) and G2 over Zp, where p is small (up to 19 for the SL(2) case).
They are finding some interesting stuff just by calculating the TQFT invariants of the
2-complexes corresponding to the presentations 〈x | xn〉. (Note that n = 0 gives a space
that’s a wedge of a circle and S2, while n = 1 gives a disk.) Namely, they are finding
periodicity in n.

But they haven’t found any counterexamples to the Andrews–Curtis conjecture yet!

6) Knots and Quantum Gravity, ed. John Baez, Oxford University Press (to appear).

This is the proceedings of a workshop held at U.C. Riverside; a large percentage of
the papers contain new results. Let me simply list them:

• Renate Loll, “The loop formulation of gauge theory and gravity”.

• Abhay Ashtekar and Jerzy Lewandowski, “Representation theory of Analytic Holon-
omy C∗ Algebras”.

• Rodolfo Gambini and Jorge Pullin , “The Gauss linking number in quantum grav-
ity”, available as gr-qc/9310025.

• Louis Kauffman,“Vassiliev invariants and the loop states in quantum gravity”, avail-
able as gr-qc/9310035.
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• Steven Carlip, “Geometric structures and loop variables in (2+1)-dimensional grav-
ity”, available as gr-qc/9309020.

• Dana S. Fine, “From Chern–Simons to WZW via path integrals”.

• Louis Crane, “Topological field theory as the key to quantum gravity”, available as
hep-th/9308126.

• John Baez, “Strings, loops, knots and gauge fields”, available as hep-th/9309067.

• Paolo Cotta-Ramusino and Maurizio Martellini, “BF theories and 2-knots”.

• J. Scott Carter and Masahico Saito, “Knotted surfaces, braid movies, and beyond”.
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Week 24

October 31, 1993

I will now revert to topics more directly connected to physics and start catching up on
the papers that have been accumulating. First, two very nice review papers:

1) Chris Isham, “Prima facie questions in quantum gravity”, lecture at Bad Honeff,
September 1993, available as gr-qc/9310031.

If one wants to know why people make such a fuss about quantum gravity, one could
not do better than to start here. There are many approaches to the project of reconciling
quantum mechanics with gravity, all of them rather technical, but here Isham focuses on
the “prima facie” questions that present themselves no matter what approach one uses.
He even explains why we should study quantum gravity — a nontrivial question, given
how difficult it has been and how little practical payoff there has been so far! Let me
quote his answers and urge you to read the rest of this paper:

We must say something. The value of the Planck length suggests that quantum
gravity should be quite irrelevant to, for example, atomic physics. However, the
non-renormalisability of the perturbative theory means it is impossible to actu-
ally compute these corrections, even if physical intuition suggests they will be
minute. Furthermore, no consistent theory is known in which the gravitational
field is left completely classical. Hence we are obliged to say something about
quantum gravity, even if the final results will be negligible in all normal physical
domains.

Gravitational singularities. The classical theory of general relativity is noto-
rious for the existence of unavoidable spacetime singularities. It has long been
suggested that a quantum theory of gravity might cure this disease by some sort
of ‘quantum smearing’.

Quantum cosmology. A particularly interesting singularity is that at the be-
ginning of a cosmological model described by, say, a Robertson–Walker metric.
Classical physics breaks down here, but one of the aims of quantum gravity has
always been to describe the ‘origin’ of the universe as some type of quantum
event.

The end state of the Hawking radiation process. One of the most striking re-
sults involving general relativity and quantum theory is undoubtedly Hawking’s
famous discovery of the quantum thermal radiation produced by a black hole.
Very little is known of the final fate of such a system, and this is often taken to
be another task for a quantum theory of gravity.

The unification of fundamental forces. The weak and electromagnetic forces
are neatly unified in the Salam–Weinberg model, and there has also been a
partial unification with the strong force. It is an attractive idea that a consistent
quantum theory of gravity must include a unification of all the fundamental
forces.
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The possibility of a radical change in basic physics. The deep incompati-
bilities between the basic structures of general relativity and of quantum theory
have lead many people to feel that the construction of a consistent theory of
quantum gravity requires a profound revision of the most fundamental ideas of
modern physics. The hope of securing such a paradigm shift has always been a
major reason for studying the subject.

2) Matthias Blau and George Thompson, “Lectures on 2d gauge theories: topological
aspects and path integral techniques”, available as hep-th/9310144.

Most of the basic laws of physics appear to be gauge theories. Gauge theories are
tricky to deal with because they are inherently nonlinear. (At least the “nonabelian” ones
are — the main example of an abelian gauge theory is Maxwell’s equations.) People have
been working hard for quite some time trying to develop tools to study gauge theories
on their own terms, and one reason for the interest in gauge theories in 2-dimensional
spacetime is that life is simple enough in this case to exactly solve the theories and see
precisely what’s going on. Another reason is that in string theory one becomes interested
in gauge fields living on the 2-dimesional “string worldsheet.”

This paper is a thorough review of two kinds of gauge theories in 2 dimensions: topo-
logical Yang–Mills theory (also called BF theory) and the G/G gauged Wess–Zumino–
Witten model. Both of these are of great mathematical interest in addition to their phys-
ical relevance. Studying the BF theory gives a way to do integrals on the moduli space
of flat connections on a bundle over a Riemann surface, while studying the G/G model
amounts to a geometric construction of the categories of representations of quantum
groups at roots of unity. (Take my word for it, mathematicians find these important!)

I have found this review a bit rough going so far because the authors like to use
supersymmetry to study these models. But I will continue digging in, since the authors
consider the following topics (and I quote): solution of Yang–Mills theory on arbitrary
surfaces; calculation of intersection numbers of moduli spaces of flat connections; cou-
pling of Yang–Mills theory to coadjoint orbits and intersection numbers of moduli spaces
of parabolic bundles; derivation of the Verlinde formula from the G/G model; derivation
of the shift k to k + h in the G/G model via the index of the twisted Dolbeault complex.

3) J. W. Barrett and T. J. Foxon, “Semi-classical limits of simplicial quantum gravity”,
available as gr-qc/9310016.

This paper looks at quantum gravity in 3 spacetime dimesions formulated along the
lines of Ponzano and Regge, that is, with the spacetime manifold replaced by a bunch
of tetrahedra (a “simplicial complex”). I describe some work along these lines in “Week
16”. Here the Feynman path integral is replaced by a discrete sum over states, in which
the edges of the tetrahedra are assigned integer or half-integer lengths, which really
correspond to “spins,” and the formula for the action is given in terms of 6j-symbols.
The authors look for stationary points of this action and find that some correspond to
Riemannian metrics and some correspond to Lorentzian metrics. This is strongly remi-
niscent of Hartle and Hawking’s work on quantum cosmology,

4) J. B. Hartle and S. W. Hawking, “Wave function of the universe”, Phys. Rev. D28
(1983), 2960.
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in which there is both a Euclidean and a Lorentzian regime (providing a most fascinating
answer to the old question, “what came before the Big Bang?”). Here, however, the path
integral is oscillatory in the Euclidean regime and exponential in the Lorentzian one —
the opposite of what Hartle and Hawking had. This puzzles me.

5) John Baez, “Generalized measures in gauge theory”, available as hep-th/9310201.

Path integrals in gauge theory typically invoke the concept of Lebesgue measure on
the space of connections. This is roughly an infinite-dimensional vector space, and there
is no “Lebesgue measure” on an infinite-dimensional vector space. So what is going on?
Physicists are able to do calculations using this concept and get useful answers — mixed
in with infinities that have to be carefully “renormalized.” Some of the infinities here
are supposedly due to the fact that one should really be working no on the space of
connections, but on a quotient space, the connections modulo gauge transformations.
But not all the infinities are removed this way, and mathematically the whole situation
is enormously mysterious.

Recently Ashtekar, Isham, Lewandowski and myself have been looking at a way to
generalize the concept of measure, suggested by earlier work on the “loop representa-
tion” of gauge theories. Ashtekar and Lewandowski managed to rigorously construct
a kind of “generalized measure” on the space of connections modulo gauge transfor-
mations that acts formally quite a bit like what might hope for. In this paper I show
how can define generalized measures directly on the space of connections. All of these
project down to generalized measures on the space of connections modulo gauge trans-
formations, but even when one is interested in gauge-invariant quantities, it is some-
times easier to work “upstairs.” In particular, when the gauge group is compact, there
is a “uniform” generalized measure on the space of connections that projects down to
the measure constructed by Ashtekar and Lewandowski. This generalized measure is
in some respects a rigorous substitute for the ill-defined “Lebesgue measure,” but it is
actually built using Haar measure on G. I also define generalized measures on the group
of gauge transformations (which is an infinite-dimensional group), and when G is com-
pact I construct a natural example that is a rigorous substitute for Haar measure on the
group of gauge transformations . As an application of this “generalized Haar measure” I
show that any generalized measure on the space of connections can be averaged against
generalized Haar measure to give a gauge-invariant generalized measure on the space
of connections.

This doesn’t, by the way, mean the problems I mentioned at the beginning are solved!
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Week 25

November 14, 1993

Lately, many things give me the feeling that we’re on the brink of some deeper under-
standing of the relations between geometry, topology, and category theory. It is very
tantalizing to see the array of clues pointing towards the fact that many seemingly dis-
parate mathematical phenomena are aspects of some underlying patterns that we don’t
really understand yet. Louis Crane expressed it well when he said that it’s as if we are a
bunch of archeologists digging away at different sites, and are all starting to find differ-
ent parts of the skeleton of some gigantic prehistoric creature, the full extent of which is
still unclear.

I want to keep studying the following book until I understand it, because I think it
makes a lot of important connections. . . pardon the pun:

1) Jean-Luc Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization,
Birkhäuser, Basel, 1993.

The title of this book, while accurate, really does not convey the novelty of the ideas it
contains. All three subjects listed have been intensively studied by many people for at
least several decades, but Brylinski’s book is not so much a summary of what is under-
stood about these subjects, as a plan to raise the subjects to a whole new level.

I can’t really describe the full contents of the book, since I haven’t had time to really
absorb some of the most interesting parts, but let me start by listing the contents, and
then talk about it a bit.

1. Complexes of Sheaves and Their Hypercohomology

2. Line Bundles and Geometric Quantization

3. Kähler Geometry of the Space of Knots

4. Degree 3 Cohomology — The Dixmier-Douady Theory

5. Degree 3 Cohomology — Sheaves of Groupoids

6. Line Bundles over Loop Spaces

7. The Dirac Monopole

It should be clear that while this is a very mathematical book, it is informed by ideas
from physics. As usual, the physical universe is serving to goad mathematics to new
heights!

The first two chapters are largely, but not entirely, “standard” material. I put the word
in quotes because while Brylinski’s treatment of it starts with the basics — the definition
of sheaves, sheaf cohomology, Čech cohomology, de Rham theory and the like — even
these “basics” are rather demanding, and the slope of the ascent is rather steep. Really,
the reader should already be fairly familiar with these ideas, since Brylinski is mainly
introducing them in order to describe a remarkable generalization of them in the next
chapters.
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Let me quickly give a thumbnail sketch of the essential ideas behind this “standard”
material. In classical mechanics the main stage is the phase space of a physical system.
Points in this space represent physical states; smooth functions on it represent observ-
ables. Time evolution acts on this space as a one-parameter group of diffeomorphisms.
The remarkable fact is that time evolution is determined by an observable, the Hamil-
tonian, or energy function, by means of a geometric structure on phase space called a
symplectic structure. This is a nondegenerate closed 2-form. The idea is that the dif-
ferential of the Hamiltonian is a 1-form; since the symplectic structure is nondegenerate
it sets up an isomorphism of the tangent and cotangent bundles of phase space, allow-
ing us to turn the differential of the Hamiltonian into a vector field; this vector field
generates the 1-parameter group of diffeomorphisms representing time evolution; and
by the magic of symplectic geometry, these diffeomorphisms automatically preserve the
symplectic structure.

This is the starting-point of the beautiful approach to quantum theory known as
geometric quantization, founded by Kostant in the early 1970’s. His first paper is still a
good place to start:

2) Bertram Kostant, “Quantization and unitary representations”, in Lectures in Modern
Analysis and Applications III, Springer Lecture Notes in Mathematics 170 (1970),
87–208.

Here the idea is to construct a Hilbert space of states of the quantum system corre-
sponding to the classical system, and turn time evolution into a one-parameter group of
unitary operators on this Hilbert space. Extremely roughly, the idea is to first look at the
space of all L2 complex functions on phase space, and then use a “polarization” to cut
down this “prequantum” Hilbert space to “half the size,” by which one means something
vaguely like how L2(Rn) is “half the size” of L2(R2n) — this being the classic example.
But in fact, it turns out one doesn’t really want to use functions on phase space, but in-
stead sections of a certain complex line bundle. The point is that the classification of line
bundles fits in beautifully with symplectic geometry. We can equip any line bundle with
a hermitian connection; the curvature of this connection is a closed 2-form; this deter-
mines an element of the 2nd cohomology of phase space called the first Chern class. An
important theorem says this class is necessarily an integral class, that is, it comes from an
element of the 2nd cohomology with integer coefficients; moreover, isomorphism classes
of line bundles over a manifold are in one-to-one correspondence with elements of its
2nd cohomology with integer coefficients. The trick, then, is to try to cook up a line
bundle over phase space with a connection whose curvature is the symplectic structure!
This will be possible precisely when the symplectic structure defines an integral coho-
mology class. In fact, this integrality condition is nothing but the old Bohr-Sommerfeld
quantization condition dressed up in spiffy new clothes (and made far more precise).

So: the moral I want to convey here is just that if the symplectic structure on phase
space defines an integral class in the 2nd cohomology group, then we get a line bundle
over phase space which helps us get going with quantization. It then turns out that the
one-parameter group of diffeomorphisms defined by any Hamiltonian on phase space
lifts to a one-parameter group of transformations of this line bundle, which allows us to
get a unitary operator on the space of L2 sections of the line bundle. This is not the end
of the quantization story; one still needs to chop down this “prequantum” space to half
the size, etc.; but let me leave off here.
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What Brylinski wants to do is to find analogs of all these phenomena involving the
third cohomology groups of manifolds.

At first glance, this might seem to be a very artificial desire. Note that importance
of the second cohomology group in the above story is twofold: 1) symplectic structures
give elements of the second cohomology, 2) the curvature of a connection gives an ele-
ment of the second cohomology, and in fact 2’) line bundles are classified by elements
of second cohomology. None of these beautiful things seem to have analogs in third
cohomology! Of course, one can use the curvature of a connection to get, not just the
first Chern class, but higher Chern classes. But the nth Chern class is an element of the
2nth cohomology group, so the odd cohomology groups don’t play a major role here.
Of course, experts will immediately reply that there are also Chern–Simons “secondary
characteristic classes” that live in odd cohomology, at least when one has a flat bundle
around. And the same experts will immediately guess that, because Chern–Simons the-
ory has been near the epicenter of the explosion of new mathematics relating quantum
groups, topological quantum field theories, conformal field theory and all that stuff, I
must be leading up to something along these lines. . . . Well, there must be a relationship
here, but actually it is not emphasized in Brylinski’s book! He takes a different tack, as
follows.

The basic point is that given a manifold M , the space of loops in M , say LM , is
a space of great interest in its own right. It is infinite- dimensional, but that should
not deter us. When G is a Lie group, LG is also a group (with pointwise operations);
these are the famous loop groups, which appear as groups of gauge transformations
in conformal field theory. When M is a 3-dimensional manifold, LM contains within
it the space of all knots in M ; also, we may think of LM as the configuration space
for the simplest flavor of string theory in the spacetime R × M . Loops also serve to
define observables called “Wilson loops” in gauge theories, and these are the basis of the
loop representation of quantum gravity. So there is a lot of interesting mathematics and
physics to be found in the loop space.

What does this have to do with the 3rd cohomology group of M? Well, LM is a
bundle over M , so according to algebraic topology there is a natural map from the 3rd
cohomology of M to the 2nd cohomology of LM ! The ramifications of this are multiple.

First, every compact simple Lie group G has 3rd cohomology equal to Z. (In fact,
Brylinski notes that the cohomology group is not merely isomorphic to Z, but canoni-
cally so — and this extra nuance turns out to be quite significant!) This gives rise to a
special element in the 2nd cohomology of LG. This then gives a line bundle over LG.
Alternatively, it gives a circle bundle over LG, in fact a central extension of LG, that is,
a bigger group L̂G and an exact sequence

1→ S1 → L̂G→ LG→ 1

This group is called a Kac–Moody group, and these are well-loved by string theorists
since it turns out that when one wants to quantize a gauge theory on the string world-
sheet (a kind of conformal field theory) one gets, not a representation of the gauge group
LG on the Hilbert space of quantum states, but merely a projective representation, or in
other words, a representation of the central extension L̂G. Brylinski also notes that in
some sense the canonical element in the 3rd cohomology of G is responsible for the ex-
istence of quantum groups; this is probably the deep reason for the association between
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quantum group representations and Kac–Moody group representations, but, alas, this is
still quite murky to me.

Second, we can do better if we restrict ourself to knots (possibly with nice self-
intersections) rather than loops. Namely, given a 3-manifold M equipped with a 3-form,
one gets, not just an element of the 2nd cohomology of LM , but a symplectic structure
on the space of knots in M , say KM . It may seem odd to think of the space of knots
as a physical phase space, but Brylinski shows that this idea is related to the work of
Marsden and Weinstein on “vortex filaments,” an idealization of fluid dynamics in which
all the fluid motion is concentrated along some curves. Brylinski also notes that if M is
equipped with a Riemannian structure then KM inherits a Riemannian structure (this
is easy), and that if M has a conformal structure KM has an almost complex structure.
In fact, in the Riemannian case all these structures on KM fit together to make it a sort
of Kähler manifold (although one must be careful, since the almost complex structure
is only integrable in a certain formal sense). Brylinski hints that all this geometry may
give a nice approach to the study of knot invariants; I will have to look at the following
papers sometime:

3) M. Rasetti and T. Regge,“Vortices in He II, current algebras and quantum knots”,
Physica 80A (1975) 217–233.

4) V. Penna and M. Spera, “A geometric approach to quantum vortices”, J. Math. Phys.
30 (1989), 2778–2784.

However, Brylinski’s real goal is something much more radical! The beauty of 2nd
cohomology is that integer classes in the 2nd cohomology of M correspond to line bun-
dles on M ; there is, in other words, a very nice geometrical picture of 2nd cohomology
classes. What is the natural analog for 3rd cohomology? Instead of just working with
LM , it would be nice to have some sort of geometrical objects on M that correspond to
integer classes in 3rd cohomology. What should they be?

Brylinski gives two answers, one in Chapter 4 and another in Chapter 5. The first
one, due mainly to Dixmier and Douady, is very appealing for a quantum field theorist
such as myself. Just as elements of H2(M,Z) correspond to line bundles over M , ele-
ments of H3(M,Z) correspond to projective Hilbert space bundles over M ! Recall that
in physics two vectors in a Hilbert space correspond to the same physical state if one is a
scalar multiple of the other; the space of equivalence classes (starting with a countable-
dimensional Hilbert space) is what I’m calling “projective Hilbert space,” and it is bundles
of such rascals that correspond to elements of H3(M,Z). The reason is roughly this: the
structure group G for such bundles is the group Aut(H)/C∗, that is, invertible operators
on the Hilbert space H, modulo invertible complex numbers. In other words, we have
an exact sequence

1→ C∗ → Aut(H)→ G→ 1

This gives an exact sequence of sheaves on M , which, combined with the marvelous fact
that Aut(H) is contractible, gives an isomorphism between H1(M, sh(G)) (the cohomol-
ogy of the sheaf of smooth G-valued functions on M) and H2(M, sh(C∗)). But the latter
is isomorphic to H3(M,Z).

Brylinski pushes the analogy to the line bundle case further by showing how to realize
the element of H3(M,Z) starting from a connection on a projective Hilbert space bundle.
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But in Chapter 5 he takes a more abstract approach that I want to sketch very vaguely,
since I don’t understand it very well yet. This approach is exciting because it connects to
recent work on 2-categories (and higher n-categories), which I am convinced will play a
role in unifying the wild profusion of mathematics we are seeing in this tail end of the
twentieth century.

Here the best way to see the analogy to the line bundle case is through Čech coho-
mology. Recall that we can patch a line bundle together by covering our manifold M
with charts O(i) and assigning to each intersection O(i)∩O(j) a C∗-valued function gij .
These “transition functions” must satisfy the compatibility condition

gijgjkgki = 1

We say then that the functions gij define a 1-cocycle in Čech cohomology — think of this
as just jargon, if you like. Note that we will get an isomorphic line bundle if we take
some C∗-valued functions fi, one on each chart O(i), and multiply gij by fif−1j . This
simply amounts to changing the trivialization of the bundle on each chart. We say that
the new Čech cocycle differs by a coboundary. So line bundles are in 1-1 correspondence
with the 1st Čech cohomology with values in sh(C∗). This turns out to be the same thing
as H2(M,Z), as noted above.

Now, there is a marvelous thing called a gerbe, which is like a bundle, but is pieced
together using Čech 2-cocyles! These will be classified by the 2nd Čech cohomology with
values in sh(C∗), which is nothing but H3(M,Z).

What are these gerbes? Well, I wish I really understood them. Let me just say what
I know. The basic idea is to boost everything up a notch using category-theoretic think-
ing. When we were getting ready to define bundles, we needed to have the concept
of a group at our disposal (to have a structure group.) For gerbes, we need something
called a category of torsors. What is a group? Well, it is a set equipped with various
maps satisfying various properties. What is a category of torsors? Well, it is a category
equipped with various functors satisfying utterly analogous properties. Note how we are
“categorifying” here. We have more structure, since while a set is just a bunch of naked
points, a category is a bunch of points, namely objects, which are connected by arrows,
namely morphisms. Given the group C∗ we can get a corresponding category of torsors
as follows: the category of all manifolds with a simply transitive C∗-action (which are
called torsors). A nice account of why this category looks so much like a group appears
in

5) Dan Freed, “Higher algebraic structures and quantization”, preprint, available as
hep-th/9212115.

which I already mentioned in “Week 12”.
Just as a group can act on a set, a category of torsors can act on a category. If we

“sheafify” this notion, we get the concept of a gerbe. Clear? Well, part of why I am
interested in these ideas is the way they make me a bit dizzy, so don’t feel bad if you are
a bit dizzy too now. I really think that overcoming this dizziness will be necessary for
certain advances in mathematics and physics, though.

Instead of actually coming clean and defining the concept of a gerbe, let me finish
by saying what Brylinski does next. He defines an analog of connections on bundles,
called “connective structures” on gerbes. And he defines an analog of the curvature, the
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“curving” of a connective structure. This turns out to give an element of H3(M,Z) in a
natural way. He concludes in a blaze of glory by showing how the Dirac monopole gives
a gerbe on S3 whose curving is the volume form. The integrality condition turns out to
be related to Dirac’s original argument for quantization of electric charge. Whew!

To wrap up, let me note that the following paper, mentioned in “Week 23”, has shown
up on gr-qc:

6) Abhay Ashtekar and Jerzy Lewandowski, “Representation theory of analytic holon-
omy C∗ Algebras”, in Knots and Quantum Gravity, ed. J. Baez, available as gr-qc/
9311010.

Ashtekar and Lewandowski are my friendly competitors in the business of making the
loop representation of quantum gravity more rigorous by formalizing the idea of a gen-
eralized measure on the space of connections modulo gauge transformations.
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Week 26

November 21, 1993

I have been struggling to learn the rudiments of Teichmüller theory, and it’s almost time
for me to face up to my ignorance of it by posting a “This Week’s Finds” attempting to
explain the stuff, but I am going to put off the inevitable and instead describe a variety
of papers on different subjects. . .

1) Huw Price, “Cosmology, time’s arrow, and that old double standard”, in S. Savitt,
ed., Time’s Arrows Today, Cambridge University Press, 1994, pp. 66–94. Available
as gr-qc/9310022.

Why is the future different from the past? Because it hasn’t happened yet? Well, sure,
but that’s not especially enlightening, in fact, it’s downright circular. Unfortunately, a lot
of work on the “arrow of time” is just as circular, only so erudite that it is hard to spot
it! That’s what this article takes some pains to clarify. I think I will be lazy and quote the
beginning of the paper:

A century or so ago, Ludwig Boltzmann and others attempted to explain the tem-
poral asymmetry of the second law of thermodynamics. The hard-won lesson of
that endeavour — a lesson still commonly misunderstood — was that the real
puzzle of thermodynamics lies not in the question why entropy increases with
time, but in that as to why it was ever so low in the first place. To the extent that
Boltzmann himself appreciated that this was the real issue, the best suggestion
he had to offer was that the world as we know it is simply a product of a chance
fluctuation into a state of very low entropy. (His statistical treatment of ther-
modynamics implied that although such states are extremely improbable, they
are bound to occur occasionally, if the universe lasts a sufficiently long time.)
This is a rather desperate solution to the problem of temporal asymmetry, how-
ever, and one of the great achievements of modern cosmology has been to offer
us an alternative. It now appears that temporal asymmetry is cosmological in
origin, a consequence of the fact that entropy is much lower than its theoretical
maximum in the region of the Big Bang — i.e., in what we regard as the early
stages of the universe.

The task of explaining temporal asymmetry thus becomes the task of explain-
ing this condition of the early universe. In this paper I want to discuss some
philosophical constraints on the search for such an explanation. In particular,
I want to show that cosmologists who discuss these issues often make mistakes
which are strikingly reminiscent of those which plagued the nineteenth century
discussions of the statistical foundations of thermodynamics. The most common
mistake is to fail to recognise that certain crucial arguments are blind to tem-
poral direction, so that any conclusion they yield with respect to one temporal
direction must apply with equal force with respect to the other. Thus writers on
thermodynamics often failed to notice that the statistical arguments concerned
are inherently insensitive to temporal direction, and hence unable to account for
temporal asymmetry. And writers who did notice this mistake commonly fell for
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another: recognising the need to justify the double standard — the application
of the arguments in question ‘towards the future’ but not ‘towards the past’ —
they appealed to additional premisses, without noticing that in order to do the
job, these additions must effectively embody the very temporal asymmetry which
was problematic in the first place. To assume the uncorrelated nature of initial
particle motions (or incoming ‘external influences’), for example, is simply to
move the problem from one place to another. (It may look less mysterious as a
result, but this is no real indication of progress. The fundamental lesson of these
endeavours is that much of what needs to be explained about temporal asymme-
try is so commonplace as to go almost unnoticed. In this area more than most,
folk intuition is a very poor guide to explanatory priority.)

One of the main tasks of this paper is to show that mistakes of these kinds are
widespread in modern cosmology, even in the work of some of the contemporary
physicists who have been most concerned with the problem of the cosmological
basis of temporal asymmetry — in the course of the paper we shall encounter
illicit applications of a temporal double standard by Paul Davies, Stephen Hawk-
ing and Roger Penrose, among others. Interdisciplinary point- scoring is not the
primary aim, of course: by drawing attention to these mistakes I hope to clar-
ify the issue as to what would count as adequate cosmological explanation of
temporal asymmetry.

I want to pay particular attention to the question as to whether it is possible to
explain why entropy is low near the Big Bang without thereby demonstrating
that it must be low near a Big Crunch, in the event that the universe recollapses.
The suggestion that entropy might be low at both ends of the universe was made
by Thomas Gold in the early 1960s. With a few notable exceptions, cosmologists
do not appear to have taken Gold’s hypothesis very seriously. Most appear to
believe that it leads to absurdities or inconsistencies of some kind. However, I
want to show that cosmologists interested in time asymmetry continue to fail
to appreciate how little scope there is for an explanation of the low entropy Big
Bang which does not commit us to the Gold universe. I also want criticise some
of the objections that are raised to the Gold view, for these too often depend on
a temporal double standard. And I want to discuss, briefly and rather specula-
tively, some issues that arise if we take the view seriously. (Could we observe a
time-reversing future, for example?)

And now let me jump forward to a very interesting issue, Hawking’s attempt to derive
the arrow of time from his “no-boundary boundary conditions” choice of the wavefunc-
tion of the universe. (See “Week 3”.) I found this rather unsatisfying when I read it, and
had a sneaking suspicion that he was falling into the fallacy Gold describes above. Let’s
hear what Price has to say about it.

Our second example is better known, having been described in Stephen Hawk-
ing’s best seller, A Brief History of Time. It is Hawking’s proposal to account
for temporal asymmetry in terms of what he calls the No Boundary Condition
(NBC) — a proposal concerning the quantum wave function of the universe.
To see what is puzzling about Hawking’s claim, let us keep in mind the basic
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dilemma. It seemed that provided we avoid double standard fallacies, any argu-
ment for the smoothness of the universe would apply at both ends or at neither.
So our choices seemed to be to accept the globally symmetric Gold universe, or to
resign ourselves to the fact that temporal asymmetry is not explicable (without
additional assumptions or boundary conditions) by a time-symmetric physics.
The dilemma is particularly acute for Hawking, because he has a more reason
than most to avoid resorting to additional boundary conditions. They conflict
with the spirit of his NBC, namely that one restrict possible histories for the
universe to those that ‘are finite in extent but have no boundaries, edges, or
singularities.’

Hawking tells us how initially he thought that this proposal favoured the former
horn of the above dilemma: ‘I thought at first that the no boundary condition
did indeed imply that disorder would decrease in the contracting phase.’ He
changed his mind, however, in response to objections from two colleagues: ‘I
realized that I had made a mistake: the no boundary condition implied that
disorder would in fact continue to increase during the contraction. The thermo-
dynamic and psychological arrows of time would not reverse when the universe
begins to contract or inside black holes.’

This change of mind enables Hawking to avoid the apparent difficulties associ-
ated with reversing the thermodynamic arrow of time. What is not clear is how
he avoids the alternative difficulties associated with not reversing the thermo-
dynamic arrow of time. That is, Hawking does not explain how his proposal
can imply that entropy is low near the Big Bang, without equally implying that
it is low near the Big Crunch. The problem is to get a temporally asymmetric
consequence from a symmetric physical theory. Hawking suggests that he has
done it, but doesn’t explain how. Readers are entitled to feel a little dissatisfied.
As it stands, Hawking’s account reads a bit like a suicide verdict on a man who
has been stabbed in the back: not an impossible feat, perhaps, but we’d like to
know how it was done!

It seems to me that there are three possible resolutions of this mystery. The first,
obviously, is that Hawking has found a way round the difficulty. The easiest
way to get an idea of what he would have to have established is to think of
three classes of possible universes: those which are smooth and ordered at both
temporal extremities, those which are ordered at one extremity but disordered
at the other, and those which are disordered at both extremities. If Hawking
is right, then he has found a way to exclude the last class, without thereby
excluding the second class. In other words, he has found a way to exclude
disorder at one temporal extremity of the universe, without excluding disorder
at both extremities. Why is this combination the important one? Because if
we can’t exclude universes with disorder at both extremities, then we haven’t
explained why our universe doesn’t have disorder at both extremities — we
know that it has order at least one temporal extremity, namely the extremity
we think of as at the beginning of time. And if we do exclude disorder at both
extremities, we are back to the answer that Hawking gave up, namely that order
will increase when the universe contracts.

Has Hawking shown that the second class of universal histories, the order-
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disorder universes, are overwhelmingly probable? It is important to appreciate
that this would not be incompatible with the underlying temporal symmetry of
the physical theories concerned. A symmetric physical theory might be such that
all or most of its possible realisations were asymmetric. Thus Hawking might
have succeeded in showing that the NBC implies that any (or almost any) pos-
sible history for the universe is of this globally asymmetric kind. If so, however,
then he hasn’t yet explained to his lay readers how he managed it. In a moment
I’ll describe my attempts to find a solution in Hawking’s technical papers. What
seems clear is that it can’t be done by reflecting on the consequences of the NBC
for the state of one temporal extremity of the universe, considered in isolation.
For if that worked for the ‘initial’ state it would also work for the ‘final’ state;
unless of course the argument had illicitly assumed an objective distinction be-
tween initial state and final state, and hence applied some constraint to the
former that it didn’t apply to the latter. What Hawking needs is a more general
argument, to the effect that disorder-disorder universes are impossible (or at
least overwhelmingly improbable). It needs to be shown that almost all possible
universes have at at least one ordered temporal extremity — or equivalently, at
most one disordered extremity. (As Hawking points out, it will then be quite
legitimate to invoke a weak anthropic argument to explain why we regard the
ordered extremity thus guaranteed as an initial extremity. In virtue of its conse-
quences for temporal asymmetry elsewhere in the universe, conscious observers
are bound to regard this state of order as lying in their past.)

That’s the first possibility: Hawking has such an argument, but hasn’t told us
what it is (probably because he doesn’t see why it is so important). As I see it,
the other possibilities are that Hawking has made one of two mistakes (neither
of them the mistake he claims to have made). Either his NBC does exclude
disorder at both temporal extremities of the universe, in which case his mistake
was to change his mind about contraction leading to decreasing entropy; or the
proposal doesn’t exclude disorder at either temporal extremity of the universe,
in which case his mistake is to think that the NBC accounts for the low entropy
Big Bang.

And, eventually, Price concludes that there is indeed something lacking in Hawking’s
attempts to derive an arrow of time.

I have said this many times here and there, but I’ll say it again. For a good introduc-
tion to these issues, read:

2) H. D. Zeh, The Physical Basis of the Direction of Time, Second Edition, Springer,
Berlin, 1992.

Zeh is one of the most clear-headed writers I know on this vexing problem. Interestingly,
Price acknowledges Zeh in his paper.

3) Renate Loll, “Chromodynamics and gravity as theories on loop space”, available as
hep-th/9309056.

This is an especially thorough review of work on the loop representation of gauge
theories, especially the theories of the strong force and gravity. A lot of work has been
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done on this subject but there are still very many basic mathematical problems when
it comes to making any of this work rigorous, and one nice thing about Loll’s work is
that she is just as eager to point out the problems as the accomplishments. It can be
dangerous when people become complacent and simply shrug off various problems just
because they are difficult and can be temporarily ignored.

4) Daniel Armand-Ugon, Rodolfo Gambini and Pablo Mora, “Intersecting braids and
intersecting knot theory”, available as hep-th/9309136.

There are a lot of hints that classical knot theory, which only considers a circle smoothly
embedded in space, is only the tip of a very interesting iceberg. Namely, if one looks at
the space of all loops, this has the knots as an open dense subset, but then it has loops
with a single “transverse double point” like

as a codimension 1 subset (like a hypersurface in the space of all loops), and more
fancy singularities appear as still smaller subsets, or as the jargon has it, strata of higher
codimension. The recent flurry of work on Vassiliev invariants points out the importance
of these other strata — or at least a few — to knot theory. Namely, knot invariants
that extend nicely to knots with arbitrarily many transverse double points include the
famous quantum group knot invariants like the Jones polynomial, and there is a close
relationship between these “Vassiliev invariants” and Lie algebra theory.

Meanwhile, the physicists have been forging ahead into more complicated strata,
motivated mainly by the loop representation of quantum gravity. Gambini is one of the
originators of the loop representation of gauge theory, so it is not surprising that he is
ahead of the game on this business. Together with Pullin and Bruegmann he has been
working on extending the Jones polynomial, for example, to loops with various sorts of
self-intersections, calculating these extensions directly from the path-integral formula for
the Jones polynomial as a Wilson loop expectation value in Chern–Simons theory. The
relationship of this extension to the theory of Vassiliev invariants was recently clarified
by Kauffman (see “Week 23”), but there is much more to do. Here Gambini and collab-
orators look at loops with transverse triple points. I guess I’ll just quote the abstract:

An extension of the Artin Braid Group with new operators that generate double
and triple intersections is considered. The extended Alexander theorem, relating
intersecting closed braids and intersecting knots is proved for double and triple
intersections, and a counter example is given for the case of quadruple inter-
sections. Intersecting knot invariants are constructed via Markov traces defined
on intersecting braid algebra representations, and the extended Turaev repre-
sentation is discussed as an example. Possible applications of the formalism to
quantum gravity are discussed.

136

https://arxiv.org/abs/hep-th/9309136


WEEK 27 DECEMBER 16, 1993

Week 27

December 16, 1993

This week I would like to describe some of the essays from the following volume:

1) Conceptual Problems of Quantum Gravity, eds. Abhay Ashtekar and John Stachel,
based on the proceedings of the 1988 Osgood Hill Conference, 15–19 May 1988,
Birkhäuser, Basel, 1991.

As the title indicates, this conference concentrated not on technical, mathematical as-
pects of quantum gravity but on issues with a more philosophical flavor. The proceed-
ings make it clear how many problems we still have in understanding how to fit quantum
theory and gravity together. Indeed, the book might be a bit depressing to those who
thought we were close to the “theory of everything” which some optimists once assured
us would be ready by the end of the millenium. But to those like myself who enjoy the
fact that there is so much left to understand about the universe, this volume should be
exciting (if perhaps a bit daunting).

The talks have been divided into a number of groups:

• Quantum mechanics, measurement, and the universe

• The issue of time in quantum gravity

• Strings and gravity

• Approaches to the quantization of gravity

• Role of topology and black holes in quantum gravity

Let me describe a few of the talks, or at least their background, in some detail rather
than remaining general and vague.

2) Wojciech H. Zurek, “Quantum measurements and the environment-induced transi-
tion from quantum to classical”, the volume above.

W. G. Unruh, “Loss of quantum coherence for a damped oscillator”, the volume
above.

These talks by Zurek and Unruh fit into what one might call the “post-Everett school”
of research on the foundations of quantum theory. To understand what Everett did, and
what the post-Everett work is about, you will need to be comfortable with the notions of
pure versus mixed states, and superpositions of states versus mixtures of states (which
are very different things). So, rather than discussing the talks above, it probably makes
more sense for me to talk about these basic notions. A brief mathematical discussion
appears below; one really needs the clarity of mathematics to get anywhere with this
sort of issue. First, though, let me describe them vaguely in English.

In quantum theory, associated to any physical system there are states and observables.
An observable is a real-valued quantity we might conceivably measure about the system.
A state represents what we might conceivably know about the system. The previous
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sentence is quite vague; all it really means is this: given a state and an observable
there is a mathematical recipe that lets us calculate a probability distribution on the
real number line, which represents the probability of measuring the observable to have
a value lying in any subset of the real line. We call this the probability distribution of
the observable in the state. Using this we can, if we want, calculate the mean of this
probability distribution (let us assume it exists!), which we call the expectation value of
the observable in the state.

Given two states ψ and φ, and a number c between 0 and 1 there is a recipe for
getting a new state, called cψ + (1 − c)φ. This can be described roughly in words as
follows: “with probability c, the system is in state ψ; with probability 1 − c it is in state
φ.” This is called a mixture of the states ψ and φ. If a state is a mixture of two different
states, with c not equal to 0 or 1, we call that state a mixed state. If a state is not mixed
it is pure. Roughly speaking, a pure state is a state with as little randomness as possible.
(More precisely, it has as little entropy as possible.)

All the remarks so far apply to classical mechanics as well as quantum mechanics.
A simple example from classical mechanics is a 6-sided die. If we ignore everything
about the die except which side is up, we can say there are six pure states: the state
in which the side of the die showing one dot is up, the state in which the side showing
two dots is up, etc.. Call these states 1,2,3,4,5, and 6. If it’s a fair die, and we roll it
and don’t look at it, the best state we can use to describe what we know about the die
is a mixed state which is a mixture: 1/6 of state 1 plus 1/6 of state 2, etc.. Note that
if you peek at the die and see that side 4 is actually up, you will be inclined to use a
different state to describe your knowledge: a pure state, state 4. Your honest friend,
who didn’t peek, will still want to use a mixed state. There is no contradiction here;
the state simply is a way of keeping track of what you know about the system, or more
precisely, a device for calculating expectation values of observables; which state you use
reflects your knowledge, and some people may know more than others.

Things get trickier in quantum mechanics. They also get trickier when the system
being described includes the person doing the describing. They get even trickier when
the system being described is the whole universe – for example, some people rebel at the
thought that the universe has “many different states” – after all, it is how it is, isn’t it?
(Gell-Mann gave a talk at this conference, which unfortunately does not appear in this
volume, entitled “Quantum mechanics of this specific universe.” I have a hunch it deals
with this issue, which falls under the heading of “quantum cosmology.”)

The first way things get trickier in quantum mechanics is that something we are used
to in classical mechanics fails. In classical mechanics, pure states are always dispersion-
free – that is, for every observable, the probability measure assigned by the state to that
observable is a Dirac delta measure, that is, the observable has a 100% chance of being
some specific value and a 0% chance of having any other value. (Consider the example
of the dice, with the observable being the number of dots on the face pointing up.) In
quantum mechanics, pure states need not be dispersion-free. In fact, they usually aren’t.

A second, subtler way things get trickier in quantum mechanics concerns systems
made of parts, or subsystems. Every observable of a subsystem is automatically an ob-
servable for the whole system (but not all observables of the whole system are of that
form; some involve, say, adding observables of two different subsystems). So every state
of the whole system gives rise to, or as we say, “restricts to,” a state of each of its sub-
systems. In classical mechanics, pure states restrict to pure states. For example, if our
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system consisted of 2 dice, a pure state of the whole system would be something like “the
first die is in state 2 and the second one is in state 5;” this restricts to a pure state for the
first die (state 2) and a pure state for the second die (state 5). In quantum mechanics, it
is not true that a pure state of a system must restrict to a pure state of each subsystem.

It is this latter fact that gave rise to a whole bunch of quantum puzzles such as the
Einstein–Podolsky–Rosen puzzle and Bell’s inequality. And it is this last fact that makes
things a bit tricky when one of the two subsystems happens to be you. It is possible, and
indeed very common, for the following thing to happen when two subsystems interact
as time passes. Say the whole system starts out in a pure state which restricts to a pure
state of each subsystem. After a while, this need no longer be the case! Namely, if we
solve Schrödinger’s equation to calculate the state of the system a while later, it will
necessarily still be a pure state (pure states of the whole system evolve to pure states),
but it need no longer restrict to pure states of the two subsystems. If this happens, we
say that the two subsystems have become “entangled.”

In fact, this is the sort of thing that often happens when one of the systems is a
measuring apparatus and the other is something measured. Studying this issue, by the
way, does not require a general definition of what counts as a “measuring apparatus” or
a “measurement” – on the contrary, this is exactly what is not needed, and is probably
impossible to attain. What is needed is a description in quantum theory of a particular
kind of measuring apparatus, possibly quite idealized, but hopefully reasonably realistic,
so that we can study what goes on using quantum mechanics and see what it actually
predicts will occur. For example:, taking a very idealized case for simplicity:

Our system consists of two subsystems, the “detector” and an “electron.” The systems
starts out, let’s suppose, in a pure state which restricts to a pure state of each subsystem:
the detector is “ready to measure the electron’s spin in the z direction” and the electron
is in a state with its spin pointing along the x axis. After a bit of time passes, if we restrict
the state of the whole system to the first subsystem, the detector, we get a mixed state
like “with 50% probability it has measured the spin to be up, and with 50% probability
it has measure the spin to be down.” Meanwhile, the if we restrict the state to the
second subsystem, the electron it is in the mixed state “with 50% change it has spin up,
and with 50% chance it has spin down.” In fact these two mixed states are correlated
in an obvious sense. Namely, the observable of the whole system that equals 1 if the
reading on the detector agrees with the spin of the electron, and 0 otherwise, will have
expectation value 1 (if the detector is accurate). The catchy term “entangled,” which
is a little silly, really just refers to this correlation. I don’t want to delve into the math
of correlations, but it is perhaps not surprising that, in classical or quantum mechanics,
interesting correlations can only occur between subsystems if both of them are in mixed
states. What’s sneaky about quantum mechanics is that the whole system can be in a pure
state which when restricted to each subsystem gives a mixed state, and that these mixed
states are then correlated (necessarily, as it turns out). That’s what “entanglement” is all
about.

It was through analyses like this, but more detailed, that Everett realized what was
going on in a quantum system composed of two subsystems, one of which was a measur-
ing apparatus (or person, for that matter), the other of which was something measured.
The post-Everett work amounts to refining Everett’s analysis by looking at more realistic
examples, and more varied examples. In particular, it is interesting to study situations
where nothing very controlled like a scientific “measurement” is going on. For example,
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one subsystem might be an atom in outer space, and the other subsystem might be its
environment (a bunch of other atoms or radiation). If one started out in a state which
restricted to a pure state of each subsystem, how fast would the subsystems become
entangled? And exactly how would they become entangled? – this is very interesting.
When we are doing a scientific measurement, it’s pretty clear what sort of correlation is
involved in the entanglement. In the above example, say, the detector reading is becom-
ing correlated to the electron’s spin about the z axis. If all we have is an atom floating
about in space, it’s not so clear. Can we think of the environment as doing something
analogous “measuring” something about the atom, which establishes correlations of a
particular kind? This is the kind of thing Zurek and Unruh are studying.

In my description above I have tried to be very matter-of-fact, but probably you all
know that this subject is shrouded in mystery, largely because of the misty and dramatic
rhetoric people like to use, which presumably makes it seem more profound. At least
“entangled” has a precise technical meaning. But anyone studying this subject will soon
run into “collapse of the wavefunction,” “branches,” “the many-worlds interpretation,”
the “observer,” and so on. These things mean many things to many people, and nothing
in particular to many more, so one must always be on the alert.

Now for a little math to ground the above discussion. To keep life simple suppose
we have a quantum system described by a n-dimensional Hilbert space H which we
just think of as Cn, n-dimensional complex space. The main thing to get straight is the
difference between superpositions and mixtures of quantum states. An observable in
quantum theory is described by a self-adjoint operator A, which for us is just an n × n
self-adjoint matrix. A state is something that assigns to each observable a number called
its expectation value, in a manner that is 1) linear, 2) positive, and 3) normalized. To
explain this let us call our state ψ. Linearity means ψ(A + B) = ψ(A) + ψ(B) and
ψ(cA) = cψ(A) for all observables A,B and real numbers c. Positivity means ψ(A) > 0
when A is a nonzero matrix that has non-negative eigenvalues (a so-called non-negative
matrix). And the normalization condition is that ψ(1) = 1.

This may seem unfamiliar, and that is because elementary quantum mechanics only
considers states of the form

ψ(A) = 〈v,Av〉

where v is a unit vector inH. Not all states are of this form, but they are an extremely im-
portant special class of states. It is also important to consider states that are represented
as “density matrices,” which are non-negative matrices D with trace 1:

tr(D) =
∑
i

Dii = 1

Such a density matrix defines a state ψ by

ψ(A) = tr(AD).

It’s worth checking that this really meets the definition of a “state” given above!
The states corresponding to unit vectors in H are in fact a special case of the density

matrices. Namely, if v is a unit vector in H we can let D be the self-adjoint matrix
corresponding to projection onto v. I.e., the matrix D acts on any other vector, say w, by

Dw = 〈v, w〉v.
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It’s not to hard to check that the matrix D really is a density matrix (do it!) and that this
density matrix defines the same state as does the vector v, that is,

tr(AD) = 〈v,Av〉

for any observable A.
The entropy of a state ψ corresponding to the density matrix D is defined to be

S(ψ) = − tr(D lnD)

where one calculates D lnD by working in a basis where D is diagonal and replacing
each eigenvalue x of D by the number x lnx, which we decree to be 0 if x = 0. Check
that if D corresponds to a pure state as above then D lnD = 0 so the entropy is zero.

Now about superpositions versus mixtures. They teach you how to take superposi-
tions in basic quantum mechanics. They usually don’t tell you about density matrices; all
they teach you about is the states that correspond to unit vectors in Hilbert space. Given
two unit vectors in H, one can take any linear combination of them and, if it’s not zero,
normalize it to be a unit vector again, which we call a superposition.

Mixtures are an utterly different sort of linear combination. Given two states ψ and φ
– which recall are things that assign numbers to observables in a linear way – and given
any number c between 0 and 1, we can form a new state by taking

cψ + (1− c)φ

This is called a mixture of ψ and φ. Finally, some nontrivial exercises:
Exercise: Recall that a pure state is defined to be a state which is not a mixture of

two different states with 0 < c < 1. Show that the states corresponding to unit vectors
in Hilbert space are pure.

Exercise: Conversely, show (in the finite-dimensional case we are considering) that
all the pure states correspond to unit vectors in Hilbert space.

Exercise: Show that every density matrix is a mixture of states corresponding to unit
vectors in Hilbert space.

Exercise: Show (in the finite-dimensional case we are considering) that all states
correspond to density matrices. Show that such a state is pure if and only if its entropy
is zero.

Well, this took longer than expected, so let me quickly say a bit more about a few
other papers in the conference proceedings. . . .

3) Carlo Rovelli, “Is there incompatibility between the ways time is treated in general
relativity and in standard quantum mechanics?”, the volume above.

Karel V. Kuchar, “The problem of time in canonical quantization of relativistic sys-
tems”, the volume above.

James B. Hartle, “Time and prediction in quantum cosmology”, the volume above.

Lee Smolin, “Space and time in the quantum universe”, the volume above.

In the section on the problem of time in quantum gravity, these papers in particular
show a lively contrast between points of view. One nice thing is that discussions after
the papers were presented have been transcribed; these make the disagreements even
more clear. Let me simply give some quotes that highlight the issues:
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Rovelli: A partial observable is an operation on the system that produces
a number. But this number may be totally unpredictable even if the state is
perfectly known. Equivalently, this number by itself may give no information
on the state of the system [in the Heisenberg picture — jb]. For example, the
reading of a clock, or the value of a field, not knowing where and when it has
been measured, are partial observables.
A true observable or simply an observable is an operation on the system that
produces a number than can be predicted (or whose probability distribution may
be predicted) if the (Heisenberg) state is known. Equivalently, it is an observable
that gives information about the state of the system.
. . . .
Time is an experimental fact of nature, a very basic and general experimental
fact, but just an experimental fact. The formal development of mechanics, and
in particular Heisenberg quantum mechanics and the presymplectic formulation
of classical mechanics, suggests that it is possible to give a coherent description
of the world that is independent of the presence of time.
. . . .
From the mathematical point of view, time is a structure on the set of observ-
ables (the foliation that I called a time structure).
From the physical point of view, time is the experimental fact that, in the nature
as we see it, meaningful observables are always constructed out of two partial
observables. That is, it is the experimental fact (not a priori required), that
knowing the position of a particle is meaningless unless we also know “at what
time” a particle was at that position.
In the formulation of the theory, this experimental fact is coded in the time
structure of the set of observables. If true observables are composed of corre-
spondences of partial observables, one of which is the reading of a clock, then
the set of true observables can be foliated into one-parameter families that are
given by the same partial observables at different clock readings.
From an operational point of view, mechanics is perfectly well defined in the
absence of this time structure. It will describe a world (maybe one slightly
unfamiliar to us) in which observables are not arranged along one-parameter
lines, in which they have no such time structure (a kind of fixed-time world),
or have more complicated structures. We must not confuse the psychological
difficulties in visualizing such worlds with their logical impossibility.
. . . Heisenberg states, observables, measurement theory – none of these require
time.
The notion of probability does not require time. . . .
What I am proposing is that there may exist a coherent description of a system
in the framework of standard quantum mechanics even if it does not have a
standard “time evolution.”
Why should we be interested in mechanics with no time structure? Because
general relativity is a system (a classical system) with no time structure. At
least, it has no clearly defined time structure.
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. . . What we have to do is simple: “forget time.”

Kuchar: For myself, I want to see observables changing along my world line
and therefore associated with individual leaves of a foliation. In that sense,
the problem of time is shifted to the problem of constucting an appropriate
class of quantities one would like to call observables. Now, what I would like
to call observables probably differs from what Carlo Rovelli would like to call
observables. Carlo may like to restrict that term to constants of motion, while I
would like to use variables that depend on a time hypersurface. Of course, both
of us know that there is a technical way of translating my observables into his
observables. However, it is difficult to subject such a translated observable to an
actual observation. In principle, of course, it does not matter at what instant
of time one measures a constant of motion. But the constants of motion that
are translations of my observables are much too complicated when expressed in
terms of the coordinates and the momenta at the time of measurement. You thus
have a hard time to design an apparatus that would measure such a constant of
motion at a time different from the moment for which it was originally designed.

Smolin: Now, as I discussed above, and as Jim Hartle argues at length, there
can be no strict implementation of the principle of conservation of probability
for a time that this the value of a dynamical variable of a quantum system.
Therefore, a sensible measurement theory for quantum cosmology can only be
constructed if there is a time variable that is not a dynamical variable of the
quantum system that describes the universe.

Does this mean that quantum cosmology is impossible, since there is no possi-
bility of a clock outside of the system?

There is, as far as I know, exactly one loophole in this argument, which is the
one exploited by the program of intrinsic time. This is that one coordinate on
the phase space of general relativity might be singled out and called time in such
a way that the states, represented by functions on the configuration space, could
be read as time-dependent functions over a reduced configuration space from
which the privileged time coordinate is excluded.

Jokes:

Kuchar: Because Leibniz didn’t believe in the ontological significance of time, he
dropped the letter “t” from his name.

Smolin: Is that true?

Kuchar: Yes! He spelled his name with a “z”.

DeWitt: It’s a good thing that he did believe in space because the “z” would’ve
gone too.

Of course, time is “Zeit” in German, which complicates things.

4) Abhay Ashtekar,“Old problems in the light of new variables”, the volume above.

Carlo Rovelli, “Loop representation in quantum gravity”, the volume above.

Lee Smolin, “Nonperturbative quantum gravity via the loop representation”, the
volume above.
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These are a bit more technical papers that give nice introductions to various aspects of
the loop representation.
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Week 28

January 4, 1994

I think I’ll finally break my New Year’s resolution to stop making a fool of myself on the
net, and attempt an explanation of some things I am just learning a bit about, namely,
Teichmüller space and moduli space. These are concepts that string theorists often throw
around, and when I first heard of them in that context I immediately dimissed them as
just another example of how physicists were learning far too much mathematics for their
own good. I take it all back! They are, in fact, beautifully simple pieces of mathematics
suited to physics in 2-dimensional spacetime. Two dimensions is low enough that one
can often actually understand exactly what’s going on in problems that become infinitely
more tricky in higher dimensions. So even if one doesn’t “believe” in 2-dimensional
physics the way the string theorists do – for them, physics happens on the worldsheet of
the string, which is 2-dimensional – it’s worth learning as a kind of textbook case.

Everything I know so far is culled from the following sources, which by no means
form an exhaustive or even optimal set of references:

1) Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller spaces, Springer,
Berlin, 1991.

2) Joe Harris, “An introduction to the moduli space of curves”, in Mathematical Aspects
of String Theory (proceedings of a conference at UC San Diego in 1986), ed. S. T.
Yau, World Scientific Press, 1987.

3) R. C. Penner, “The moduli space of punctured surfaces”, same volume.

4) John L. Harer, “The cohomology of the moduli space of curves”, in Theory of Moduli
(lectures given at the 3rd 1985 session of C.I.M.E. at Mondecatini Terme, Italy), ed. E.
Sernesi, Springer Lecture Notes in Mathematics 1337, 1988.

There are a number of ways of describing Teichmüller space and moduli space.
Maybe the easiest is this. Start with the surface of a doughnut with g handles, or as
the experts say, a “surface of genus g”. We can make this into a “Riemann surface” if we
cover it with lots of patches, or “charts,” each of which looks just like part the complex
plane (imagine a little piece of graph paper), and such that the change of coordinates
function relating overlapping patches is analytic, in the usual sense of complex vari-
ables. The simplest Riemann surface is the Riemann sphere, which is of genus zero; one
gets this by taking the complex plane and sticking on one more point, “∞” – think of a
sphere with “∞” as the north pole. If we have a Riemann surface, we can tell whether a
complex-valued function on it is analytic, simply by working locally in charts, so we can
do complex analysis as usual on a doughnut with lots of handles as long as we make it
into a Riemann surface! Since the main point of my article will be to provide the reader
with lots of buzzwords, I should add that making a surface of genus g into a Riemann
surface is called “giving it a complex structure.”

Now, how many ways are there to give a surface of genus g a complex structure?
First of all we need a good notion of when two Riemann surfaces are “the same”. They
must, of course, have the same genus, but there must also be a 1-1 and onto function
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from one to the other that is everywhere analytic, with an analytic inverse. (Again, it
makes sense to say such a function is analytic, since we can cover each Riemann surface
with charts that we can think of as bits of the complex plane.) Such a mapping is called
a “biholomorphic mapping” – holomorphic just being another word for analytic – and if
we want to sound fancy, we say that the two Riemann surfaces are “biholomorphically
equivalent.”

Well, there’s a famous old theorem of Riemann that for genus 0, there is only ONE
way to do it; any Riemann surface of genus 0 is biholomorphically equivalent with the
Riemann sphere. But for higher genus there are infinitely many essentially different
ways to give a surface of genus g a complex structure. In fact, we can imagine a big fat
“space” of all ways. This is the moduli space of genus g!

The first key problem in the theory is to “get our hands on” moduli space; that is,
to describe it quite concretely. String theory provided a lot of motivation for doing this
very well, since the worldsheet of a string – that is, the string viewed in spacetime – is
just a surface, and Feynman path integrals in string theory involve integrating over all
complex structures for this surface. To do integrals over moduli space we need to bring
it down to earth!

To do so, it’s awfully handy to get involved with Teichmüller space. Note that moduli
space can be thought of as the space of equivalence classes of complex structures on a
fixed surface of genus g, where two complex structures are deemed “the same” if they
are biholomorphically equivalent. Teichmüller space is defined using a more fine-grained
notion of “the same”. Note that any biholomorphic mapping is a diffeomorphism, that is,
a smooth mapping with a smooth inverse. In fact, it must also be orientation-preserving,
since an orientation-reversing map like complex conjugation can never be holomorphic!
Henceforth I will always mean “orientation-preserving diffeomorophism” when I speak
of diffeomorphisms of a surface.

Now, some diffeomorphisms are “connected to the identity” and some aren’t. We
say a diffeomorphism f is connected to the identity if there is a smooth 1-parameter
family of diffeomorphisms starting at f and ending at the identity diffeomorphism. In
other words, a diffeomorphism is connected to the identity if you can do it “gradually”
without ever having to cut the surface. To really understand this you need to know some
diffeomorphisms that aren’t connected to the identity. Here’s how to get one: start with
your surface of genus g > 0, cut apart one of the handles along a circle, give one handle
a 360-degree twist, and glue the handles back together! This is called a Dehn twist.

Anyway, Teichmüller space may be defined as the space of equivalence classes of com-
plex structures on a fixed surface of genus g, where two complex structures are counted
as the same if they are biholomorphically equivalent by a diffeomorphism connected to
the identity.

A good way of understanding the relation between Teichmüller space and moduli
space is this. Define the mapping class group (of genus g) to be the group of diffeomor-
phisms of a surface of genus g modulo the subgroup of those connected to the identity.
A beautiful fact is that this group is generated by Dehn twists! In other words, given any
diffeomorphism of a surface, you can get it by first doing a bunch of Dehn twists and
then doing a diffeomorphism connected to the identity. Since the mapping class group
is finitely generated one should think of it as a discrete group. In fact, folks know what
the relations between the generators are, too, and these are also very beautiful. I guess
good places to read about this stuff are the first paper that gave an explicit presentation
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of mapping class groups:

5) A. Hatcher and W. Thurston, “A presentation of the mapping class group of a closed,
orientable surface”, Topology 19 (1980), 221–237.

and the simplified treatment in

6) Bronislaw Wajnryb, “A simple presentation for the mapping class group of an ori-
entable surface”, Israel J. Math. 45 (1983), 157–174.

Actually, though, I must admit my only acquaintance with mapping class groups comes
from leafing through

7) Joan S. Birman, Braids, Links, and Mapping Class Groups, Annals of Mathematics
Studies 82, Princeton University Press, 1974.

As one can gather from this title there is a close connection between mapping class
groups and the braid group and knot theory, which is the main reason why string theory
allowed Witten to get new insights into knots. (The more mundane connection, namely
that one ties knots out of string, seems largely unexplored, but see “Week 18”.) Let me
not digress into this fascinating realm, however! The point I want to make here is just
that:

The mapping class group acts on Teichmüller space, and the quotient by this
group action is moduli space.

Anyone used to how math goes should find this pretty believable, but let me explain:
given a diffeomorphism of our surface of genus g, we can use it as a kind of “coordinate
transformation” to turn one complex structure into another. So the group of diffeo-
morphisms acts on Teichmüller space, but, given how Teichmuller space is defined, the
subgroup of diffeomorphisms connected to the identity acts trivially. Thus the mapping
class group acts on Teichmüller space. By how moduli space is defined, two points in
Teichmüller space define the same point in moduli space iff one is obtained from another
by an element of the mapping class group.

Now the good thing about Teichmüller space is that it has very nice coordinates on it,
called Fenchel-Nielsen coordinates, which reveal it to be diffeomorphic to R6g−6 when
g > 1. (The case g = 0 is utterly dull, since Teichmüller space is a point, and the
case g = 1 is beautifully treated using the fact that any Riemann surface of genus 1 is
biholomorphically equivalent to the quotient of the complex plane by a lattice, relating
this case to the subject of elliptic functions, as touched upon in “Week 13”. I should also
add that “Week 13” indicates, at least in the g = 1 case, why moduli space is often called
the “moduli space of curves.”)

Let me say how these coordinates go, rather sketchily, just so the mysterious number
6g − 6 becomes not so mysterious! Take your surface of genus g – just think of it as a
doughnut with n holes – and cut it up into “pairs of pants,” that is, pieces that look like
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from above. Topologically, a pair of pants is just a sphere with three discs cut out of it!
A more dignified term for a pair of pants is a “trinion,” by the way.

The idea now is to describe the complex structure on each pair of pants separately,
and then describe how the pairs of pants are glued together. Now, it turns out that the
complex structures on each pair of pants are very easily described (up to biholomorphic
equivalences connected to the identity). It takes 3 positive real numbers. There’s a
unique metric on the original surface pants that is compatible with the complex structure
(i.e. is a “Kähler metric”) and has curvature equal to −1. This is called a hyperbolic
metric, as in hyperbolic geometry. Then, we can cut the surface into pairs of pants along
circles that are geodesics relative to this metric. To describe the complex structure on
each pair of pants we simply need to measure the lengths of the 3 bounding circles;
these are called the “geodesic length functions”. In other words, if your pair of pants
was hyperbolic, a tailor would only need to measure you waistlength and the lengths
around the two cuffs, not the inseams!

Now it’s a fun exercise to show that we can chop up a surface of genus g > 1 into
exactly 2g − 2 pairs of pants. Doing so, moreover, requires that we cut the surface along
3g − 3 circles. (Draw some pictures!) Thus, we have a total of 3g − 3 geodesic length
functions. However, we also need to describe how the pairs of pants are attached to
each other. We can glue them together with any amount of twisting, and this twisting is
a real-valued parameter. So there are 3g − 3 “twisting parameters” required to describe
how the pairs of pants are attached. We thus have a total of 6g − 6 parameters, the
Fenchel-Nielsen coordinates, and Teichmüller space is diffeomorphic to R6g−6 (since the
positive real numbers are diffeomorphic to R itself).

I think I want to quit here but not before making a few random remarks.
First, there’s another description of Teichmüller space which gives it a triangulation,

i.e., describes it as a bunch of high-dimensional tetrahedra (simplices) glued together.
Harer’s paper gives a nice quick sketch of this construction; the buzzword to look for is
“quadratic differentials.” The nice thing about this is that the mapping class group action
respects this triangulation so we get a triangulation of moduli space.

Second, quite recent work by Penner:

8) R. C. Penner, “Universal constructions in Teichmüller theory”, Adv. Math. 98
(1993), 143–215.

shows how to fit the Teichmüller spaces for different genus g into a single universal
object. This was directly motivated by string theory, but the basic idea is (I think) simply
that there should be some sense in which one can go “continously” from genus g + 1
to genus g by making one handle smaller and smaller (with respect to the hyperbolic
metric) until it goes away.

Third, when studying the triangulation of Teichmüller space one repeatedly runs
across a certain “Pachner move” which goes from one triangulation of a surface to an-
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other:

•

•

•

•

←→ •

•

•

•

which reminds me of lattice field theories in 2 dimensions (see “Week 16” for an expla-
nation) and the “pentagon diagram” showing how to get between the 5 simplest ways
to triangulate a pentagon using this move (see, for example, Figure 3 in Penner’s paper
above, or Figure 3.2 of Harer’s paper). The pentagon diagram appears both in Moore and
Seiberg’s famous paper on string theory and chopping up surfaces into pairs of pants:

9) G. Moore and S. Seiberg, “Classical and quantum conformal field theory”, Commun.
Math. Phys. 123 (1989), 177–254

and in category theory, with the relationship there now pretty well understood in terms
of “modular tensor categories” — see e.g.

10) Louis Crane, “2-d physics and 3-d topology”, Commun. Math. Phys. 135 (1991)
615-640.

Unfortunately, I haven’t been able to get any string guru to sit down and really clarify
how the triangulations of Teichmüller space fit in. Lest the reader wonder what the heck
I’m going on about, the idea is that category theory provides a marvelous way to unify
the profusion of mathematical structures that are coming up these days, and if we ever
understood everything in those terms, it would all seem much less confusing.
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Week 29

January 14, 1994

I’m awfully busy this week, but feel like attempting to keep up with the pile of literature
that is accumulating on my desk, so this will be a rather terse description of papers. All
of these papers are related to my current obsession with “higher-dimensional algebra”
and its applications to physics.

1) Ruth J. Lawrence, “On algebras and triangle relations”, to appear in Proc. Top. &
Geom. Methods in Field Theory (1992), eds. J. Mickelsson and O. Pekonen, World
Scientific, Singapore.

Ruth J. Lawrence, “A presentation for Manin and Schechtman’s higher braid groups”,
available as MSRI preprint 04129-91.

Ruth J. Lawrence, “Triangulations, categories and extended topological field theo-
ries”, to appear in Quantum Topology, eds. L. Kauffman and R. A. Baadhio, World
Scientific, Singapore, 1993.

Ruth J. Lawrence, “Algebras and triangle relations”, Harvard U. preprint.

Many people are busily trying to extend the remarkable relationship between knot
theory and physics, which is essentially a feature of 3 dimensions, to higher dimen-
sions. Since the 3-dimensional case required the development of new branches of alge-
bra (namely, quantum groups and braided tensor categories), it seems that the higher-
dimensional cases will require still further “higher-dimensional algebra.” One approach,
which is still being born, involves the use of “n-categories,” which are generalizations
of braided tensor categories suited for higher-dimensional physics. (See for example
the papers by Crane in “Week 2”, by Kapranov and Voevodsky in “Week 4”, by Fischer
and Freed (separately) in “Week 12”, and the one by Gordon, Power, and Street below.)
Lawrence has instead chosen to invent “n-algebras,” which are vector spaces equipped
with operations corresponding to the ways one can subdivide (n − 1)-dimensional sim-
plices into more such simplices. (See the paper by Chung, Fukuma and Shapere in “Week
16” for some of the physics motivation here.)

These alternative approaches should someday be seen as different aspects of the same
thing, but there as yet I know of no theorems to this effect, so there is a lot of work to
be done. Even more importantly, there is a lot of work left to be done about inventing
examples of these higher-dimensional structures. For example, there may eventually be
general results on “boosting” n-algebras to (n + 1)-algebras, or n-categories to (n + 1)-
categories, which will explain how generally covariant physics in n-dimensional space-
time relates to the same thing in one higher dimension. So far, however, all we have is
a few examples, which are not even clearly related to each other. For example, Crane
calls this boosting process “categorification” and has done it starting with the braided
tensor category of representations of a quantum group. Lawrence, on the other hand,
shows how to construct some 3-algebras from quantum groups. And Freed has given a
general procedure for “boosting” using path integral methods that are not yet rigorous
in the most interesting cases.
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2) R. Gordon, A. J. Power, and Ross Street, Coherence for Tricategories, Memoirs of the
American Mathematical Society 558, Providence, Rhode Island, 1995.

An “n-category” is a kind of algebraic structure that has “objects,” “morphisms” be-
tween objects, “2-morphisms” between morphisms, and so on up to “n-morphisms.”
However, the correct definition of an n-category for the purposes of physics is still un-
clear! I gave a rough explanation of the importance of 2-categories in physics in “Week
4”, where I discussed Kapranov and Voevodsky’s nice definition of braided tensor 2-
categories. However, it seems likely that we will need to understand the situation for
larger n as well. This paper makes a big step in this direction, by defining “tricategories”
(what I might call “weak 2-categories”) and proving a “strictification” or “coherence” re-
sult analogous to the result that every braided tensor category is equivalent to a “strict”
one. The result is, however, considerably more subtle, as it involves a special way of
defining the tensor product of 2-categories due to Gray:

3) John W. Gray, Formal Category Theory: Adjointness for 2-Categories, Springer Lec-
ture Notes in Mathematics 391, Springer, Berlin, 1974.

John W. Gray, “Coherence for the tensor product of 2-categories, and braid groups”,
in Algebras, Topology, and Category Theory, eds. A. Heller and M. Tierney, Academic
Press, New York, 1976, pp. 63–76.

Briefly speaking, Gordon–Power–Street use a category they call “Gray,” the category
of all 2-categories, made into a symmetric monoidal closed category using a modified
version of Gray’s tensor product. Then they show that every tricategory (as defined by
them) is “triequivalent” to a category enriched over Gray.

4) J. M. Maillet, “On pentagon and tetrahedron equations”, available as hep-th/

9312037.

Maillet shows how to obtain solutions of the tetrahedron equations from solutions
of pentagon equations; all these geometrical equations are part of the theory of 2-
categories, and this is yet another example of a “boosting” construction as alluded to
above.

5) David Yetter, “Homologically twisted invariants related to (2+1)- and (3+1)-dimensional
state-sum topological quantum field theories”, available as hep-th/9311082.

Let me simply quote the abstract: “Motivated by suggestions of Paolo Cotta-Ramusino’s
work at the physical level of rigor relating BF theory to the Donaldson polynomials, we
provide a construction applicable to the Turaev–Viro and Crane–Yetter invariants of a
priori finer invariants dependent on a choice of (co)homology class on the manifold.”
The dream is that this would give a state-sum formula for the Donaldson polynomials,
but Yetter is careful to avoid claiming this! A while back, Crane and Yetter showed how
to get 4-dimensional TQFTs from certain 3d TQFTs by another kind of “boosting” proce-
dure related to those mentioned above, but the resulting TQFT in 4-dimensions did not
by itself yield interesting new invariants of 4-manifolds. The procedure Yetter describes
here generalizes the earlier work by allowing the inclusion of an embedded 2-manifold.
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Week 30

January 14, 1994

For the most part, this is a terse description of some papers dealing with quantum gravity.
Some look to be quite important, but as I have not had time to read them as thoroughly
as I would like, I won’t say much.

First, however, let me note some books:

1) Silvan S. Schweber, QED and the Men Who Made It: Dyson, Feynman, Schwinger
and Tomonaga, Princeton U. Press, Princeton, 1994.

Back in the 1930s there was a crisis in physics: nobody knew how to reconcile
quantum theory with special relativity. This book describes the history of how people
struggled with this problem and achieved a marvelous, but flawed, solution: quantum
electrodynamics (QED). Marvelous, because it made verified predictions of unparalleled
accuracy, involves striking new concepts, and gave birth to beautiful new mathematics.
Flawed, only because nobody yet knows for sure whether the theory is mathematically
well-defined – for reasons profoundly related to physics at ultra-short distance scales.
This story should give some inspiration to those currently attempting to reconcile quan-
tum theory with general relativity! Feynman, Schwinger, and Tomonaga won Nobel
prizes for QED, but Dyson was also instrumental in inventing the theory, and the book is
mainly a story of these 4 men.

2) Bruce Stephenson, The Music of the Heavens: Kepler’s Harmonic Astronomy, Prince-
ton U. Press, Princeton, 1994.

Bruce Stephenson, Kepler’s Physical Astronomy, Princeton U. Press, Princeton, 1994.

Kepler’s work on astronomy was in part based on the notion of the “music of the
spheres,” and in his Harmonice Mundi (1619) he sought to relate planetary velocities
to the notes of a chord. He was also fascinated with geometry, and sought to relate
the radii of the planetary orbits to the Platonic solids. While this may seem a bit silly
nowadays, it’s clear that this faith that mathematical patterns pervade the heavens was
a crucial part of how Kepler found his famous laws of planetary motion. Also important,
of course, was his use of what we would now call “physical” reasoning to understand
the heavens – that is, the use of analogies between the motions of heavenly bodies and
that of ordinary terrestial matter. But even this is not as straightforward as one might
hope, since (Stephenson argues in the second book) this physical reasoning was what
we would now consider incorrect, even though it led to valid laws. More inspiration for
those now struggling amid error to understand what the universe is really like!

3) Louis Kauffman and Sostenes Lins, Temperley–Lieb Recoupling Theory and Invariants
of 3-Manifolds, Annals of Mathematics Studies 133, Princeton U. Press, Princeton,
1994.

I described this briefly in “Week 17”, before I had spent much time on it. Let me
recall the main point: in the late 80’s Jones invented a new invariant of knots and
links in ordinary 3d space, but then Witten recognized that this invariant came from
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a quantum field theory, and thus could be extended to obtain an invariant of links in
arbitrary 3d manifolds. (In particular, taking the link to be empty, one obtains a 3-
manifold invariant.) In fact, there is a whole family of such invariants, essentially one
for each semisimple Lie algebra, and Jones original example corresponded to the case
su(2). In this case the combinatorics of the invariants are so simple that one can write
a nice exposition in which one forgets the underlying, fairly sophisticated, mathematical
physics (quantum groups, conformal field theory and the like) and simply presents the
“how-to” using a kind of diagrammatic calculus known as “skein relations,” or what
Kauffman calls “Temperley–Lieb recoupling theory.” That is the approach the authors
take here. The curious reader will naturally want to know more! For example, anyone
familiar with quantum theory and “6j symbols” will sense that this kind of thing is lurking
in the background, and indeed, it is.

Now for the papers:

4) C. Rovelli and L. Smolin, “The physical hamiltonian in quantum gravity”, available
as gr-qc/9308002.

H. A. Morales-Tecotl and C. Rovelli, “Fermions in quantum gravity”, available as
gr-qc/9401011.

The Rovelli–Smolin loop variables program proceeds apace! In the former paper,
Rovelli and Smolin consider quantum gravity coupled to a scalar matter field which
plays the role of a clock. (Using part of the system described to play the role of a clock is
a standard idea for dealing with the “problem of time,” which arises in quantum theories
on spacetimes having no preferred coordinates, like quantum gravity. However, getting
this idea to actually work is not at all easy. For a bit on this issue see “Week 27”.) Only
after choosing this “clock field” can one work out a Hamiltonian for the theory, write
down the analog of Schrödinger’s equation, and examine the dynamics. Before, there is
only a “Hamiltonian constraint” equation, also known as the Wheeler–DeWitt equation.

In the latter paper, Rovelli and Marales-Tecotl discuss how to include fermions. The
beautiful thing here is that fermions are described in the loop representation by the ends
of arcs, while pure gravity is described by loops. This is completely analogous to the
old string theory of mesons, in which mesons were represented as arcs of “string” – the
gluon field – connecting two fermionic “ends” – the quarks.

5) C. Di Bartolo, R. Gambini, J. Griego and J. Pullin, “Extended loops: a new arena
for nonperturbative quantum gravity”, available as gr-qc/9312029.

For a while now, Gambini and collaborators have been developing a modified version
of the loop representation that appears to be especially handy for doing perturbative
calculations (perturbing in the coupling constant, that is, Newton’s gravitational constant
– not perturbing about a fixed flat “background” spacetime, which is regarded as a “no-
no” in this philosophy). The mathematical basis for this “extended” loop representation
is something quite charming in itself: it amounts to embedding the loop group into
an (infinite-dimensional) Lie group. The “perturbative” calculations described above are
thus analogous to how one uses Lie algebras to study Lie groups. In fact, this analogy is a
deep one, since the extended loop representation also permits perturbative calculations
in Chern–Simons theory, allowing one to calculate “Vassiliev invariants” starting just
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from Lie-algebraic data. In fact this was done by Bar-Natan (cf “Week 3”), who was
using the extended loop representation without particularly knowing about that fact!

This paper puts the extended loop representation to practical use by finding some
new solutions to the quantum version of Einstein’s equations. These solutions are es-
sentially Vassiliev invariants! (See also the paper by Gambini and Pullin listed in “Week
23”).

6) Domenico Giulini, “Ashtekar variables in classical general relativity”, available as
gr-qc/9312032.

This was a lecture given at the 117th WE-Heraeus Seminar: “The Canonical Formal-
ism in Classical and Quantum General Relativity”, 13-17 September 1993, Bad Honnef,
Germany, the goal of which was to give an introduction to Ashtekar’s “new variables” for
general relativity.
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Week 31

February 18, 1994

Well, I’m really busy these days trying to finish up a big project, hence the low number of
“Weeks” per week, but papers are piling up, and there are some pretty interesting ones,
so I thought I’d quickly mention a few. This bunch will mainly concern quantum gravity.

1) Louis Crane, “Possible implications of the quantum theory of gravity”, available as
hep-th/9402104.

This is one paper that everyone can read and enjoy, for although one may find it too close
to science fiction for comfort, it is far more interesting than most science fiction. Louis
Crane has been doing a lot of excellent work on topological quantum field theory for
the last few years, strongly advocating the use of category theory as a unifying principle
in physics (essentially as an extension of the concept of symmetry embodied in group
theory), but this is quite different in flavor.

To begin with, Lee Smolin, one of the originators of the loop representation of quan-
tum gravity, has been spending the last year or so writing a book in a popular style, to
be entitled “Life and Light,” which tours the cosmos and makes some interesting specu-
lations on “evolutionary cosmology.” These speculations are based on 2 hypotheses.

A. The formation of a black hole creates “baby universe,” the final singularity of
the black hole tunnelling right on through to the initial “Big Bang” singularity
of the new universe thanks to quantum effects.

While this must undoubtedly seem outre to anyone unfamiliar with the sort of thing
theoretical physicists amuse themselves with these days, in a recent review article by
John Preskill on the information loss paradox for black holes, he reluctantly concluded
that this was the most conservative solution of that famous problem! Recall the problem:
if a black hole evaporates its mass away via Hawking radiation, and that radiation is
pure blackbody radiation, hence carries none of the information about the matter that
originally formed the black hole, one does not have conservation of information, or more
technically speaking, the time evolution is not unitary, since a pure state is evolving into
a mixed state. Hawking’s original solution to this problem was to bite the bullet and
accept the nonunitarity, even though it goes against the basic principles of quantum
theory. This appears in:

2) S. W. Hawking, “Black holes and thermodynamics”, Phys. Rev. D 13 (1976), 191–
197.

The “baby universe” solution simply says that the matter seeds a baby universe and
the information goes there. Many other solutions have been proposed; two recent review
articles are

3) J. Preskill, “Do black holes destroy information?”, available as hep-th/9209058.
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4) Don Page, “Black hole information”, in Proceedings of the 5th Canadian Conference
on General Relativity and Relativistic Astrophysics, University of Waterloo, 13–15
May, 1993, eds. R. B. Mann and R. G. McLenaghan, World Scientific, Singapore,
1994. Available as hep-th/9305040.

Personally, I am a complete agnostic about this problem, since it rests upon so many
phenomena that are hypothesized but not yet observed, and since any solution would
require a theory of quantum gravity. I am merely reporting the ideas of respected physi-
cists! In any event, the second hypothesis is:

B. Certain parameters of the baby universe are close to but different than those
of the parent universe.

The notion that certain physical facts that appear as “laws” are actually part of the
state of the univese has in fact been rather respectable since the application of sponta-
neous symmetry breaking to the Weinberg–Salaam model of electroweak interactions,
part of the standard model. (Again, being my usual cautious self, I must note that a
crucial piece of evidence for this model, the Higgs boson, has not yet been seen.) The
notion of spontaneous symmetry breaking has become quite popular in particle physics
and is a key component of all current theories, such as GUTs or string theory, that at-
tempt to model the messy heap of observed particles and interactions by some pristinely
symmetrical Lagrangian. The spontaneous symmetry breaking would be expected to
have occured shortly after the Big Bang, when it got cool enough, much as a hot piece
of iron will randomly settle upon some direction of magnetization as its temperature fall
below the Curie temperature. One application of this notion to cosmology is already
widely popular, namely, inflation. In fact, pursuing the analogy with magnetic domains,
i.e. small regions with different directions of magnetization, cosmologists have spend a
fair amount of energy thinking about “domain walls,” “cosmic strings,” monopoles and
other defects that might occur as residues of this cooling-down process.

So again, while the idea must seem wild to anyone who has not encountered it be-
fore, physicists these days are fairly comfortable with the idea that certain “fundamental
constants” could have been other than they were. As for the constants of a baby universe
being close to, but different than, those of the parent universe, there is as far as I know
no suggested mechanism for this. This is perhaps the weakest link in Smolin’s argument
(though I haven’t seen his book yet). But it is at least conceivable.

Now, given these hypotheses a marvellous consequence ensues: Darwinian evolu-
tion! Those universes whose parameters are such that many black holes are formed will
have many progeny, so the constants of physics can be expected to be “tuned” for the
formation of many black holes. As Smolin emphasizes, while the hypotheses A and B
may seem impossible to test directly at present, we do at least have a hope of testing this
consequence. He has studied the marvellously intricate process of star formation in the
galaxy and attempted to see whether altering the constants of physics appear “tuned”
for maximizing black hole production, and he argues in his book that they do appear
so tuned. Of course, this is an extremely delicate business, since our understanding
of galaxy formation, star formation and black hole formation even in this universe is
still rather weak — much less for other conceivable universes in which the fundamental
constants take different values.

Crane enters the fray at this point, and proposes an additional conjecture:
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SUCCESSFUL INDUSTRIAL CIVILIZATIONS WILL EVENTUALLY CREATE BLACK
HOLES.

(The capital letters are his.) He breaks it up into two parts for us:

SUBCONJECTURE 1: SUCCESSFUL INDUSTRIAL CIVILIZATIONS WILL EVEN-
TUALLY WANT TO MAKE BLACK HOLES

and

SUBCONJECTURE 2: SUCCESSFUL INDUSTRIAL CIVILIZATIONS WILL EVEN-
TUALLY BE ABLE TO PRODUCE BLACK HOLES.

and argues for each. The result, as any good evolutionist will recognize, is a kind of
feedback loop whereby intelligence and baby universe formation both affect each other.
Indeed, Crane calls his hypothesis the “meduso-anthropic hypothesis,” after certain jel-
lyfish with a two-stage life cycle in which medusids produce polyps and vice versa. This
has the charm of completely destroying the usual approach (dare I say “paradigm”?) of
physics in which the parameters of the universe are regarded as indifferent to the exis-
tence of intelligence. Of course, the anthropic hypothesis is a previous attempt to breach
this firewall, but a much less dramatic one, since the only role intelligence plays in that
is noticing the laws of the universe.

At this point let me leave off with a quote from Crane’s paper:

“It is not hard to see that if these ideas are true, they will be the victims of abuse
to dwarf quantum healing and even quantum golf. That is not sufficient reason
to ignore them.”

and let me gradually turn towards slightly less speculative realms, eventually finishing
with some papers containing rigorous mathematics! To begin with, some more on black
hole entropy:

5) Leonard Susskind, “Some speculations about black hole entropy in string theory”,
available as hep-th/9309145.

Leonard Susskind and J. Uglum,“Black hole entropy in canonical quantum gravity
and superstring theory”, available as hep-th/9401070.

The fact that the entropy of a black hole is (at least under certain circumstances) propor-
tional to the area of its event horizon is a curious relationship between general relativity,
quantum field theory and statistical mechanics that many people believe to pointing
somewhere, but unfortunately nobody is sure where. Part of the reason is that the stan-
dard derivations are somewhat indirect, and the event horizon is not a physical object,
so the sense in which it is the locus of entropy is difficult to understand. These authors
suggest that in string theory it can be explained in terms of open strings having both
ends attached to the horizon.

6) C. R. Stephens, G. ’t Hooft and B. F. Whiting, “Black hole evaporation without
information loss”, available as gr-qc/9310006.
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This is an attempt to make black holes radiate away and disappear in a manner that
preserves unitarity. I’ve been too busy to read it. And now for some wormholes:

7) Hoi-Kwong Lo, Kai-Ming Lee, and John Preskill, “Complementarity in Wormhole
Chromodynamics”, available as hep-th/9308044.

Let me just quote the abstract and note that there is probably some quite interesting
topology to be obtained by applying this sort of idea to mathematics:

The electric charge of a wormhole mouth and the magnetic flux “linked” by the
wormhole are non-commuting observables, and so cannot be simultaneously
diagonalized. We use this observation to resolve some puzzles in wormhole elec-
trodynamics and chromodynamics. Specifically, we analyze the color electric
field that results when a colored object traverses a wormhole, and we discuss the
measurement of the wormhole charge and flux using Aharonov-Bohm interfer-
ence effects. We suggest that wormhole mouths may obey conventional quantum
statistics, contrary to a recent proposal by Strominger.

Finally, lest the mathematicians think I have abandoned ship, some rigorous results:

8) Piotr T. Chrusciel, ““No hair” theorems — folklore, conjectures, results”, available
as gr-qc/9402032.

The famous “no hair” theorem says that in general relativity static black hole solutions
are determined by very few parameters — typically listed as mass, angular momentum
and charge in “rest frame” of the black hole. There have been many attempts to extend
this result, especially because no actual black hole is likely to be utterly static, since it
presumably formed at some time. I have not read this but Chrusciel is a very careful
person so I expect it will be up to the standards of his nice review of work on the cosmic
censorship hypothesis,

9) Piotr T. Chrusciel, “On uniqueness in the large of solutions of Einstein’s equations
(“Strong cosmic censorship”)”, in Mathematical Aspects of Classical Field Theory,
Contemp. Math. 132, eds. Gotay, Marsden and Moncrief, American Mathematical
Society, Providence, Rhode Island, 1992, pp. 235–274.

Addendum: See “Week 33” for a paper by Smolin on his evolutionary cosmology
theory. His book came out in 1997 under the title The Life of the Cosmos’ — see “Week
101” for details.

The thing that makes things and the thing that makes things fall apart —
they’re the same thing. Entropy maximization!

— Chris Lee
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Week 32

March 10, 1994

Well, I visited Georgia Tech last week to spread the gospel of “knots and quantum grav-
ity,” and came across a most fascinating development. I’m sure readers of sci.math and
sci.math.research have taken note of the New York Journal of Mathematics. This is
one of the first refereed electronic journals of mathematics. Neil Calkin at Georgia Tech
is helping to start up another one — the Electronic Journal of Combinatorics. Though it’s
unlikely, perhaps some among you are still unaware (or unconvinced) of how essential
it is that we develop fully refereed free-of-charge electronic journals of mathematics and
physics. The first and most obvious reason is that computer-based media offer all sorts
of flexibility that print media lack — more on this later. But the other reason is that the
monopoly of print journals must be broken.

For example, U. C. Riverside does not subscribe to Communications in Mathematical
Physics, despite the fact that this is the crucial journal in that subject, because this journal
costs $3,505 a year! The ridiculous price is, of course, in part precisely because this is the
crucial journal in that subject, in part because the journal uses antiquated and expensive
production methods involving paper, and in part because, being a big operation, it is
basically run by a publishing house rather than mathematical physicists. Luckily, with
the advent of the preprint mailing lists hep-th and gr-qc, I don’t need to read Commu-
nications in Mathematical Physics very often! I simply get my list of abstract each day by
email from Los Alamos, and send email to get the papers I want, in LaTeX or TeX form.
The middleman has been cut out — at least for the moment.

One problem with preprint mailing lists, though, is that the preprints have not gone
through the scrutiny of the referee process. This is, frankly, much less of a problem for
the readers than is commonly imagined, because this scrutiny is less intense than people
who have never refereed papers think! Many refereed papers have errors, and I would
personally feel very uncomfortable using a result unless I either understood the proof or
knew that most experts believed it. The real need for refereed journals, in my slightly
cynical opinion, is that academics need refereed publications to advance in their jobs: the
people who give tenure, promotions etc. cannot be expected to read and understand
ones papers. This is, of course, also the reason for other strange phenomena, such as the
idea of counting somebody’s publications to see how good they are. We need only count
Alexander Abian’s publications to see the limitations of this approach.

Eventually, a few birds may be killed with one stone by means of “seals of approval”
or SOAPs, which are being widely discussed by people interested in the “information
superhighway,” or — let’s call a spade a spade — the Internet. For more on these, check
out the newsgroup comp.interpedia, or read material about the Xanadu project. The
idea here is that eventually we will have a good system whereby people can append
comments to documents, such as “there is an error in the proof of Lemma 1.5, which can
be fixed as follows. . . ” or simply various seals of approval, functioning similarly to the
seal of approval ones paper obtains by being published in a journal. E.g., one could make
ones paper available by ftp or some other protocol, and “submitting it to a journal” might
amount to asking for a particular SOAP, with various SOAPs carrying various amounts of
prestige, and so on.
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Of course, journals also function as a kind of information “hub” or central access
point. We all know that to find out what’s the latest trend in particle physics, it suffices
to glance at Nuc. Phys. B and certain other journals, and so on. It is not clear that the
function of “hub” and the function of SOAP need be combined into a single institution,
once the onerous task of transcribing ideas onto dead trees and shipping them all around
the world becomes (at least partially) obsolete.

It is also not at all certain whether, in the long run, the monopolistic power of journals
to charge large fees for accessing information will be broken by the new revolutions in
technology. This is, of course, just one small facet of the political/economic struggle for
control over information flow that is heating up these days, at least in the U.S., among
telephone companies, cable TV stations, computer networks such as Compuserve, etc.
etc.. If mathematicians and physicists don’t think about these issues, someone else who
has will wind up defining the future for us.

Anyway, for now it seems to make good sense to start refereed journals of mathe-
matics and physics that are accessible electronically, free of charge, over the Internet.
Not too long ago one would commonly hear the remark “. . . but of course nobody would
ever want to do that, because. . . ” followed by some reason or other, reminiscent of
how clearly nobody would want to switch from horses to automobiles because then one
would have to build gas stations all over the place — obviously too much bother to
be worthwhile. Now, however, things are changing and the new electronic journals are
getting quite respectable lists of editors, and they seem to have a good chance of doing
well. I urge everyone to support free-of-charge electronic journals by submitting good
papers!

Let me briefly describe the electronic journals I mentioned above. The New York
Journal’s chief editor is Mark Steinberger, at SUNY Albany, mark@sarah.albany.edu.
The journal covers algebra, modern analysis, and geometry/topology. Access is through
anonymous ftp, gopher and listserv, the latter being (I believe) a mailing list protocol.
One can subscribe by sending email to listserv@albany.edu or listserv@albany.

bitnet; if you want abstracts for all the papers, the body of your email should read

subscribe NYJMTH-A <your full name>

but you can also subscribe to only certain topics (one of the great things about electronic
journals — one can only begin to imagine the possibilities inherent in this concept!), as
follows:

Algebra:

subscribe NYJM-ALG <your full name>

Analysis:

subscribe NYJM-AN <your full name>

Geometry/Topology:

subscribe NYJM-TOP <your full name>

Papers are accepted in amstex and amslatex, and when you get papers you get a .dvi

file.
The Electronic Journal of Combinatorics is taking a somewhat more ambitious ap-

proach that has me very excited. Namely, they are using Mosaic, a hypertext interface to
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the WWW (World-Wide Web). This means, to technical illiterates such as myself, that if
you can ever get your system manager to get the software running, you can see a “front
page” of the journal, with the names of the articles and other things underlined (or in
color if you’re lucky). To go to any underlined item, you simply click your mouse on
it. In fact, you can use this method to navigate throughout the whole WWW, which is
a vast, sprawling network of linked files, including — so I hear — “This Week’s Finds”!
In the Electronic Journal of Combinatorics, when you click on an article you will see it in
postscript form, pretty equations and all. You can also get yourself a copy and print it
out. Neil showed me all this stuff and my mouth watered! The danger of this ambitious
approach is of course that folks who haven’t kept up with things like the WWW may find
it intimidating. . . for a while. It’s actually not too complicated.

This journal will be widely announced pretty soon. The editor in chief is Her-
bert S. Wilf, wilf@central.cis.upenn.edu, and the managing editor is Neil Calkin,
calkin@math.gatech.edu. It boasts an impressive slate of editors (even to me, who
knows little about combinatorics), including Graham, Knuth, Rota and Sloane. To get
browse the journal, which is presently under construction, you just do the following
if you can use Mosaic: “Click on the button marked ‘Open’ and then type in http://

math34.gatech.edu:8080/Journal/journalhome.html”. To get Mosaic, do anonymous
ftp to ftp.ncsa.uiuc.edu and cd to Web/Mosaic binaries — and then you’re on your
own, I just tried it and there were too many people on! — but Neil says it’s not too hard
to get going. I will try as soon as I have a free day.

“Ahem!” the reader comments. “What does this have to do with mathematical
physics?” Well, seeing how little I’m being paid, I see nothing wrong with interpret-
ing my mandate rather broadly, but I should add the following.

1) There are periodic posts on sci.physics about physics on the WWW; there’s a
lot out there, and to get started one always try the following. The information below is
taken from Scott Chase’s physics FAQ:

* How to get to the Web

If you have no clue what WWW is, you can go over the Internet with

telnet to info.cern.ch (no login required) which brings you to the WWW

Home Page at CERN. You are now using the simple line mode browser. To move

around the Web, enter the number given after an item.

* Browsing the Web

If you have a WWW browser up and running, you can move around

more easily. The by far nicest way of "browsing" through WWW uses the

X-Terminal based tool "XMosaic". Binaries for many platforms (ready for

use) and sources are available via anonymous FTP from ftp.ncsa.uiuc.edu

in directory Web/xmosaic. The general FTP repository for browser

software is info.cern.ch (including a hypertext browser/editor for

NeXTStep 3.0)

* For Further Information
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For questions related to WWW, try consulting the WWW-FAQ: Its most

recent version is available via anonymous FTP on rtfm.mit.edu in

/pub/usenet/news.answers/www-faq , or on WWW at

http://www.vuw.ac.nz:80/overseas/www-faq.html

The official contact (in fact the midwife of the World Wide Web)

is Tim Berners-Lee, timbl@info.cern.ch. For general matters on WWW, try

www-request@info.cern.ch or Robert Cailliau (responsible for the "physics"

content of the Web, cailliau@cernnext.cern.ch).

And: 2) there are rumors, which I had better not elaborate on yet, about an impend-
ing electronic journal of mathematical physics! I eagerly await it!

Okay, just a bit about actual mathematical physics per se this time.

1) Carlo Rovelli, “On quantum mechanics”, available as hep-th/9403015.

This interesting paper suggests that reason why we are constantly arguing about the
meaning of quantum mechanics, despite the fact that it works perfectly well and is ob-
viously correct, is that we are making a crucial conceptual error. Rovelli very nicely
compares the problem to special relativity before Einstein did his thing: we had Lorentz
transformations, but they seemed very odd and paradoxical, because the key notion that
the space/time split was only defined relative to a frame (or “observer” if we wish to an-
thropomorphize) was lacking. Rovelli proposes that in quantum mechanics the problem
is that we are lacking the notion that the state of a system is only defined relative to an
observer. (The “Wigner’s friend” puzzle is perhaps the most obvious illustration here.)
What, though, is an observer? Any subsystem of a quantum system, says Rovelli; there
is no fundamental “observer-observed distinction.” This fits in nicely with some recent
work by Crane and myself on quantum gravity, so I like it quite a bit, though it is clearly
not the last word on this issue (nor does Rovelli claim it to be).

2) Alan D. Rendall, “Adjointness relations as a criterion for choosing an inner prod-
uct”, available as gr-qc/9403001.

The inner product problem in quantum gravity is an instance of a general, very interest-
ing mathematics problem, namely, of determining an inner product on a representation
of a star-algebra, by demanding that the representation be a star-representation. Rendall
has proved some very nice results on this issue.

3) Maxim Kontsevich and Yuri Manin, “Gromov-Witten classes, quantum cohomology,
and enumerative geometry”, available as hep-th/9402147.

I will probably never understand this paper so I might as well mention it right away.
Kontsevich’s work on knot theory, and Manin’s work on quantum groups and (earlier)
instantons is extremely impressive, so I guess they can be forgiven for their interest in
algebraic geometry. (A joke.) Let me simply quote:

“The paper is devoted to the mathematical aspects of topological quantum field
theory and its applications to enumerative problems of algebraic geometry. In
particular, it contains an axiomatic treatment of Gromov-Witten classes, and a
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discussion of their properties for Fano varieties. Cohomological Field Theories
are defined, and it is proved that tree level theories are determined by their
correlation functions. Applications to counting rational curves on del Pezzo
surfaces and projective spaces are given.”
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Week 33

May 10, 1994

With tremendous relief, I have finished writing a book, and will return to putting out
This Week’s Finds on a roughly weekly basis. Let me briefly describe my book, which
took so much more work than I had expected. . . and then let me start catching up on
listing some of the stuff that’s cluttering my desk!

1) John Baez and Javier de Muniain, Gauge Fields, Knots and Gravity, World Scientific
Press, Singapore, 1994.

This book is based on a seminar I taught in 1992–93. We start out assuming the
reader is familiar with basic stuff — Maxwell’s equations, special relativity, linear algebra
and calculus of several variables — and try to prepare the reader to understand recent
work on quantum gravity and its relation to knot theory. It proved difficult to do this
well in a mere 460 pages. Lots of tantalizing loose ends are left dangling. However,
there are copious references so that the reader can pursue various subjects further.

Part 1. Electromagnetism

Chapter 1. Maxwell’s Equations

Chapter 2. Manifolds

Chapter 3. Vector Fields

Chapter 4. Differential Forms

Chapter 5. Rewriting Maxwell’s Equations

Chapter 6. DeRham Theory in Electromagnetism

Part 2. Gauge Fields

Chapter 1. Symmetry

Chapter 2. Bundles and Connections

Chapter 3. Curvature and the Yang–Mills Equations

Chapter 4. Chern–Simons Theory

Chapter 5. Link Invariants from Gauge Theory

Part 3. Gravity

Chapter 1. Semi-Riemannian Geometry

Chapter 2. Einstein’s Equations

Chapter 3. Lagrangians for General Relativity

Chapter 4. The ADM Formalism

Chapter 5. The New Variables

2) Asher Peres, Quantum Theory: Concepts and Methods, Kluwer Academic Publishers,
Amsterdam, 1994.
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As Peres notes, there are many books that teach students how to solve quantum me-
chanics problems, but not many that tackle the conceptual puzzles that fascinate those
interested in the foundations of the subject. His book aims to fill this gap. Of course,
it’s impossible not to annoy people when writing about something so controversial; for
example, fans of Everett will be distressed that Peres’ book contains only a brief sec-
tion on “Everett’s interpretation and other bizarre interpretations”. However, the book is
clear-headed and discusses a lot of interesting topics, so everyone should take a look at
it.

Schrödinger’s cat, Bell’s inequality and Wigner’s friend are old chestnuts that every-
one puzzling over quantum theory has seen, but there are plenty of popular new chest-
nuts in this book too, like “quantum cryptography”, “quantum teleportation”, and the
“quantum Zeno effect”, all of which would send shivers up and down Einstein’s spine.
There are also a lot of gems that I hadn’t seen, like the Wigner–Araki–Yanase theorem.
Let me discuss this theorem a bit.

Roughly, the WAY theorem states that it is impossible to measure an operator that
fails to commute with an additive conserved quantity. Let me give an example to clarify
this and then give the proof. Say we have a particle with position q and momentum p,
and a measuring apparatus with position Q and momentum P . Let’s suppose that the
total momentum p+P is conserved — which will typically be the case if we count as part
of the “apparatus” everything that exerts a force on the particle. Then as a consequence
of the WAY theorem we can see that (in a certain sense) it is impossible to measure the
particle’s position q; all we can measure is its position relative to the apparatus, q −Q.

Of course, whenever a “physics theorem” states that something is impossible one
must peer into it and determine the exact assumptions and the exact result! Lots of peo-
ple have gotten in trouble by citing theorems that seem to show something is impossible
without reading the fine print. So let’s see what the WAY theorem really says!

It assumes that the Hilbert space for the system is the tensor product of the Hilbert
space for the thing being observed — for short, let’s call it the “particle” — and the
Hilbert space for the measuring apparatus. Assume also that A and B are two observ-
ables belonging to the observed system, while C is an observable belonging to the mea-
suring apparatus; suppose that B + C is conserved, and let’s try to show that we can
only measure A if it commutes with B. (Our assumptions automatically imply that A
commutes with C, by the way.)

So, what do we mean when we speak of “measuring A”? Well, there are various
things one might mean. The simplest is that if we start the combined system in some
tensor product state u(i) ⊗ v, where v is the “waiting and ready” state of the apparatus
and u(i) is a state of the observed system that’s an eigenvector of A:

Au(i) = a(i)u(i),

then the unitary operator U corresponding to time evolution does the following:

U(u(i)⊗ v) = u(i)⊗ v(i)

where the state v(i) of the apparatus is one in which it can be said to have measured
the observable A to have value a(i). E.g., the apparatus might have a dial on it, and
in the state v(i) the dial reads “a(i)”. Of course, we are really only justified in saying a
measurement has occurred if the states v(i) are distinct for different values of i.
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Note: here the WAY theorem seems to be restricting itself to nondestructive measure-
ments, since the observed system is remaining in the state u(i). If you go through the
proof you can see to what extent this is crucial, and how one might modify the theorem
if this is not the case.

Okay, we have to show that we can only “measure A” in this sense if A commutes
with B. We are assuming that B + C is conserved, i.e.,

U∗(B + C)U = B + C.

First note that
〈u(i), [A,B]u(j)〉 = (a(i)− a(j))〈u(i), Bu(j)〉.

On the other hand, since A and B only act on the Hilbert space for the particle, we also
have

〈u(i), [A,B]u(j)〉 = 〈u(i)⊗ v, [A,B]u(j)〉
= 〈u(i)⊗ v, [A,B + C]u(j)〉
= (a(i)− a(j))〈u(i)⊗ v, (B + C)u(j)⊗ v〉

It follows that if a(i)− a(j) isn’t zero,

〈u(i), Bu(j)〉 = 〈u(i)⊗ v, (B + C)u(j)⊗ v〉
= 〈u(i)⊗ v, U∗(B + C)Uu(j)⊗ v〉
= 〈u(i)⊗ v(i), (B + C)u(j)⊗ v(j)〉
= 〈u(i), Bu(j)〉〈v(i), v(j)〉+ 〈u(i), u(j)〉〈v(i), Cv(j)〉

but the second term vanishes since u(i) are a basis of eigenvectors and u(i) and u(j)
correspond to different eigenvalues, so

〈u(i), Bu(j)〉 = 〈u(i), Bu(j)〉〈v(i), v(j)〉

which means that either 〈v(i), v(j)〉 = 1, hence v(i) = v(j) (since they are unit vectors),
so that no measurement has really been done, OR that 〈u(i), Bu(j)〉 = 0, which means
(if true for all i, j) that A commutes with B.

So, we have proved the result, using one extra assumption that I didn’t mention at
the start, namely that the eigenvalues a(i) are distinct.

I can’t say that I really understand the argument, although it’s easy enough to follow
the math. I will have to ponder it more, but it is rather interesting, because it makes
more precise (and general) the familiar notion that one can’t measure absolute positions,
due to the translation-invariance of the laws of physics; this translation invariance is of
course what makes momentum be conserved. (What I just wrote makes me wonder if
someone has shown a classical analog of the WAY theorem.)

Anyway, here’s the table of contents of the book:

Chapter 1: Introduction to Quantum Physics

1-1. The downfall of classical concepts

1-2. The rise of randomness

1-3. Polarized photons
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1-4. Introducing the quantum language

1-5. What is a measurement?

1-6. Historical remarks

1-7. Bibliography

Chapter 2: Quantum Tests

2-1. What is a quantum system?

2-2. Repeatable tests

2-3. Maximal quantum tests

2-4. Consecutive tests

2-5. The principle of interference

2-6. Transition amplitudes

2-7. Appendix: Bayes’s rule of statistical inference

2-8. Bibliography

Chapter 3: Complex Vector Space

3-1. The superposition principle

3-2. Metric properties

3-3. Quantum expectation rule

3-4. Physical implementation

3-5. Determination of a quantum state

3-6. Measurements and observables

3-7. Further algebraic properties

3-8. Quantum mixtures

3-9. Appendix: Dirac’s notation

3-10. Bibliography

Chapter 4: Continuous Variables

4-1. Hilbert space

4-2. Linear operators

4-3. Commutators and uncertainty relations

4-4. Truncated Hilbert space

4-5. Spectral theory

4-6. Classification of spectra

4-7. Appendix: Generalized functions

4-8. Bibliography

Chapter 5: Composite Systems

5-1. Quantum correlations
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5-2. Incomplete tests and partial traces

5-3. The Schmidt decomposition

5-4. Indistinguishable particles

5-5. Parastatistics

5-6. Fock space

5-7. Second quantization

5-8. Bibliography

Chapter 6: Bell’s Theorem

6-1. The dilemma of Einstein, Podolsky, and Rosen

6-2. Cryptodeterminism

6-3. Bell’s inequalities

6-4. Some fundamental issues

6-5. Other quantum inequalities

6-6. Higher spins

6-7. Bibliography

Chapter 7: Contextuality

7-1. Nonlocality versus contextuality

7-2. Gleason’s theorem

7-3. The Kochen–Specker theorem

7-4. Experimental and logical aspects of inseparability

7-5. Appendix: Computer test for Kochen-Specker contradiction

7-6. Bibliography

Chapter 8: Spacetime Symmetries

8-1. What is a symmetry?

8-2. Wigner’s theorem

8-3. Continuous transformations

8-4. The momentum operator

8-5. The Euclidean group

8-6. Quantum dynamics

8-7. Heisenberg and Dirac pictures

8-8. Galilean invariance

8-9. Relativistic invariance

8-10. Forms of relativistic dynamics

8-11. Space reflection and time reversal

8-12. Bibliography
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Chapter 9: Information and Thermodynamics

9-1. Entropy

9-2. Thermodynamic equilibrium

9-3. Ideal quantum gas

9-4. Some impossible processes

9-5. Generalized quantum tests

9-6. Neumark’s theorem

9-7. The limits of objectivity

9-8. Quantum cryptography and teleportation

9-9. Bibliography

Chapter 10: Semiclassical Methods

10-1. The correspondence principle

10-2. Motion and distortion of wave packets

10-3. Classical action

10-4. Quantum mechanics in phase space

10-5. Koopman’s theorem

10-6. Compact spaces

10-7. Coherent states

10-8. Bibliography

Chapter 11: Chaos and Irreversibility

11-1. Discrete maps

11-2. Irreversibility in classical physics

11-3. Quantum aspects of classical chaos

11-4. Quantum maps

11-5. Chaotic quantum motion

11-6. Evolution of pure states into mixtures

11-7. Appendix: PostScript code for a map

11-8. Bibliography

Chapter 12: The Measuring Process

12-1. The ambivalent observer

12-2. Classical measurement theory

12-3. Estimation of a static parameter

12-4. Time-dependent signals

12-5. Quantum Zeno effect

12-6. Measurements of finite duration
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12-7. The measurement of time

12-8. Time and energy complementarity

12-9. Incompatible observables

12-10. Approximate reality

12-11. Bibliography

3) Bernd Bruegmann, “Loop representations”, available as gr-qc/9312001.

This is a nice review article on loop representations of gauge theories. Anyone wanting
to jump into the loop representation game would be well advised to start here.

4) Lee Smolin, “The fate of black hole singularities and the parameters of the standard
models of particle physics and cosmology”, available as gr-qc/9404011.

This is about Smolin’s “evolutionary cosmology” scenario, which I already discussed in
“Week 31”. Let me just quote the abstract:

A cosmological scenario which explains the values of the parameters of the stan-
dard models of elementary particle physics and cosmology is discussed. In this
scenario these parameters are set by a process analogous to natural selection
which follows naturally from the assumption that the singularities in black
holes are removed by quantum effects leading to the creation of new expand-
ing regions of the universe. The suggestion of J. A. Wheeler that the parameters
change randomly at such events leads naturally to the conjecture that the pa-
rameters have been selected for values that extremize the production of black
holes. This leads directly to a prediction, which is that small changes in any of
the parameters should lead to a decrease in the number of black holes produced
by the universe. On plausible astrophysical assumptions it is found that changes
in many of the parameters do lead to a decrease in the number of black holes
produced by spiral galaxies. These include the masses of the proton, neutron,
electron and neutrino and the weak, strong and electromagnetic coupling con-
stants. Finally,this scenario predicts a natural time scale for cosmology equal to
the time over which spiral galaxies maintain appreciable rates of star formation,
which is compatible with current observations that Ω = .1− .2
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Week 34

May 24, 1994

A bit of a miscellany this week. . . .

1) “Algorithms for quantum computation: discrete log and factoring”, extended ab-
stract by Peter Shor.

There has been a bit of a stir about this paper; since I know Peter Shor’s sister I was able
to get a copy and see what it was really all about.

Quantum computers are so far just a theoretical possibility. It’s easiest to see why
machines that take advantage of quantum theory might be efficient at computation if we
think in terms of path integrals. In Feynman’s path-integral approach to quantum theory,
the probability of getting from state A at time zero to state B some later time is obtained
by integrating the exponential of the action

exp(iS/~)

over all paths from A to B, and then taking the absolute value squared. (Here we are
thinking of states A and B that correspond to points in the classical configuration space.)
We can think of the quantum system as proceeding along all paths simultaneously; it is
the constructive or destructive interference between paths due to the phases exp(iS/~)
that makes certain final outcomes B more likely than others. In many situations, there
is massive destructive interference except among paths very close to those which are
critical points of the action S; the latter are the classical paths. So in a sense, a classical
device functions as it does by executing all possible motions; motions far from those
satisfying Newton’s laws simply cancel out by destructive interference! (There are many
other ways of thinking about quantum theory; this one can be difficult to make mathe-
matically rigorous, but it’s often very handy.)

This raises the idea of building a computer that would take advantage of quantum
theory by trying out all sorts of paths, but making sure that paths that give the wrong
answer cancel out! It seems that Feynman was the first to seriously consider quantum
computation:

2) Richard Feynman, “Simulating physics with computers”, International Journal of
Theoretical Physics, 21, (1982), 467–488.

but by now quite a bit of work has been done on the subject, e.g.:

3) P. Benioff, “Quantum mechanical Hamiltonian models of Turing machines”, J. Stat.
Phys. 29 (1982), 515–546.

D. Deutsch, “Quantum theory, the Church–Turing principle and the universal quan-
tum computer”, Proc. R. Soc. Lond. A 400 (1985), 96–117.

D. Deutsch, Quantum computational networks, Proc. R. Soc. Lond. A 425 (1989),
73–90.

D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation,
Proc. R. Soc. Lond. A 439 (1992), 553–558.
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E. Bernstein and U. Vazirani, Quantum complexity theory, Proc. 25th ACM Symp.
on Theory of Computation (1993), 11–20.

A. Berthiaume and G. Brassard, editors, “The quantum challenge to structural com-
plexity theory”, in Proc. 7th IEEE Conference on Structure in Complexity Theory,
1992.

A. Yao, “Quantum circuit complexity”, in Proc. 34th IEEE Symp. on Foundations of
Computer Science, 1993.

Thanks to this work, there are now mathematical definitions of quantum Turing ma-
chines and the class “BQP” of problems that can be solved in polynomial time with a
bounded probability of error. This allows a mathematical investigation of whether quan-
tum computers can, in principle, do things more efficiently than classical ones. Shor
shows that factoring integers is in BQP. I won’t try to describe how, as it’s a bit technical
and I haven’t really comprehended it. Instead, I’d like say a couple things about the
practicality of building quantum computers, since people seem quite puzzled about this
issue.

There are, as I see it, two basic problems with building quantum computers. First, it
seems that the components must be carefully shielded from unwanted interactions with
the outside world, since such interactions can cause “decoherence”, that is, superposi-
tions of the computer states will evolve into superpositions of the system consisting of
the computer together with what it’s interacting with, which from the point of view of
the computer alone are the same as mixed states. This tends to ruin the interference
effects upon which the advantages of quantum computation are based.

Second, it seems difficult to incorporate error-correction mechanisms in a quantum
computer. Without such mechanisms, slight deviations of the Hamiltonian of the com-
puter from the design specifications will cause the computation to drift away from what
was intended to occur. Luckily, it appears that this drift is only linear rather than exponen-
tial as a function of time. (This impression is based on some simplifications that might
be oversimplifications, so anyone who wants to build a quantum computer had better
ponder this issue carefully.) Linear increase of error with time sets an upper bound on
how complicated a computation one could do before the answer is junk, but if the rate
of error increase was made low enough, this might be acceptable.

Certainly as time goes by and computer technology becomes ever more miniaturized,
hardware designers will have to pay ever more attention to quantum effects, for good or
for ill! (Vaughn Pratt estimates that quantum effects will be a serious concern by 2020.)
The question is just whether they are only a nuisance, or whether they can possibly be
harnessed. Some designs for quantum computers have already been proposed (sorry, I
have no reference for these), and seeing whether they are workable should be a very
interesting engineering problem, even if they are not good enough to outdo ordinary
computers.

4) Lee Smolin and Chopin Soo, “The Chern–Simons invariant as the natural time
variable for classical and quantum cosmology”, available as gr-qc/9405015.

Let me just quote the abstract on this one:

We propose that the Chern–Simons invariant of the Ashtekar–Sen connection (or
its imaginary part in the Lorentzian case) is the natural internal time coordinate
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for classical and quantum cosmology. The reasons for this are: 1) It is a function
on the gauge and diffeomorphism invariant configuration space, whose gradient
is orthogonal to the two physical degrees of freedom, in the metric defined by
the Ashtekar formulation of general relativity. 2) The imaginary part of the
Chern–Simons form reduces in the limit of small cosmological constant, Λ, and
solutions close to DeSitter spacetime, to the York extrinsic time coordinate. 3)
Small matter-field excitations of the Chern–Simons state satisfy, by virtue of the
quantum constraints, a functional Schrödinger equation in which the matter
fields evolve on a DeSitter background in the Chern–Simons time. We then
propose this is the natural vacuum state of the theory for nonzero Λ. 4) This
time coordinate is periodic on the Euclidean configuration space, due to the large
gauge trans- formations, which means that physical expectation values for all
states in non-perturbative quantum gravity will satisfy the KMS condition, and
may then be interpreted as thermal states. Finally, forms for the physical hamil-
tonian and inner product are suggested and a new action principle for general
relativity, as a geodesic principle on the connection superspace, is found.

5) “Symplectic geometry”, a series of lectures by Mikhail Gromov, compiled by Richard
Brown, edited by Robert Miner.

Symplectic geometry is the geometry of classical phase spaces. That is, it’s the geometry
of spaces on which one can take Poisson brackets of functions in a manner given locally
by the usual formulas. Gromov has really revolutionized the subject, and these lectures
look like a good place to begin learning what is going on. There is also an appendix on
contact geometry (another aspect of classical physics) based on a lecture by Eliashberg.
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Week 35

June 5, 1994

1) Alexander Grothendieck, Pursuing Stacks (A la Poursuite des Champs), 1983, 593
pages. Available as https://thescrivener.github.io/PursuingStacks/ps-online.
pdf.

I owe Ronnie Brown enormous thanks for sending this to me (before it was available
online). Grothendieck is mainly famous for his work on algebraic geometry, in which he
introduced the concept of “schemes” to provide a modern framework for the subject. He
was also interested in reformulating the foundations of topology, which is reflected in
Pursuing Stacks. This is a long letter to Quillen, inspired by Quillen’s 1967 book Homo-
topical Algebra. It’s a fascinating mixture of visionary mathematics, general philosophy
and a bit of personal chat. Let me quote a bit:

I write you under the assumption that you have not entirely lost interest for
those foundational questions you were looking at more than fifteen years ago.
One thing which strikes me, is that (as far as I know) there has not been any
substantial progress since — it looks to me that understanding of the basic
structures underlying homotopy theory, or even homological algebra only, is
still lacking — probably because the few people who have a wide enough back-
ground and perspective enabling them to feel the main questions, are devoting
their energies to things which seem more directly rewarding. Maybe even a
wind of disrepute for any foundational matters whatever is blowing nowadays!
In this respect, what seems to me even more striking than the lack of proper
foundations for homological and homotopical algebra, is the absence I daresay
of proper foundations for topology itself! I am thinking here mainly of the devel-
opment of a context of “tame” topology, which (I am convinced) would have on
the everyday technique of geometric topology (I use this expression in contrast
to the topology of use for analysts) a comparable impact or even a greater one,
than the introduction of the point of view of schemes had on algebraic geome-
try. The psychological drawback here I believe is not anything like messyness,
as for homological and homotopical algebra (or for schemes), but merely the
inrooted inertia which prevents us so stubbornly from looking innocently, with
fresh eyes, upon things, without being dulled and emprisoned by standing habits
of thought, going with a familiar context — too familiar a context!

One reason why I’m interested in this letter is that Grothendieck seems to have un-
derstood the importance of “higher algebraic structures” before most people. Recently,
interest in these has been heating up, largely because of the recent work on “extended
topological quantum field theories.” The basic idea is that, just as a traditional quantum
field theory is (among other things) a representation of the symmetry group of space-
time, a topological quantum field theory is a representation of a more sophisticated
algebraic structure, a “cobordism n-category.” An n-category is a wonderfully recursive
sort of thing in which there are objects, 1-morphisms between objects, 2-morphisms
between morphisms, and so on up to n-morphisms. In a “cobordism n-category” the
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objects are 0-manifolds, the 1-morphisms are 1-dimensional manifolds that go between
0-manifolds (as the unit interval goes from one endpoint to another), the 2-morphisms
are 2-dimensional manifolds that go between 1-manifolds (as a cylinder goes from on
circle to another), etc. In practice one must work with manifolds admitting certain types
of “corners”, and equipped with extra structures that topologists and physicist like, such
as orientations, framings, or spin structures. The idea is that all the cutting-and-pasting
constructions in n-dimensional topology can be described algebraically in the cobordism
n-category. To wax rhapsodic for a moment, we can think of an n-category as exempli-
fying the notion of “ways to go between ways to go between ways to go between. . . ..
ways to go between things,” and cobordism n-categories are the particular n-categories
that algebraically encode the possibilities along these lines that are implicit in the notion
of n-dimensional spacetime.

Now, the problem is that the correct definition of an n-category is a highly nontrivial
affair! And it gets more complicated as n increases! A 0-category is nothing but a bunch
of objects. In other words, it’s basically just a set, if we allow ourselves to ignore certain
problems about classes that are too big to qualify as sets. A 1-category is nothing but a
category. Recall the definition of a category:

A category consists of a set of objects and a set of morphisms. Every morphism has
a source object and a target object. (A good example to think of is the category in which
the objects are sets and the morphisms are functions. If f : X → Y , we call X the source
and Y the target.) Given objects X and Y , we write Hom(X,Y ) for the set of morphisms
from X to Y (i.e., having X as source and Y as target).

The axioms for a category are that it consist of a set of objects and for any 2 objects
X and Y a set Hom(X,Y ) of morphisms from X to Y , and

1. Given a morphism g in Hom(X,Y ) and a morphism f in Hom(Y,Z), there is mor-
phism which we call f ◦ g in Hom(X,Z). (This binary operation ◦ is called com-
position.)

2. Composition is associative: (f ◦ g) ◦ h = f ◦ (g ◦ h).

3. For each object X there is a morphism idX from X to X, called the identity on X.

4. Given any f in Hom(X,Y ), f ◦ idX = f and idY ◦ f = f .

Now, a 2-category is more complicated. There are objects, 1-morphisms, and 2-
morphisms, and one can compose morphisms and also compose 2-morphisms. There
is, however, a choice: one can make ones 2-category “strict” and require that the rules
2) and 4) above hold for the 1-morphisms and 2-morphisms, or one can require them
“literally” only for the 2-morphisms, and allow the 1-morphisms some slack. Technically,
one can choose between “strict” 2-categories, usually just called 2-categories, or “weak”
ones, which are usually called “bicategories.”

What do I mean by giving the 1-morphisms some “slack”? This is a very important
aspect of the n-categorical philosophy. . . I mean that in a 2-category one has the option
of replacing equations between 1-morphisms by isomorphisms — that is, by 2-morphisms
that have inverses! The basic idea here is that in many situations when we like to pretend
things are equal, they are really just isomorphic, and we should openly admit this when
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it occurs. So, for example, in a “weak” 2-category one doesn’t have associativity of 1-
morphisms. Instead, one has “associators”, which are 2-morphisms like this:

af,g,h : (f ◦ g) ◦ h→ f ◦ (g ◦ h)

In other words, the associator is the process of rebracketing made concrete. Now, when
one replaces equations between 1-morphisms by isomorphisms, one needs these isomor-
phisms to satisfy “coherence relations” if we’re going to expect to be able to manipulate
them more or less as if they were equations. For example, in the case of the associators
above, one can use associators to go from

f ◦ (g ◦ (h ◦ k))

to
((f ◦ g) ◦ h) ◦ k

in two different ways: either

f ◦ (g ◦ (h ◦ k))→ (f ◦ g) ◦ (h ◦ k)→ ((f ◦ g) ◦ h) ◦ k

or
f ◦ (g ◦ (h ◦ k))→ f ◦ ((g ◦ h) ◦ k)→ (f ◦ (g ◦ h)) ◦ k → ((f ◦ g) ◦ h) ◦ k

Actually there are other ways, but in an important sense these are the basic two. In a
“weak” 2-category one requires that these two ways are equal. . . i.e., this is an identity
that the associator must satisfy, known as the pentagon identity. This is one of the first
examples of a coherence relation. It turns out that if this holds, all ways of rebracketing
that get from one expression to another are equal. (Here I’m being rather sloppy, but the
precise result is known as Mac Lane’s theorem.)

To learn about weak 2-categories, which as I said people usually call bicategories, try:

2) J. Benabou, Introduction to Bicategories, Springer Lecture Notes in Mathematics,
47, Springer, Berlin, 1968.

Now, one can continue this game, but it gets increasingly complex if one goes the “weak”
route. In a “weak n-category” the idea is to replace all basic identities that one might
expect between j-morphisms, such as the associative law, by (j+1)-isomorphisms. These,
in turn, satisfy certain “coherence relations” that are really not equations, but (j + 2)-
morphisms, and so on. . . up to level n. This becomes so complicated that only recently
have “weak 3-categories” been properly defined, by Gordon, Power and Street, who call
them tricategories (see “Week 29”).

A bit earlier, Kapranov and Voevodsky succeeded in defining a certain class of weak
4-categories, which happen to be called “braided monoidal 2-categories” (see “Week 4”).
The interesting thing, you see, which justifies getting involved in this business, is that
a lot of topology automatically pops out of the definition of an n-category. In particular,
n-categories have a lot to do with n-dimensional space. A weak 3-category with only one
object and one 1-morphism is usually known as a “braided monoidal category,” and the
theory of these turns out to be roughly the same as the study of knots, links and tangles!
The “braided monoidal 2-categories” of Kapranov and Voevodsky are really just weak
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4-categories with only one object and one 1-morphism. (The reason for the term “2-
category” here is that since all one has is 2-morphisms, 3-morphisms, and 4-morphisms,
one can pretend one is in a 2-category in which those are the objects, morphisms, and
2-morphisms.)

In any event, these marvelous algebraic structures have been cropping up more and
more in physics (see especially Crane’s stuff listed in “Week 2” and Freed’s paper listed
in “Week 12”), so I got ahold of a copy of Grothendieck’s letter and have begun trying to
understand it.

Actually, it’s worth noting that these n-categorical ideas have been lurking around
homotopy theory for quite some time now. As Grothendieck wrote:

At first sight it had seemed to me that the Bangor group had indeed come to work
out (quite independently) one basic intuition of the program I had envisioned in
those letters to Larry Breen — namely, that the study of n-truncated homotopy
types (of semisimplicial sets, or of topological spaces) was essentially equivalent
to the study of so-called n-groupoids (where n is any natural integer). This is
expected to be achieved by associating to any space (say) X its “fundamental n-
groupoid” Πn(X), generalizing the familiar Poinaré fundamental groupoid for
n = 1. The obvious idea is that 0-objects of Πn(X) should be the points of X,
1-objects should be “homotopies” or paths between points, 2-objects should be
homotopies between 1-objects, etc. This Πn(X) should embody the n-truncated
homotopy type of X, in much the same way as for n = 1 the usual fundamental
groupoid embodies the 1-truncated homotopy type. For two spaces X, Y , the
set of homotopy-classes of maps X → Y (more correctly, for general X, Y , the
maps ofX into Y in the homotopy category) should correspond to n-equivalence
classes of n-functors from Πn(X) to Πn(Y ) — etc. There are some very strong
suggestions for a nice formalism including a notion of geometric realization of
an n-groupoid, which should imply that any n-groupoid is n-equivalent to a
Πn(X). Moreover when the notion of an n-groupoid (or more generally of an
n-category) is relativized over an arbitrary topos to the notion of an n-gerbe
(or more generally, an n-stack), these become the natural “coefficients” for a
formalism of non commutative cohomological algebra, in the spirit of Giraud’s
thesis.

The “Bangor group” referred to includes Ronnie Brown, who has done a lot of work
on “ω-groupoids”. A while back he sent me a nice long list of references on this subject;
here are some that seemed particularly relevant to me (though I haven’t looked at all of
them).

3) G. Abramson, J.-P.Meyer and J. Smith, “A higher dimensional analogue of the fun-
damental groupoid”, in Recent Developments of Algebraic Topology, RIMS Kokyuroku
781, Kyoto, 1992, pp. 38–45,

F. Al-Agl, “Aspects of multiple categories”, University of Wales Ph.D. Thesis, 1989.

F.Al-Agl and R.J.Steiner, “Nerves of multiple categories”, Proc. London Math. Soc.
66 (1992), 92–128.

N. Ashley, “Simplicial T-complexes”, University of Wales Ph.D. Thesis, 1976, pub-
lished as Simplicial T-complexes and Crossed Complexes: a Non-Abelian Version of
a Theorem of Dold and Kan, Dissertationes Mathematicae 265, 1988.
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H.J. Baues, Algebraic Homotopy, Cambridge University Press, Cambridge, 1989.

H.J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, De Gruyter,
Berlin, 1991.

L. Breen, “Bitorseurs et cohomologie non-Ablienne”, in The Grothendieck Festschrift:
a collection of articles written in honour of the 60th birthday of Alexander Grothendieck,
Vol. I, ed. P. Cartier et al., Birkhäuser, Basel, 1990, pp. 401–476.

R. Brown, “Higher dimensional group theory”, in Low-dimensional topology, ed. R.
Brown and T.L.Thickstun, London Math. Soc. Lect. Notes 46, Cambridge University
Press, 215–238, 1982.

R. Brown, “From groups to groupoids: a brief survey”, Bull. London Math. Soc.,
19, 113–134, 1987.

R. Brown, Elements of Modern Topology, McGraw Hill, Maidenhead, 1968.

R. Brown, Topology: a Geometric Account of General Topology, Homotopy Types and
the Fundamental Groupoid, Ellis Horwood, Chichester, 1988.

R. Brown, “Some problems in non-Abelian homological and homotopical alge-
bra”, in Homotopy Theory and Related Topics: Proceedings Kinosaki, ed. M. Mimura,
Springer Lecture Notes in Mathematics 1418, 1990, Springer, Berlin pp. 105–129.

R. Brown and P. J. Higgins, “The equivalence of ω-groupoids and cubical T-complexes”,
Cah. Top. Geom. Diff. 22 (1981), 349–370.

R. Brown and P. J. Higgins, “The equivalence of ∞-groupoids and crossed com-
plexes”, Cah. Top. Geom. Diff. 22 (1981), 371–386.

R. Brown and P. J. Higgins, “The algebra of cubes”, J. Pure Appl. Algebra 21 (1981),
233–260.

R. Brown and P. J. Higgins, “Tensor products and homotopies for ω-groupoids and
crossed complexes”, J. Pure Appl. Algebra, 47 (1987), 1–33.

R. Brown and J. Huebschmann, “Identities among relations”, in Low-dimensional
topology, eds. R. Brown and T. L. Thickstun, London Math. Soc. Lect. Notes 46,
Cambridge University Press, Cambridge, 1982, pp. 153–202.

R. Brown, “Generalised group presentations”, Trans. Amer. Math. Soc., 334 (1992),
519–549.

M. Bullejos, A. M. Cegarra and J. Duskin, “On catn-groups and homotopy types”,
J. Pure Appl. Algebra 86 (1993), 135–154.

M. Bullejos, P. Carrasco and A. M. Cegarra, “Cohomology with coefficients in sym-
metric catn-groups. An extension of Eilenberg-Mac Lane’s classification theorem.”
Granada Preprint, 1992.

P. J. Ehlers and T. Porter, “From simplicial groupoids to crossed complexes”, UCNW
Maths Preprint 92.19, 1992.

D. W. Jones, “Polyhedral T-complexes”, University of Wales Ph.D. Thesis, 1984;
published as A General Theory of Polyhedral Sets and Their Corresponding T-complexes,
Dissertationes Mathematicae 266, 1988.
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M. M. Kapranov and V. Voevodsky, “Combinatorial-geometric aspects of polycate-
gory theory: pasting schemes and higher Bruhat orders (list of results)”, Cah. Top.
Geom. Diff. Cat. 32 (1991), 11–27.

M. M. Kapranov and V. Voevodsky, “∞-groupoids and homotopy types”, Cah. Top.
Geom. Diff. Cat. 32, 29–46, 1991.

M. M. Kapranov and V. Voevodsky, “2-categories and Zamolodchikov tetrahedra
equations”, preprint, 1992.

J.-L. Loday, “Spaces with finitely many non-trivial homotopy groups”, J. Pure Appl.
Algebra 24 (1982), 179–202.

G. Nan Tie, “Iterated W and T-groupoids”, J. Pure Appl. Algebra 56 (1989), 195–
209.

T. Porter, “A combinatorial definition of∞-types”, Topology 22 (1993), 5–24.

S. J. Pride, “Identities among relations of group presentations”, in Proc. Work-
shop on Group Theory from a Geometrical Viewpoint, eds. E. Ghys, A. Haefliger, A.
Verjodsky, World Scientific (1991), 687–716.

R. Steiner, “The algebra of directed complexes”, University of Glasgow Math Preprint,
1992.

A. Tonks, “Cubical groups which are Kan”, J. Pure Appl. Algebra 81 (1992), 83–87.

A. Tonks and R. Brown, “Calculation with simplicial and cubical groups in Axiom”,
UCNW Math Preprint 93.04.

A. R. Wolf, “Inherited asphericity, links and identities among relations”, J. Pure
Appl. Algebra 71 (1991), 99–107.

Since the month of March last year, so nearly a year ago, the greater part
of my energy has been devoted to a work of reflection on the foundations
of non-commutative (co)homological algebra, or what is the same, after
all, of homotopic algebra. These reflections have taken the concrete form of
a voluminous stack of typed notes, destined to for then first volume (now
being finished) of a work in two volumes to be published by Hermann, under
the overall title Pursuing Stacks. I now foresee (after successive extensions
of the initial project) that the manuscript of the whole of the two volumes,
which I hope to finish definitively in the course of this year, will be about
1500 typed pages in length. These two volumes are moreover for me the first
in a vaster series, under the overall title Mathematical Reflections, in which
I intend to develop some of the themes sketched in the present report

— Alexander Grothendieck, Sketch of a Program (1983)
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Week 36

July 15, 1994

I am attempting to keep my nose to the grindstone these days, in part since I’m getting
ready for the Knots and Quantum Gravity session of the Marcel Grossman meeting on
general relativity, which will take place at Stanford the week after next (I will report any
interesting news I hear out there), and in part to make up for earlier stretches of laziness
on my part. . . . Nonetheless, I feel I should describe a few new papers on topological
quantum field theories.

The real reason for physicists’ interest in topological quantum field theories (TQFTs)
is that we sorely need a mathematical framework that quantum gravity might fit into. It’s
likely, however, that quantum gravity won’t be much like the TQFTs people have studied
so far. The existing TQFTs tend to be “exactly soluble” and have finite-dimensional state
spaces; quantum gravity is likely to be different. Still, any experience in studying quan-
tum field theories that don’t rely on “fixed background structures” like a fixed spacetime
metric is likely to be worth having. Also, quantum gravity appears to be tied mathemat-
ically to simpler TQFTs in a variety of ways. In particular, the Ashtekar formulation of
quantum gravity is closely related to a 4-dimensional TQFT variously known as “B ∧ F
theory,” “BF theory,” “topological 2-form gravity” or “topological quantum gravity”. This
in turn is closely related to Chern–Simons theory in 3 dimensions.

Let me just say what the heck BF theories are, and then list a few references on
them. The easiest way to describe them is by giving the Lagrangian. Say spacetime is
an n-dimensional orientable manifold M and we have a principal G-bundle E over M ,
where G is a Lie group whose Lie algebra is equipped with an invariant trace on it. The
two fields in BF theory are a connection A on E — which we can think of locally as a
Lie(G)-valued one-form — and a Lie(G)-valued (n− 2)-form called B. If F denotes the
curvature of A, which is a Lie(G)-valued 2-form, we can take the wedge product B ∧ F
and get a Lie(G)-valued n-form, which gives the Lagrangian

tr(B ∧ F ),

an n-form we can integrate over M to get the action. Since we don’t need any metric
to integrate an n-form over our spacetime M , this action is “generally covariant”. (Note
also that it’s gauge-invariant.) If we vary B and F to get the classical equations of
motion, varying B gives us

F = 0,

that is, the connection A is flat, and varying A gives us

dAB = 0,

that is, the exterior covariant derivative of B vanishes.
In 4 dimensions we can soup up our BF theory a bit by adding terms proportional to

tr(B ∧B)

and
tr(F ∧ F )
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to the Lagrangian. If we take as our Lagrangian

tr(B ∧ F ) + a tr(B ∧B) + b tr(F ∧ F ),

the third term, when integrated over M , is proportional to an invariant called the second
Chern class of E, that is, it’s independent of the connection A, so it really doesn’t affect
the equations of motion at all! In a sense it’s utterly useless. The second term does
something, though; our equations of motion become

F = −2aB, dAB = 0.

Note that if we plug the first equation into the Lagrangian, we get that for solutions of
the equations of motion, the action is a constant times the second Chern class (if a is
nonzero).

Horowitz showed, in this four-dimensional case, that if a is nonzero, there is a single
state of the quantum version of BF theory when spacetime has the form R× S (S being
some oriented 3-manifold), and that this state, thought of as a wavefunction on the
space of connections on S, is just the exponential of the Chern–Simons action. This is
how Chern–Simons theory gets into the game.

Moreover, Baulieu and Singer showed that if you take the boring-looking “FF theory”
with Lagrangian tr(F ∧ F ), and quantize it using the BRST approach, you get some-
thing that Witten proved was closely related to Donaldson theory — an invariant of
4-manifolds. So there seems to be a relation between this stuff and Donaldson theory. It
is a rather mysterious one as far as I’m concerned, though, because it seems you could
just as well have used zero as a Lagrangian, rather than tr(F ∧ F ), and done the same
things Baulieu and Singer did. (At least, that’s how it seems to me, and I got Scott Ax-
elrod to agree with me on that yesterday.) In other words, Donaldson theory seems to
have more to do with the geometry of the space of connections on M than it does with
the “FF” Lagrangian per se. But still, there are other relationships between Donaldson
theory and Chern–Simons theory (which I don’t understand well enough to want to dis-
cuss), so perhaps it is not too silly to say that BF theory is related to Donaldson theory
in some poorly understood manner.

Now for some references: the reference that got me started on these was

1) Gary Horowitz, “Exactly soluble diffeomorphism-invariant theories”, Commun. Math.
Phys. 125 (1989), 417–437. (Listed in “Week 19”)

I got more interested in them when I read

2) Paolo Cotta-Ramusino and Maurizio Martellini, “BF Theories and 2-knots” in Knots
and Quantum Gravity, ed. J. Baez, Oxford U. Press, Oxford, 1994. (Listed in “Week
23”)

which indicated that BF theories may give invariants of surfaces embedded in 4-dimensional
manifolds, much as Chern–Simons theory gives invariants of knots in 3-dimensional
manifolds. Actually, BF theories make sense in any dimension, and in dimension 3 they
appear to give knot invariants, including the Alexander-Conway polynomial:

3) A. S. Cattaneo, P. Cotta-Ramusino, and M. Martellini, “Three-dimensional BF theo-
ries and the Alexander–Conway invariant of knots”, available as hep-th/9407070.
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Another nice-looking paper on BF theories is the following:

4) Henri Waelbroeck, “B∧F theory and flat spacetimes”, available as gr-qc/9311033.

Waelbrock also has a recent paper with Zapata on a Hamiltonian formulation of the
theory on a lattice:

3) Henri Waelbrock and J. A. Zapata, “A Hamiltonian formulation of topological grav-
ity”, available as gr-qc/9311035.

The paper by Baulieu and Singer relating FF theory to Donaldson theory is:

4) L. Baulieu and I. M. Singer, “Topological Yang–Mills symmetry”, Nucl. Phys. (Proc.
Suppl.) B5 (1988), 12–19.

BF theory in 2 dimensions is also called “topological Yang–Mills theory”, and it’s dis-
cussed in various places, including

5) Edward Witten, “On quantum gauge theories in two dimensions”, Commun. Math.
Phys. 141 (1991), 153–209.

and

6) Matthias Blau and George Thompson, “Topological gauge theories of antisymmet-
ric tensor fields”, Ann. Phys. 205 (1991), 130–172.
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Week 37

August 10, 1994

Mainly this week I have various bits of news to report from the 7th Marcel Grossman
Meeting on general relativity. It was big and had lots of talks. Bekenstein gave a nice re-
view talk on entropy/area relations for black holes, and Strominger gave a talk in which
he proposed a solution to the information loss puzzle for black holes. (Recall that if one
believes, as most people seem to believe, that black holes radiate away all their mass in
the form of completely random Hawking radiation, then there’s a question about where
the information has gone that you threw into the black hole in the form of, say, old issues
of Phys. Rev. Lett.. Some people think the information goes into a new “baby universe”
formed at the heart of the black hole — see “Week 31” for more. The information would
still, of course, be gone from our point of view in this picture. Strominger proposed
a set up in which one had a quantum theory of gravity with annihilation and creation
operators for baby universes, and proposed that the universe (the “metauniverse”?) was
in a coherent state, that is, an eigenstate of the annihilation operator for baby universes.
This would apparently allow handle the problem, though right now I can’t remember the
details.) There were also lots of talks on the interferometric detection of gravitational ra-
diation, other general relativity experiments, cosmology, etc.. But I’ll just try to describe
two talks in some detail here.

1) L. Lindblom, “Superfluid hydrodynamics and the stability of rotating neutron stars”,
talk at MG7 meeting, Monday July 5, 1994, Stanford University.

Being fond of knots, tangles, and such, I have always liked knowing that in superflu-
ids, vorticity (the curl of the velocity vector field) tends to be confined in “flux tubes”,
each containing an angular momentum that’s an integral multiple of Planck’s constant,
and that similarly, in type II superconductors, magnetic fields are confined to magnetic
flux tubes. And I was even more happy to find out that the cores of neutron stars are
expected to be made of neutronium that is both superfluid and superconductive, and
contain lots of flux tubes of both types. In this talk, which was really about a deriva-
tion of detailed equations of state for neutron stars, Lindblom began by saying that the
maximum rotation rate of a rotating neutron star is due to some sort of “gravitational ra-
diation instability due to internal fluid dissipation”. I didn’t quite understand the details
of that, which weren’t explained, but it motivated him to study the viscosity in neu-
tron star cores, which are superfluid if they are cool enough (less than a billion degrees
Kelvin). There are some protons and electrons mixed in with the neutrons in the core,
and both the protons and neutrons go superfluid, but the electrons form a normal fluid.
That means that there are actually two kinds of superfluid vortices — proton and neu-
tron — in addition to the magnetic vortices. These vortices mainly line up along the axis
of rotation, and their density is about 106 per square centimeter. Rather curiously, since
the proton, neutron, and electron fluids are coupled due to β decay (and the reverse
process), even the neutron vortices have electric currents associated to them and gener-
ate magnetic fields. This means that the electrons scatter off the neutron vortex cores as
well as the proton vortex cores, which is one of the mechanisms that yields viscosity.
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2) Abhay Ashtekar, “Mathematical developments in quantum general relativity, a sam-
pler”, talk at MG7 meeting, Tuesday July 6, 1994, Stanford University.

This talk, in addition to reviewing what’s been done so far on the “loop representation”
of quantum gravity, presented two new developments that I found quite exciting, so I’d
like to sketch what they are. The details will appear in future papers by Ashtekar and
collaborators.

The two developments Ashtekar presented concerned mathematically rigorous treat-
ments of the “reality conditions” in his approach to quantum gravity, and the “loop states”
used by Rovelli and Smolin. First let me try to describe the issue of “reality conditions”.
As I described in “Week 7”, one trick that’s important in the loop representation is to
use the “new variables” for general relativity introduced by Ashtekar (though Sen and
Plebanski already had worked with similar ideas). In the older Palatini approach to gen-
eral relativity, the idea was to view general relativity as something like a gauge theory
with gauge group given by the Lorentz group, SO(3, 1). But to do this one actually uses
two different fields: a “frame field”, also called a “tetrad”, “vierbein” or “soldering form”
depending on who you’re talking to, and the gauge field itself, usually called a “Lorentz
connection” or “SO(3, 1) connection”. Technically, the frame field is an isomorphism be-
tween the tangent bundle of spacetime and some other bundle having a fixed metric
of signature +—, usually called the “internal space”, and the Lorentz connection is a
metric-preserving connection on the internal space.

The “new variables” trick is to use the fact that SO(3, 1) has as a double cover the
group SL(2,C) of two-by-two complex matrices with determinant one. (For people
who’ve read previous posts of mine, I should add that the Lie algebra of SL(2,C) is
called sl(2,C) and is the same as the complexification of the Lie algebra so(3), which
allows one to introduce the new variables in a different but equivalent way, as I did
in “Week 7”.) Ignoring topological niceties for now, this lets one reformulate complex
general relativity (that is, general relativity where the metric can be complex-valued) in
terms of a complex-valued frame field and an SL(2,C) connection that is just the Lorentz
connection in disguise. The latter is called either the “Sen connection”, the “Ashtekar
connection”, or the “chiral spin connection” depending on who you’re talking to. The
advantage of this shows up when one tries to canonically quantize the theory in terms of
initial data. (For a bit on this, try “Week 11”.) Here we assume our 4-dimensional space-
time can be split up into “space” and “time”, so that space is a 3-dimensional manifold,
and we take as our canonically conjugate fields the restriction of the chiral spin connec-
tion to space, call it A, and something like the restriction of the complex frame field to a
complex frame field E on space. (Restricting the complex frame field to one on space is
a wee bit subtle, especially because one doesn’t really want a frame field or “triad field”,
but really a “densitized cotriad field” — but let’s not worry about this here. I explain this
in terms even a mathematician can understand in my paper “Strings, loops, knots and
gauge fields” (hep-th/9309067). The point is, first, that the A and E fields are mathe-
matically very analogous to the vector potential and electric field in electromagnetism —
or really in SL(2,C) Yang–Mills theory — and secondly, that if you compute their Poisson
brackets, you really do see that they’re canonically conjugate. Third and best of all, the
constraint equations in general relativity can be written down very simply in terms of A
and E. Recall that in general relativity, 6 of Einstein’s 10 equations act as constraints that
the metric and its time derivative must satisfy at t = 0 in order to get a solution at later
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times. In quantum gravity, these constraints are a big technical problem one has to deal
with, and the point of Ashtekar’s new variables is precisely that the constraints simplify
in terms of these variables. (There’s more on these constraints in “Week 11”.)

The price one has paid, however, is that one now seems to be talking about complex-
valued general relativity, which isn’t what one had started out being interested in. One
needs to get back to reality, as it were — and this is the problem of the so-called “reality
conditions”. One approach is to write down extra constraints on the E field that say
that it comes from a real frame field. These are a little messy. Ashtekar, however, has
proposed another approach especially suited to the quantum version of the theory, and
in his talk he filled in some of the crucial details.

Here, to save time, I will allow myself to become a bit more technical. In the quan-
tum version of the theory one expects the space of wavefunctions to be something like
L2 functions on the space of connections modulo gauge transformations — actually this
is the “kinematical state space” one gets before writing the constraints as operators and
looking for wavefunctions annihilated by these constraints. The problem had always
been that this space of L2 functions is ill-defined, since there is no “Lebesgue measure”
on the space of connections. This problem is addressed (it’s premature to say “solved”)
by developing a theory of generalized measures on the space of connections and prov-
ing the existence of a canonical generalized measure that deserves the name “Lebesgue
measure” if anything does. One can then define L2 functions and work with them. For
compact gauge groups, like SU(2), this was done by Ashtekar, Lewandowski and myself;
see e.g. the papers “Spin network states in gauge theory” (gr-qc/9411007) and “Gener-
alized measures in gauge theory” (hep-th/9310201). In the case of SU(2), Wilson loops
act as self-adjoint multiplication operators on the resulting L2 space. But in quantum
gravity we really want to use gauge group SL(2,C), which is not compact, and we want
the adjoints of Wilson loop operators to reflect that fact that the SL(2,C) connection A
in quantum gravity is really equal to Γ + iK, where Γ is the Levi–Civita connection on
space, and K is the extrinsic curvature. Both Γ and K are real in the classical theory, so
the adjoint of the quantum version of A should be Γ − iK, and this should reflect itself
in the adjoints of Wilson loop operators.

The trick, it turns out, is to use some work of Hall which appeared in the Journal
of Functional Analysis in 1994 (I don’t have a precise reference on me). The point is
that SL(2,C) is the complexification of SU(2), and can also be viewed as the cotangent
bundle of SU(2). This allows one to copy a trick people use for the quantum mechan-
ics of a point particle on Rn — a trick called the Bargmann–Segal-Fock representation.
Recall that in the ordinary Schrödinger representation of a quantum particle on Rn, one
takes as the space of states L2(Rn). However, the phase space for a particle in Rn,
which is the cotangent bundle of Rn, can be identified with Cn, and in the Bargmann
representation one takes as the space of states HL2(Cn), by which I mean the holomor-
phic functions on Cn that are in L2 with respect to a Gaussian measure on Cn. In the
Bargmann representation for a particle on the line, for example, the creation operator is
represented simply as multiplication by the complex coordinate z, while the annihilation
operator is d/dz. Similarly, there is an isomorphism between L2(SU(2)) and a certain
space HL2(SL(2,C)). Using this, one can obtain an isomorphism between the space of
L2 functions on the space of SU(2) connections modulo gauge transformations, and the
space of holomorphic L2 functions on the space of SL(2,C) connections modulo gauge
transformations. Applying this to the loop representation, Ashtekar has found a very nat-
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ural way to take into account the fact that the chiral spin connection A is really Γ + iK,
basically analogous to the fact that in the Bargmann representation multiplication by z
is really q + ip (well, up to various factors of

√
2, signs and the like).

Well, that was pretty sketchy and probably not especially comprehensible to anyone
who hasn’t already worried about this issue a lot! In any event, let me turn to the other
good news Ashtekar reported: the constuction of “loop states”. Briefly put (I’m getting
worn out), he and some collaborators have figured out how to rigorously construct gen-
eralized measures on the space of connections modulo gauge transformations, starting
from invariants of links. This begins to provide an inverse to the “loop transform” (which
is a construction going the other way).
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Week 38

August 19, 1994

I’ve been busy, and papers have been piling up; there are lots of interesting ones that I
really should describe in detail, but I had better be terse and list them now, rather than
waiting for the mythical day when I will have time to do them justice.

So:

1) B. Durhuus, H. P. Jakobsen and R. Nest, “Topological quantum field theories from
generalized 6j-symbols”, Rev. Math. Physics 5 (1993), 1–67.

In “Week 16” I explained a paper by Fukuma, Hosono and Kawai in which they obtained
topological quantum field theories in 2 dimensions starting with a triangulation of a 2d
surface. The theories were “topological” in the sense that the final answers one computed
didn’t depend on the triangulation. One can get between any two triangulations of a
surface by using a sequence of the following two moves (and their inverses), called the
(2,2) move:

•

•

•

•

←→ •

•

•

•

and the (3,1) move:

•

•

•

•
←→

•

•

•

Note that in either case these moves amount to replacing one part of the surface of a
tetrahedron with the other part! In fact, similar moves work in any dimension, and they
are often called the Pachner moves.

The really wonderful thing is that these moves are also very significant from the point
of view of algebra. . . and especially what I call “higher-dimensional algebra” (following
Ronnie Brown), in which the distinction between algebra and topology is largely erased,
or, one might say, revealed for the sham it always was.

For example, as explained more carefully in “Week 16”, the (2,2) move is really
just the same as the associative law for multiplication. The idea is that we are in a 2-
dimensional spacetime, and a triangle represents multiplication: two “incoming states”
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go in two sides and their product, the “outgoing state”, pops out the third side:

•

A

•

B

•AB

Then the (2,2) move represents associativity:

•

A

•

(AB)C

•

C

•

B

AB ←→ •

A

•

A(BC)

•

C

•

B

BC

Of course, the distinction between “incoming” and “outgoing” sides of the triangle is
conventional, and the more detailed explanation in “Week 16” shows how that fits into
the formalism. Roughly speaking, what we have is not just any old algebra, but an
algebra that, thought of as a vector space, is equipped with an isomorphism between it
and its dual. This isomorphism allows us to forget whether we are coming or going, so
to speak.

Hmm, and here I was planning on being terse! Anyway, the still more interesting
point is that when we think about 3-dimensional topology and “3-dimensional algebra,”
we should no longer think of

•

•

•

•

and •

•

•

•

as representing equal operations (the 3-fold multiplication of A, B, and C); instead,
we should think of them as merely isomorphic, with the tetrahedron of which they
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are the front and back being the isomorphism. The basic philosophy is that in higher-
dimensional algebra, as one ascends the ladder of dimensions, certain things which had
been regarded as equal are revealed to be merely isomorphic. This gets tricky, since
certain isomorphisms that were regarded as equal at one level are revealed to be merely
isomorphic at the next level. . . leading us into a subtle world of isomorphisms between
isomorphisms between isomorphisms. . . which the theory of n-categories attempts to
systematize. (I should note, however, that in the particular case of associativity this busi-
ness was worked out by Jim Stasheff quite a while back: it’s the homotopy theorists who
were the ones with the guts to deal with such issues first.)

Now, it turns out that in 3-dimensional algebra, the isomorphism corresponding to the
(2,2) move is not something marvelously obscure. It is in fact precisely what physicists
call the “6j symbol”, a gadget they’ve been using to study angular momentum in quan-
tum mechanics for a long time! In quantum mechanics, the study of angular momentum
is just the study of representations of the group SU(2), and if one has representations A,
B, and C of this group (or any other), the tensor products (A⊗B)⊗C and A⊗ (B⊗C)
are not equal, but merely isomorphic. It should come as no surprise that this isomor-
phism is represented by physicists as a big gadget with 6 indices dangling on it, the “6j
symbol”.

Quite a while back, Regge and Ponzano tried to cook up a theory of quantum gravity
in 3 dimensions using the 6j symbols for SU(2). More recently, Turaev and Viro built
a 3-dimensional topological quantum field theory using the 6j-symbols of the quantum
group SUq(2), and this led to lots of work, which the above article explains in a distilled
sort of way.

The original Ponzano–Regge and Turaev–Viro papers, and various other ones clarify-
ing the relation of the Turaev–Viro theory to quantum gravity in spacetimes of dimension
3, are listed in “Week 16”. It’s also worth checking out the paper by Barrett and Foxon
listed in “Week 24”, as well as the following paper, for which I’ll just quote the abstract:

2) Timothy J. Foxon, “Spin networks, Turaev–Viro theory and the loop representa-
tion”, available as gr-qc/9408013.

We investigate the Ponzano–Regge and Turaev–Viro topological field theories us-
ing spin networks and their q-deformed analogues. I propose a new description
of the state space for the Turaev–Viro theory in terms of skein space, to which q-
spin networks belong, and give a similar description of the Ponzano–Regge state
space using spin networks. I give a definition of the inner product on the skein
space and show that this corresponds to the topological inner product, defined
as the manifold invariant for the union of two 3-manifolds. Finally, we look
at the relation with the loop representation of quantum general relativity, due
to Rovelli and Smolin, and suggest that the above inner product may define an
inner product on the loop state space.

(Concerning the last point I cannot resist mentioning my own paper on knot theory
and the inner product in quantum gravity, “Quantum gravity and the algebra of tangles”.)

In addition to the papers by Turaev–Viro and Fukuma–Shapere listed in “Week 16”,
there are some other papers on Hopf algebras and 3d topological quantum field theories
that I should list:
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3) Greg Kuperberg, “Involutory Hopf algebras and three-manifold invariants”, Inter-
nat. Jour. Math 2 (1991), 41–66.

“A definition of #(M,H) in the non-involutory case”, by Greg Kuperberg, unpub-
lished.

Greg Kuperberg is one of the few experts on this subject who is often found on the net;
he is frequently known to counteract my rhetorical excesses with a dose of precise infor-
mation. The above papers, one of which is sadly still unpublished, make it beautifully
clear how “algebra knows more about topology than we do”, since various basic struc-
tures on Hopf algebras have a pleasant tendency to interact just as needed to give 3d
topological quantum field theories.

4) John W. Barrett and Bruce W. Westbury, “Spherical categories”, available as hep-th/
9310164.

John W. Barrett and Bruce W. Westbury, “Invariants of piecewise-linear 3-manifolds”,
Trans. Amer. Math. Soc. 348 (1996), 3997–4022. Also available as hep-th/

9311155.

John W. Barrett and Bruce W. Westbury, “The equality of 3-manifold invariants”,
available as hep-th/9406019.

Let me quote the abstract for the first one; the second one gives a construction of 3-
manifold invariants, and the third shows that the authors’ 3-manifold invariants agree
with Kuperberg’s when both are defined.

This paper is a study of monoidal categories with duals where the tensor prod-
uct need not be commutative. The motivating examples are categories of repre-
sentations of Hopf algebras and the motivating application is the definition of
6j-symbols as used in topological field theories.

We introduce the new notion of a spherical category. In the first section we prove
a coherence theorem for a monoidal category with duals following MacLane
(1963). In the second section we give the definition of a spherical category, and
construct a natural quotient which is also spherical.

In the third section we define spherical Hopf algebras so that the category of
representations is spherical. Examples of spherical Hopf algebras are involutory
Hopf algebras and ribbon Hopf algebras. Finally we study the natural quotient
in these cases and show it is semisimple.

5) Louis H. Kauffman and David E. Radford, “Invariants of 3-Manifolds derived from
finite dimensional Hopf algebras”, available as hep-th/9406065.

This paper also relates 3d topology and certain finite-dimensional Hopf algebras, and it
shows they give 3-manifold invariants distinct from the more famous ones due to Witten
(and a horde of mathematicians). I have not had time to think about how they relate to
the above ones, but I have a hunch that they are the same, since all of them make heavy
use of special grouplike elements associated to the antipode.

6) Louis Crane and Igor Frenkel, “Four dimensional topological quantum field theory,
Hopf categories, and the canonical bases”, available as hep-th/9405183.
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Work in 4 dimensions is, as one expects, still more subtle than in 3, since again various
things that were equalities becomes isomorphisms. In particular, this means that various
things one thought were vector spaces — which are sets that have elements that you can
add and multiply by numbers, and which satisfy equations like

A+B = B +A

are now reinterpreted as “2-vector spaces”, which are categories that have objects that you
can direct sum and tensor with vector spaces, and which have certain natural isomorphisms
like the isomorphism

A⊕B ∼= B ⊕A.

In particular, using Lusztig’s canonical basis, Crane and Frenkel start with quantum
groups (which are Hopf algebras of a certain sort) and build marvelous “Hopf categories”
out of them. While they do not construct a 4d TQFT in this paper, they indicate the game
plan in terms clear enough that they will probably now have to race other workers in
the field to see who can get the first interesting 4d TQFT. . . or perhaps something a bit
subtler than a 4d TQFT (e.g. Donaldson theory).

Finally, let me turn to a subject that is closely related (though unfortunately this has
not yet been made sufficiently clear), namely, holonomy algebras and the loop represen-
tation of quantum gravity. Let me simply list the references now; many of these papers
were discussed at my session on knots and quantum gravity at the Marcel Grossman
conference, so I promise to explain at some later time (and in some papers I’m writing)
a bit more about how the loop representation of a gauge theory is interesting from the
viewpoint of higher-dimensional algebra!

7) A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao and T. Thiemann, “A manifestly
gauge-invariant approach to quantum theories of gauge fields”, contribution to the
Cambridge meeting proceedings, available as hep-th/9408108.

Jerzy Lewandowski, “Topological measure and graph-differential geometry on the
quotient space of connections”, Proceedings of “Journees Relativistes 1993”, available
as gr-qc/9406025.

Abhay Ashtekar, Donald Marolf and Jose Mourao, “Integration on the space of
connections modulo gauge transformations”, available as gr-qc/9403042.

A. Ashtekar and R. Loll, “New loop representations for 2+1 gravity”, available as
gr-qc/9405031.

R. Loll, “Independent loop invariants for 2+1 gravity”, available as gr-qc/9408007.

R. Loll, J.M. Mouro and J.N. Tavares, “Generalized coordinates on the phase space
of Yang–Mills theory”, available as gr-qc/9404060.

C. Di Bartolo, R. Gambini and J. Griego, “The extended loop representation of
quantum gravity”, available as gr-qc/9406039.

Rodolfo Gambini, Alcides Garat and Jorge Pullin, “The constraint algebra of quan-
tum gravity in the loop representation”, available as gr-qc/9404059.
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Week 39

September 24, 1994

I want to say a bit about Alain Connes’ book, newly out in English, and then some about
Yang–Mills theory in 2 dimensions.

1) Alain Connes, Noncommutative Geometry, Academic Press, Cambridge, Massachusetts.

You know something is up when a prominent mathematical physicist (Daniel Kastler)
says “Alain is great. I am just his humble prophet.” (This happened at a conference at
Penn State I just went to.) What is noncommutative geometry and what’s so great about
it?

Basically, the idea of noncommutative geometry is to generalize geometry to “quan-
tum spaces”. For example, the ordinary plane has two functions on it, the coordinate
functions x and y, which commute: xy = yx. We can think of x and y as representing
the position and momentum of a classical particle. But when we consider a quantum-
mechanical particle, we must give up commutativity and instead impose the “canonical
commutation relations” xy− yx = i~, where ~ is Planck’s constant. Now x and y are not
really functions on any space at all, but simply elements of a noncommutative algebra.
Still, we can try our best to pretend that they are functions on some mysterious sort of
“quantum space” in which knowing one coordinate of a point precisely precludes us from
knowing the other coordinate exactly, by the Heisenberg uncertainty principle. Mathe-
matically, noncommutative geometry consists of 1) expressing the geometry of spaces
algebraically in terms of the commutative algebra of functions on them, and 2) then
generalizing the results to classes of noncommuative algebras.

The main trick invented by Connes was to come up with a substitute for the “differen-
tial forms” on a space. Differential forms are the bread and butter of modern geometry.
If we start with a commutative algebra A (say the algebra of smooth functions on some
manifold like the plane), we can form the algebra of differential forms over A by in-
troducing, for each element f in A, a formal symbol df , and imposing the following
rules:

• d(f + g) = df + dg

• d(cf) = cdf (c a constant)

• d(fg) = (df)g + fdg

• fdg = (dg)f

• dfdg = −dgdf .

More precisely, the differential forms over A are the algebra generated by A and
these differentials df , modulo the above relations. This gives a purely algebraic way of
understanding what those mysterious things like dxdydz in integral signs are.

Now, the last two of the five rules listed above fit nicely with the commutative of
A when it is commutative, but they jam up the works horribly otherwise. So: how to
generalize differential forms to the noncommutative case? There are various things one
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can do if A is commutative in some generalized sense, such as “supercommutative” or
“braided commutative” (which I call “R-commutative” in some papers on this subject).
However, if A is utterly noncommutative, it seems that the best approach is Connes’,
which is first to throw out the last two relations, obtaining something folks call the “dif-
ferential envelope” of A or the “universal differential graded algebra” over A — which
is pleasant but quite boring by itself — and then to consider “chains” which are linear
maps F from this gadget to the complex numbers (or whatever field you’re working in)
satisfying the cyclic property

F (uv) = (−1)ijF (vu)

where u is something that looks like f0df1df2 . . . dfi, and v is something like g0dg1dg2 . . . dgj .
There are charming things one can do with chains that wind up letting one do most of
what one could do with differential forms. More precisely, just as differential forms al-
low you entry into the wonderful world of de Rham cohomology, chains let you develop
something similar called cyclic homology (and there is a corresponding cyclic cohomol-
ogy that’s even more like the de Rham theory).

Connes, being extremely inventive and ambitious, has applied noncommutative dif-
ferential geometry to many areas: index theory, K-theory, foliations, Penrose tilings, frac-
tals, the quantum Hall effect, and even elementary particle physics. Perhaps the most
intriguing result is that if one develops the Yang–Mills equations using the techniques of
noncommutative geometry, but with a very simple “commutative” model of spacetime,
namely a two-sheeted cover of ordinary spacetime, the Higgs boson falls out rather mag-
ically on its own. This has led Kastler and other physicists to pursue a reformulation of
the whole Standard Model in terms of noncommutative geometry, hoping to simplify it
and even make some new predictions. It is far too early to see if this approach will get
somewhere useful, but it’s certainly interesting.

I haven’t read this book, just part of the French version on which it’s based (with
extensive additions), but my impression is that it’s quite easy to read given the technical
nature of the subject.

2) Gregory Moore, “2d Yang–Mills theory and topological field theory”, available as
hep-th/9409044.

This is a nice review of recent work on 2d Yang–Mills theory. While Yang–Mills
theory in 4 dimensions is the basis of our current theories of the strong, weak, and
electromagnetic forces, and mathematically gives rise to a cornucopia of deep results
about 4-dimensional topology, 2d Yang–Mills theory has traditionally been considered
“trivial” in that one can exactly compute pretty much whatever one wants. However,
Witten, in “On quantum gauge theories in two dimensions” (see “Week 36”), showed
that precisely because 2d Yang–Mills theory was exactly soluble, one could use it to study
a lot of interesting mathematics problems relating to “moduli spaces of flat connections.”
(More about those below.) And Gross, Taylor and others have recently shown that 2d
Yang–Mills theory, at least working with gauge groups like SU(N) or SO(N) and taking
the “large N limit”, could be formulated as a string theory. So people respect 2d Yang–
Mills theory more these days; its complexities stand as a strong clue that we’ve just begun
to tap the depths of 4d Yang–Mills theory!

I can’t help but add that Taylor and I did some work a while back in which we
formulated SU(N) 2d Yang–Mills theory for finite N as a string theory. This was meant
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as evidence for my proposal that the loop representation of quantum gravity is a kind of
string theory, a proposal described in “Week 18”. For more on this sort of thing, try my
paper in the book Knots and Quantum Gravity (see “Week 23”) — which by the way is
finally out — and also the following:

3) J. Baez and W. Taylor, “Strings and two-dimensional QCD for finite N”, available
as hep-th/9401041.

When it comes to “moduli spaces of flat connections”, it’s hard to say much without
becoming more technical, but I certainly recommend starting with the beautiful work of
Goldman:

4) William Goldman, “The symplectic nature of fundamental groups of surfaces”, Adv.
Math. 54 (1984), 200–225.

William Goldman, “Invariant functions on Lie groups and Hamiltonian flows of
surface group representations”, Invent. Math. 83 (1986), 263–302.

William Goldman, “Topological components of spaces of representations”, Invent.
Math. 93 (1988), 557–607.

The basic idea here is to take a surface S with a particular G-bundle on it, and care-
fully study the space of flat connections modulo gauge transformations, which will be a
finite-dimensional stratified space. If you fix G and S, no matter what bundle you pick,
this space will appear as a subspace of a bigger space called the moduli space of flat con-
nections, which is the same as Hom(π1(S), G)/AdG. There is an open dense set of this
space, the “top stratum”, which is a symplectic manifold. Geometric quantization of this
manifold has everything in the world to do with Chern–Simons theory, as summarized
so deftly by Atiyah:

5) Michael Atiyah, The Geometry and Physics of Knots, Cambridge U. Press, Cambridge,
1990.

On the other hand, lately people have been using 2d Yang–Mills theory, BF theory, and
the like (see “Week 36”) to get a really thorough handle on the cohomology of the moduli
space of flat connections. For a mathematical approach to this problem that doesn’t talk
much about gauge theory, try:

6) Lisa C. Jeffrey, “Group cohomology construction of the cohomology of moduli
spaces of flat connections on 2-manifolds”, available as alg-geom/9404012.
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Week 40

October 19, 1994

When I was an undergraduate I was quite interested in logic and the foundations of
mathematics — I was always looking for the most mind-blowing concepts I could get
ahold of, and Gödel’s theorem, the Löwenheim–Skolem theorem, and so on were right
up there with quantum mechanics and general relativity as far as I was concerned. I did
my undergrad thesis on computability and quantum mechanics, but then I sort of lost
interest in logic and started thinking more and more about quantum gravity. The real
reason was probably that my thesis didn’t turn out as interesting as I’d hoped, but I re-
member feeling at the time that logic had become less revolutionary than in it was in the
early part of the century. It seemed to me that logic had become a branch of mathematics
like any other, studying obscure properties of models of the Zermelo–Fraenkel axioms,
rather than questioning the basic presumptions implicit in those axioms and daring to
pursue new, different approaches. I couldn’t really get excited about the properties of
super-huge cardinals. Of course, I knew a bit about intuitionistic logic and various forms
of finitism, but these seemed to be the opposite of daring; instead, they seemed to appeal
mainly to grumpy people who didn’t trust abstractions and wanted to do everything as
conservatively as possible. I was pretty interested in quantum logic, too, but I tended to
think of this more as a branch of physics than ‘logic’ proper.

Anyway, it’s now quite clear to me that I just hadn’t been reading the right stuff. I
think Rota has said that the really interesting work in logic now goes under the name of
‘computer science’, but for whatever reason, I didn’t dig into the Journal of Philosophical
Logic, other logic journals, or proceedings of conferences on category theory, computer
science and the like and find the stuff that would have excited me. It goes to show that
one really needs to keep digging! Anyway, I just went to a conference called the Lambda
Calculus Jumelage up in Ottawa, thanks to a kind invitation by Prakash Panangaden and
Phil Scott, who thought my ideas on category theory and physics might interest (or at
least amuse) the folks who attend this annual bash. It became clear to me while up there
that logic is alive and well!

Of course, I don’t actually understand most of what these people are up to, so take
what I say with a large grain of salt. My goal here is more to draw attention to some
interesting-sounding ideas than to explain them.

One interesting subject, which I think I’m finally beginning to get an inkling of, is
“linear logic”. This was introduced in the following paper (which I haven’t gotten around
to looking at):

1) Jean-Yves Girard, “Linear Logic”, Theoretical Computer Science 50 (1987), 1–102.

When I first heard about linear logic, it made utterly no sense. It seemed to be a
logic suitable for use in some completely different universe than the one I inhabited!
For example, there were the familiar logical connectives “and” and “or”, but they had
weird alternate versions called “tensor” and “par”, the latter written with an upside-
down ampersand. There was also an alternate version of the material implication “→”,
and a strange operation called “!” (pronounced “bang”) that somehow mediated between
the logical connectives I knew and loved and their eerie alter egos.
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I understand a wee bit about these things now; one can get a certain ways just by
getting used to “tensor”, since the rest of the weird connectives are defined in terms of
this one and the familiar ones. (I won’t worry about the “!” here.) One key idea, which
finally penetrated my thick skull, is that there is a good reason why “tensor” does not
satisfy the following deduction rule so characteristic of “and”:

S ` p S ` q
S ` p&q

meaning: if from the set of premisses S we can deduce p, and from S we can also deduce
q, then from S we can deduce p&q. The point is that in linear logic one should not think
of S as a set of premisses, but rather as a multiset, meaning that the same premise can
appear twice. The idea is that if we use one premise in S to deduce something, we use it
up, and we can only use it again if S has several copies of that premise in it. As they say,
linear logic is “resource-sensitive” (which is apparently why computer scientists like it).
So the idea is that in linear logic,

S ` p&q

means something like “from the premisses S one can deduce p if one feels like it, or
alternatively one can deduce q if one feels like it, but not necessarily both at once, since
there may not be enough copies of the premisses to do that.” On the other hand,

S ` p⊗ q

is stronger, since it means something like “from the premisses S one can deduce both p
and q at once, since there are enough copies of all the premisses in S to do it.” Thus “&”
satisfies the above deduction rule in linear logic just as in classical logic, but “tensor”
does not; instead, it satisfies

S ` p T ` q
S ∪ T ` p⊗ q

where S ∪ T denotes the union of the multisets S and T (so that if both S and T have
one copy of a premiss, S ∪ T has two copies of it).

Well, let me leave it at that. I should add that there is a paper available online,

2) Vaughan Pratt, “Linear logic for generalized quantum mechanics”, by available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.649.

which relates linear logic and quantum logic, and which is part of a body of work relating
linear logic and category theory, with the key idea being that “linear logic is a logic of
monoidal closed categories in much the same way that intuitionistic logic is a logic of
Cartesian closed categories” — here I quote

3) Richard Blute, “Hopf algebras and linear logic”, Mathematical Structures in Com-
puter Science, 6 (1996), 189–217. Available as https://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.114.8038.

I suppose to most people, explaining linear logic in terms of monoidal closed categories
may seem like using mud to wipe one’s windshield. However, to some of us monoidal
closed categories are rather familiar things, and in fact anyone who knows about vector
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spaces, linear maps, and the vector spaces Hom(V,W ) and V ⊗W knows a really good
example of a monoidal closed category. Thus monoidal closed categories can be viewed
as an abstraction of linear algebra, and indeed this is how “linear logic” got its name.

It seems that I should read the following papers, too, before I really understand the
connection between linear logic and category theory:

4) R. A. G. Seely, Linear logic, *-autonomous categories and cofree coalgebras, in Cat-
egories in Computer Science and Logic, Contemp. Math. 92, American Mathematical
Society, Providence, Rhode Island, 1989.

5) D. Yetter, “Quantales and (noncommutative) linear logic”, Journal of Symbolic Logic
55 (1990), 41–64.

A terse summary of linear logic in terms a categorist might like can be found in Section
3.5 of Pratt’s paper cited above. I should add that Pratt has lots of other interesting
papers available online.
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Week 41

October 17, 1994

In the beginning of September I went to a conference at the Center for Gravitational
Physics and Geometry at Penn State. This is the center run by Abhay Ashtekar, and it
has Jorge Pullin and Lee Smolin as faculty, and Roger Penrose as a part-time visitor —
so it’s a great place to visit if you’re interested in quantum gravity. There are a lot of
good postdocs and such there, too. I’ve been too busy to say much so far about what
happened at this conference, but I’d like to now.

One talk I enjoyed a lot was Steve Carlip’s, on the entropy of black holes. This has
subsequently come out as a preprint, available electronically:

1) Steve Carlip, “The statistical mechanics of the (2+1)-dimensional black hole”,
available as gr-qc/9409052.

It’s well-known by now that in certain situations it makes sense to speak of the “en-
tropy” of a black hole, but the real meaning of this entropy is still mysterious. In partic-
ular, since the entropy of a black hole is (often, but not always) proportional to the area
of its event horizon, it would be very satisfying if the entropy corresponded somehow
to degrees of freedom that “lived at the event horizon”. Steve Carlip has done a pretty
credible calculation along these lines (though not without various subtle difficulties) in
the case of a black hole in 3-dimensional spacetime.

I should say a little bit about gravity in 3 dimensions and why people are interested
in it. 3-dimensional gravity is drastically simpler than 4-dimensional gravity, since in 3
dimensions the vacuum Einstein’s equations say the spacetime metric is flat, at least if
the cosmological constant vanishes. Thus there can be no gravitational radiation (and in
quantum theory no “gravitons”), and the metric produced by a static point mass is not
like the Schwarschild metric, instead, on space it is just like that of a cone. Things are
a bit different if the cosmological constant is nonzero; in particular, there are black-hole
type solutions. But there is still no gravitational radiation.

Basically, people are interested in 3-dimensional quantum gravity because it’s sim-
ple enough that one can compute something and hope it sheds some light on the 4-
dimensional world we live in. For some issues this appears to be the case: primarily,
conceptual issues having to do with theories in which there is no “background metric”.
Unfortunately, there are several different ways to set up 3-dimensional quantum gravity,
corresponding to different approaches people have to 4-dimensional quantum gravity.
For this, check out Carlip’s paper “Six ways to quantize (2+1)-dimensional gravity,”
mentioned in “Week 16”. However, I think the “best” way to quantize gravity in 3 di-
mensions is the way involving Chern–Simons theory, because this way is the most closely
related to Ashtekar’s approach to quantizing gravity in 4 dimensions, hence it sheds the
most light on the things I’m interested in — and I also think it’s the most beautiful. In
this approach, you can compute a lot of things, and basically what Carlip has done is
to show that associated to the event horizon there are degrees of freedom which should
give entropy proportional to its area.

I suppose I can’t say how he does it much more clearly than he says it, so I’ll quote
the introduction, taking the liberty of turning some of his LaTeX into English. If you get

198

https://arxiv.org/abs/gr-qc/9409052


WEEK 41 OCTOBER 17, 1994

scared by the “Virasoro operator L0” below, never fear — in this context, it just amounts
to the angular momentum operator, which generates rotations about the origin. So:

The basic argument is quite simple. Begin by considering general relativity on
a manifold M with boundary. We ordinarily split the metric into true physical
excitations and “pure gauge” degrees of freedom that can be removed by diffeo-
morphisms of M . But the presence of a boundary alters the gauge invariance
of general relativity: the infinitesimal transformations [. . . ] must now be re-
stricted to those generated by vector fields [. . . ] with no component normal
to the boundary, that is, true diffeomorphisms that preserve the boundary of
M . As a consequence, some degrees of freedom that would naively be viewed as
“pure gauge” become dynamical, introducing new degrees of freedom associated
with the boundary.
Now, the event horizon of a black hole is not a true boundary, although the
black hole complementarity approach of Susskind et al. suggests that it might
be appropriately treated as such. Regardless of one’s view of that program,
however, it is clear that in order to ask quantum mechanical questions about
the behavior of black holes, one must put in “boundary conditions” that ensure
that a black hole is present. This means requiring the existence of a hypersurface
with particular metric properties—say, those of an apparent horizon.
The simplest way to do quantum mechanics in the presence of such a surface is
to quantize fields separately on each side, imposing the appropriate correlations
as boundary conditions. In a path integral approach, for instance, one can inte-
grate over fields on each side, equate the boundary values, and finally integrate
over those boundary values compatible with the existence of a black hole. But
this process again introduces boundary terms that restrict the gauge invariance
of the theory, leading once more to the appearance of new degrees of freedom at
the horizon that would otherwise be treated as unphysical.
My suggestion is that black hole entropy is determined by counting these would-
be gauge degrees of freedom. The resulting picture is similar to Maggiore’s
membrane model of the black hole horizon, but with a particular derivation
and interpretation of the “membrane” degrees of freedom.
The analysis of this phenomenon is fairly simple in 2+1 dimensions. It is well
known that (2+1)-dimensional gravity can be written as a Chern–Simons the-
ory, and it is also a standard result that a Chern–Simons theory on a manifold
with boundary induces a dynamical Wess–Zumino–Witten (WZW) theory on
the boundary. In the presence of a cosmological constant Λ = −1/L2 appro-
priate for the (2+1)-dimensional black hole, one obtains a slightly modified
SO(2, 1)× SO(2, 1) WZW model, with coupling constant

k =
L
√

2

8G

This model is not completely understood, but in the large k — i.e., small Λ —
limit, it may be approximated by a theory of six independent bosonic oscillators.
I show below that the Virasoro operator L0 for this theory takes the form

L0 ∼ N −
( r

4G

)2
,
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whereN is a number operator and r is the horizon radius. It is a standard result
of string theory that the number of states of such a system behaves asymptoti-
cally as

n(N) ∼ exp(π
√

4N)

If we demand that L0 vanish — physically, requiring states to be independent of
the choice of origin of the angular coordinate at the horizon — we thus obtain

log n(r) ∼ 2πr

4G
,

precisely the right expression for the entropy of the (2+1)-dimensional black
hole.

Also, Carlo Rovelli spoke about describing the dynamics of quantum gravity coupled
to a scalar field in terms of “spin network” states. I think this was based on work he did
in collaboration with Lee Smolin, and I don’t think it’s out yet. I’m just about to finish
up a little paper on spin network states myself, since they seem like very useful things in
quantum gravity. The simplest sort of spin network is just a trivalent graph (i.e., 3 edges
adjacent to each vertex) with edges labelled by “spins” 0, 12 , 1,

1
2 , . . ., and satisfying the

“triangle inequality” at each vertex:

j1 + j2 6 j3, j2 + j3 6 j1, j3 + j1 6 j2,

where j1, j2, j3 are the spins labelling the edges adjacent to the given vertex. Really,
the spins should be thought of as irreducible representations of SU(2), and the triangle
inequalities is necessary for the representation j3 to appear as a summand in the tensor
product of the representations j1 and j2. (If the last sentence was meaningless to you,
reading “Week 5” will help a little, though probably not quite enough.)

Penrose introduced spin networks as part of a purely combinatorial approach to
spacetime in the paper:

2) Roger Penrose, “Angular momentum; an approach to combinatorial space time”,
in Quantum Theory and Beyond, ed. T. Bastin, Cambridge University Press, Cam-
bridge, 1971. Available as https://math.ucr.edu/home/baez/penrose/.

It is somehow satisfying, therefore, to see that spin networks arise naturally as a conve-
nient description of states in the loop representation of quantum gravity, which starts
mainly with Einstein’s equations and the principles of quantum mechanics. Certainly
there is a lot more we need to learn about them. . . . One place worth reading about
them is:

3) Louis Crane, “Conformal field theory, spin geometry, and quantum gravity”, by
Phys. Lett. B259 (1991), 243–248.

I will be coming out with a paper on them next week if I get my act together, and I may
say a bit more about them in future “Week s”.

Rovelli also mentioned an interesting paper he wrote about the problem of time
in quantum gravity with the operator-algebra/noncommutative- geometry guru Alain
Connes:
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4) A. Connes and C. Rovelli, “Von Neumann algebra automorphisms and time-thermodynamics
relation in general covariant quantum theories”, available as gr-qc/9406019.

The problem of time in quantum gravity is a bit tricky to describe, since it takes different
guises in different approaches to quantum gravity, but I have attempted to give a rough
introduction to it in “Week 11” and “Week 27”. One way to get a feeling for it is to
realize that anything you are used to doing with Hamiltonians in quantum mechanics or
quantum field theory, you CAN’T do in quantum gravity, at least not in any simple way,
because there is no Hamiltonian in general relativity, but only a “Hamiltonian constraint”
— which in quantum gravity becomes the Wheeler–DeWitt equation

Hψ = 0.

Now, people know there is a mystical relationship between time and temperature that
might be written

it =
1

kT

where t is time, T is temperature, and k is Boltzmann’s constant. This equation is a bit
of an exaggeration! But the point is that in quantum theory, when there is a Hamiltonian
H around one evolves states using the operator

exp(−itH)

while the Gibbs state, that is, the equilibrium state at temperature T , is given by the
density matrix

exp(−H/kT ).

It is this fact that relates statistical mechanics and quantum field theory so closely.
Now, in quantum gravity things aren’t so simple, since there isn’t a Hamiltonian (just

a Hamiltonian constraint). However, people do know that there are all sorts of funny
relationships between statistical mechanics and quantum gravity. For example, an accel-
erating observer in Minkowski space will see the vacuum as a heat bath with temperature
proportional to her acceleration, so in curved spacetime, where there are no truly inertial
frames, there really is no well-defined notion of a vacuum; in some vague sense, all there
are is “thermal” states. This fact is also somehow related to Hawking radiation, and to
the notion of black hole entropy. . . but really, there is a lot that nobody understands
about all these connections!

In any event, Rovelli was prompted to use thermodynamics to define time in quan-
tum gravity as follows. Given a mixed state with density matrix D, find some operator
H such that D is the Gibbs state exp(−H/kT ). In lots of cases this isn’t hard; it basically
amounts to

H = −kT lnD

Of course, H will depend on T , but this really is just saying that fixing your units of
temperature fixes your units of time!

Operator theorists have pondered this notion very carefully for a long time and gener-
alized it into something called the Tomita–Takesaki theorem, which Connes and Rovelli
explain. This gives a very general way to cook up a Hamiltonian (hence a notion of time
evolution) from a state of a quantum system! For example, one can use this trick to start
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with a Robertson–Walker universe full of blackbody radiation, and recover a notion of
“time”. This is very intriguing, and it may represent some real progress in understanding
the deep relations between time, thermodynamics, and gravity. There are, of course, lots
of problems and puzzles to deal with.

Another intriguing talk at the conference was given by Viqar Husain, on the subject
of the following paper:

5) Viqar Husain, “The affine symmetry of self-dual gravity”, available as hep-th/

9410072.

Let me simply quote the abstract, since I don’t feel I really understand the essence of this
business well enough to say anything useful yet:

Self-dual gravity may be reformulated as the two dimensional chiral model with
the group of area preserving diffeomorphisms as its gauge group. Using this
formulation, it is shown that self-dual gravity contains an infinite dimensional
hidden symmetry algebra, which is the Affine (Kac–Moody) algebra associated
with the Lie algebra of area preserving diffeomorphisms. This result provides an
observable algebra and a solution generating technique for self-dual gravity.

A couple more things before I wrap this up. . . . First, in case any mathematicians out
there are wondering what this “knots and quantum gravity” business is all about, here’s
something I wrote to review the subject:

6) John Baez, “Knots and quantum gravity: progress and prospects”, available as
gr-qc/9410018.

My abstract:

Recent work on the loop representation of quantum gravity has revealed pre-
viously unsuspected connections between knot theory and quantum gravity, or
more generally, 3-dimensional topology and 4-dimensional generally covariant
physics. We review how some of these relationships arise from a ‘ladder of field
theories’ including quantum gravity and BF theory in 4 dimensions, Chern–
Simons theory in 3 dimensions, and the G/G gauged WZW model in 2 dimen-
sions. We also describe the relation between link (or multiloop) invariants and
generalized measures on the space of connections. In addition, we pose some re-
search problems and describe some new results, including a proof (due to Sawin)
that the Chern–Simons path integral is not given by a generalized measure.

Finally, let me draw people’s attention to “Matters of Gravity”, the newsletter Jorge
Pullin puts together at considerable effort, to keep people informed about general rela-
tivity and the like, experimental and theoretical:

7) “Matters of Gravity”, a newsletter for the gravity community, Number 4, edited by
Jorge Pullin, 24 pages in Plain TeX, available as gr-qc/9409004.

Here’s the table of contents of this issue:

• Editorial.
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• Gravity News:

– Report on the APS topical group in gravitation, Beverly Berger.

• Research briefs:

– Gravitational microlensing and the search for dark matter, Bohdan Paczynski.

– Laboratory gravity: the G mystery, Riley Newman.

– LIGO project update, Stan Whitcomb.

• Conference Reports

– PASCOS ’94, Peter Saulson.

– The Vienna Meeting, P. Aichelburg, R. Beig.

– The Pitt binary black hole grand challenge meeting, Jeff Winicour.

– International symposium on experimental gravitation at Pakistan, Munawar
Karim.

– 10th Pacific coast gravity meeting, Jim Isenberg.
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Week 42

November 3, 1994

String theory means different things to different people. The original theory of strings –
at least if I’ve got my history right – was a theory of hadrons (particles interacting via the
strong force). The strong force wasn’t understood too well then, but in 1968 Veneziano
cleverly noticed when thumbing through a math book that Euler’s beta function had a
lot of the properties one would expect of the formula for how hadrons scattered (the
so-called S-matrix). Later, around 1970, Nambu and Goto noticed that this function
would come out naturally if one thought of hadrons as different vibrational modes of a
relativistic string.

This theory had problems, and eventually it was supplanted by the current theory of
the strong force, involving quarks and gluons. The gluons are another way of talking
about the strong force, which is a gauge field. The biggest puzzle about this approach to
hadrons is, “how come we don’t see quarks?” This is called the puzzle of confinement.
In the late 1970’s, one proposed solution was that as you pulled the quark and the
antiquark in a meson apart, the strong force effectively formed an elastic “string” with
constant tension. This would mean that pulling them apart took energy proportional
to how far you pulled them apart. Past a certain point, the energy would be enough
to create a new quark-antiquark pair and snap — the string would split into two new
strings with quark and antiquark on each end. So here the “string” idea is revived but
as an approximation to a theory of gauge fields. One can even try to derive approximate
string equations from the equations for the strong force: the Yang–Mills equations. In
my paper on strings, loops, knots and gauge fields (see “Week 18”), I gave references to
some early papers on the subject:

1) Y. Nambu, “QCD and the string model”, Phys. Lett. B80 (1979), 372–376.

“Gauge fields as rings of glue”, A. Polyakov, Nucl. Phys. B164 (1979), 171–188.

Y. Nambu, “The quantum dual string wave functional in Yang–Mills theories”, Phys.
Lett. B80 (1979), 255–258.

F. Gliozzi and M. Virasoro, “The interaction among dual strings as a manifestation
of the gauge group”, Nucl. Phys. B164 (1980), 141–151.

A. Jevicki, “Loop-space representation and the large-N behavior of the one-plaquette
Kogut-Susskind Hamiltonian”, Phys. Rev. D22 (1980), 467–471.

Y. Makeenko and A. Migdal, “Quantum chromodynamics as dynamics of loops”,
Nucl. Phys. B188 (1981), 269–316.

Y. Makeenko and A. Migdal, “Loop dynamics: asymptotic freedom and quark con-
finement”, Sov. J. Nucl. Phys. 33 (1981), 882–893.

These papers make very interesting reading even today. Anyone who knows particle
physics will recognize most of these names! Strings were big back then. But then they
went out of fashion, because the string models predicted a massless spin-2 particle —
and there’s no such thing in particle physics. Later, when people were trying to cook up
“theories of everything” including gravity, this flaw was again seen as a plus, since the
hypothesized “graviton” meets that description.
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The modern, more technical subject of string theory is a lot more fancy than these
early papers. In particular, the recognition that conformal invariance was a very good
thing when studying strings propagating on fixed background metric (like that of Minkowski
space) pushed string theorists into a careful study of 2-dimensional conformal invariant
quantum field theories. (Here the 2 dimensions refer to the surface the string traces out
as it moves through spacetime.) Conformal field theory then developed a life of its own!
By now it’s pretty intimidating to the outsider. Mathematicians might find the following
summary handy:

2) Krzysztof Gawedzki, “Conformal field theory”, Seminaire Bourbaki, Asterisque 177–
178 (1989), 95–126.

while physicists might try

3) Michio Kaku, Introduction to Superstrings, Springer, Berlin, 1988.

Michio Kaku, String Fields, Conformal Fields, and Topology, New York, Springer,
Berlin, 1991.

Kaku’s books are a decent overview but rather sketchy in spots, since they cover vast
amounts of territory.

Then there is another kind of sophisticated modern string theory, “string field theory”,
which doesn’t assume the strings are moving around on a spacetime with a background
geometry. This is clearly more like what one wants to do if one is using strings to explain
quantum gravity. I don’t understand this nearly as well as I’d like to, but the guru on
this subject is Barton Zwiebach, so if one was really gutsy one would, after a suitable
warmup with Kaku, plunge in and read something like

4) Ashoke Sen and Barton Zwiebach, “Quantum background independence of closed
string field theory”, available as hep-th/9311009.

Ashoke Sen and Barton Zwiebach,“Background independent algebraic structures
in closed string field theory”, available as hep-th/9408053.

Unfortunately I’m not quite up to it yet. . . .
Then, in a different direction, a bunch of folks from general relativity pursued some

ideas about string and loops to the point of developing the “loop representation of quan-
tum gravity.” I’m referring to

5) C. Rovelli and L. Smolin, “Loop representation for quantum general relativity”,
byNucl. Phys. B331 (1990), 80–152.

though it’s important to credit some of the people who kept alive the idea that one should
study gauge fields as being “loops of string”, or more technically, “Wilson loops”:

6) R. Gambini and A. Trias, “Gauge dynamics in the C-representation”, Nucl. Phys.
B278 (1986), 436–448.

Now what’s frustrating here is that I understand the loop representation business,
but not the “background-free closed string field theory” business, even though they have
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the same historical roots and are both trying to deal with quantum gravity (among other
forces) in a way that assumes that loops are the basic objects. Alas, the two strands speak
in different languages! Heavy-duty mathematicians like Getzler, Kapranov and Stasheff
know how to think about closed string fields in terms of “operads”, and that stuff seems
like it should be simple enough to understand, but alas, when I read it I get snowed in
detail (so far).

Let me digress to mention what an “operad” is. An “operad” is basically a cool
way to handle sets equipped with lots of n-ary operations. These operations might be
“parametrized” in various ways. The operad elegantly keeps track of these parametriza-
tions. So, for each n, an operad has a set X(n) which we think of as all the n-ary
operations. Think of something in X(n) as a black box that has n “input” tubes and one
“output” tube, or a tree-shaped thing

with n branches and one root (here n = 3). Then suppose we have a bunch of these
black boxes. Say we have something in X(n1), something in X(n2), . . . . and so on up
to something in X(nk). Thus we’ve got a pile of black boxes with a total of n1 + . . .+ nk
input tubes and k output tubes. Now if we also have a guy in X(k), which has k input
tubes, we can hook up all the output tubes of all the boxes in our pile to the input tubes
of this guy, to get a monstrous machine with n1 + . . . + nk input tubes and one output.
In short, there is an operation from X(n1)× . . .×X(nk)×X(k)→ X(n1 + . . .+nk). For
example, if we take the tree up there, which represents something in X(3), and another
thing in X(3), we can hook up their outputs to the inputs of something in X(2), to get
something that looks like

which is in X(6). The closed string field theorists like operads because there are lots of
parametrized ways of gluing together Riemann surfaces with punctures together. It’s a
handy language, apparently. . . I am a bit more familiar with operads (though not much)
in the context of homotopy theory, where they can be used to elegantly summarize the
operations one has floating around in an infinite loop space. Very roughly, an infinite
loop space is a space that looks like the space of loops of loops of loops of loops. . . of
loops in some topological space, where you get to make the “dot dot dot” part go on as
long as you want! A beautifully unpretentious and utterly readable book on these spaces,
operads, and much much more, is:

7) J. F. Adams, Infinite Loop Spaces, Princeton U. Press, Princeton, 1978.
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Lest “infinite loop spaces” seem abstruse, I should emphasize that the book is really
a nice tour of a lot of modern homotopy theory. As he says, “my object has been a more
elementary exposition, which I hope may convey the basic ideas of the the subject in a
way as nearly painless as I can make it. In this the Princeton audience encouraged me;
the more I found means to omit the technical details, the more they seemed to like it.” A
lot of the general mathematical machinery he discusses, especially in the chapter called
“Machinery”, is really too nice to be left for only the homotopy theorists!

Anyway, once you have gotten the hang of operads you can try the work of a reformed
homotopy theorist, Jim Stasheff, on string field theory:

8) Jim Stasheff, “Closed string field theory, strong homotopy Lie algebras and the
operad actions of moduli spaces”, available as hep-th/9304061.

Actually Graeme Segal, another string theory guru, also used to do homotopy theory.
He’s the one who’s famous for:

9) Andrew Pressley and Graeme Segal, Loop groups, Oxford University Press, Oxford,
1986.

So it’s possible that these guys didn’t really quit homotopy theory, but just figured out
how to get physicists interested in it. Notice all those loops! :-)

But where was I. . . romping through various approaches to string theory, taking a
detour to mention loops, but all the while sneaking up on my goal, which is to list a
few papers that lend evidence to the thesis of my paper Strings, Loops, Knots and Gauge
Fields, namely that a profound “string/gauge field duality” is at work in many physical
models, and that the loop representation of quantum gravity, and string theory, may
eventually not be seen as so different after all.

Let’s see what we’ve got here:

10) “A reformulation of the Ponzano–Regge quantum gravity model in terms of sur-
faces”, Junichi Iwasaki, University of Pittsburgh, 11 pages in LaTeX format avail-
able as gr-qc/9410010.

I’ve discussed the Ponzano–Regge model quite a bit in “Week 16” and “Week 38”.
It’s an approach to quantum gravity that is especially successful in 3 dimensions, and
involves chopping spacetime up into simplices. The exact partition function, as they
say, can be computed using this combinatorial discrete approximation to the spacetime
manifold. (In quantum field theory, when you know enough about the partition function
you can compute the expectation values of observables to your heart’s content.) Anyway,
here Iwasaki does the kind of thing I was pointing towards in my paper, namely, to
rewrite the theory, which starts out as a gauge theory, as a theory of surfaces (“string
worldsheets”) in spacetime.

Meanwhile, more work has been done on the same kind of idea for good old quantum
chromodynamics, though here there is a background geometry, and one approximates
the spacetime manifold by a discrete lattice not because one expects to get the exact
answers out that way, but just because it’s a decent approximation that makes things a
bit more manageable:
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11) B. Rusakov, “Lattice QCD as a theory of interacting surfaces”, available as hep-th/
9410004.

Ivan K. Kostov, “U(N) gauge theory and lattice strings”, available as hep-th/

9308158.

Also, if there were any gauge theory that deserved to be a string theory, it’s probably
Chern–Simons theory, which has so much to do with knots. . . and indeed something
like this seems to be the case, though it’s all rather subtle and mysterious so far:

12) Michael R. Douglas, “Chern–Simons-Witten theory as a topological Fermi liquid”,
available as hep-th/9403119.

Frequently, when there is a whole lot of frenetic, sophisticated-sounding activity around
a certain idea, like this relation between strings and gauge fields, there is a simple truth
yearning to be known. Sometimes it takes a while! We’ll see.
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Week 43

November 5, 1994

It is very exciting, yet somewhat scary, as work continues on the loop representation
of quantum gravity. On the one hand, researches are busy making it mathematically
rigorous; on the other hand, they are beginning to understand its physical significance.
The reasons for excitement are obvious, but the scary part is that until the final touches
are put on the mathematical rigor, we don’t know if the theory really exists!

Of course there is the whole separate issue of whether the theory will find experimen-
tal confirmation. If the theory were experimentally confirmed, questions of mathematical
rigor wouldn’t be quite such a big deal. But experimental verification will probably take
a long time! Also, we don’t really expect a theory of “pure gravity” to be experimentally
confirmed. One will need to figure out how all the other particles and fields fit in —
except perhaps for very general, qualitative issues. (See the paper mentioned at the very
end of this article for some of those.) So here the suspense is of a long-term sort. Luckily,
the question of whether the theory makes mathematical sense is already very interesting,
since so many theories of quantum gravity have already been shot down on that basis,
and the loop representation approach seems so pretty. Either it will make sense, or we
will run into some obstacle, which is bound to be enlightening.

Let me briefly review the loop representation, without too many technical details. For
more details try the original paper by Rovelli and Smolin (see “Week 42” for a reference),
the book by Ashtekar (see “Week 7”), or, especially if you’re a mathematician, my review
article “Knots and quantum gravity: progress and prospects”.

There are 3 basic steps in the “canonical quantization” of general relativity. At each
step there is a vector space of quantum states, but only in the last do we really need a
Hilbert space of states, since only when we’re done do we want to be able to compute
expectation values of observables, which takes an inner product.

In what follows I’ll talk about the simplest situation, where we have the vacuum
Einstein equations

G = 0

where G is the “Einstein tensor” cooked up from the curvature of spacetime. Say space-
time is of the form R × S, where R is the real numbers (time) and S is a 3-dimensional
manifold (space). We will think of S as the “t = 0 slice” of R× S.

I) The first stage is to get the space of “kinematical states”. In the quantum mechanics
of a point particle on the line, the space of wavefunctions is a space of functions
on the real line. Similarly, in quantum gravity we naively expect kinematical states
to be functions on the space of Riemannian metrics on the 3-dimensional manifold
S we’re taking to be “space”. In the loop representation one does something a bit
more clever, but let’s move on and then come back to that.

II) The second stage is getting the space of “diffeomorphism-invariant states”. In fact,
Einstein’s equations in coordinates look like

Gµν = 0
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where the indices µ, ν range from 0 to 3. It’s customary to work in coordinates xµ
where x0 is “time” and the other three coordinates are the “space” coordinates on
S. Then classically, the equations G0µ = 0 serve as constraints on the initial data
for Einstein’s equations, while the remaining equations describe time evolution.
I.e., only for certain choices of a metric and its first time derivative at t = 0 can we
get a solution of Einstein’s equations. In fact, G0µ can be calculated knowing only
the metric and its first time derivative at t = 0, and the equations saying they are
zero are the constraints that this data must satisfy to get a solution of Einstein’s
equations.

Following the usual recipes of quantum theory, we want to turn these constaints into
operators on the kinematical Hilbert space of stage I, and then demand that the states
relevant for physics be annihilated by these operators. The “diffeomorphism-invariant
subspace” is the subspace of the kinematical state space that is annihilated by the con-
straints corresponding to G0i where i = 1, 2, 3. Let us put off for a moment why it’s
called what it is!

III) The third and final stage is getting the space of “physical states”. Here we look
at the subspace of diffeomorphism-invariant states that are also annihilated by
the constaint corresponding to G00. The equation saying that a diffeomorphism-
invariant state is annihilated by this constraint is called the “Wheeler–DeWitt equa-
tion”, and this is generally regarded as the fundamental equation of quantum grav-
ity.

Now, it should make some sense why we call the “physical states” what we do. These
are quantum states satisfying the quantum analogues of the constraints that the classical
initial data must satisfy to be initial data for a solution of Einstein’s equations. But why
do we impose the constraints Gµν = 0 in two separate stages, and call the states in part
II “diffeomorphism-invariant states”?

This is a very important question which gives quantum gravity much of its curious
character. In classical general relativity, G0i not only gives one of Einstein’s equations,
namely G0i = 0, it also “generates diffeomorphisms” of the 3-dimensional manifold S
representing space. If you don’t quite know what this means, let me simply say that in
classical mechanics, observables give rise to one-parameter families of symmetries. For
example, momentum gives rise to spatial translations, while energy (aka the Hamilto-
nian) gives rise to time translations. We say that the observable “generates” the one-
parameter family of symmetries. This is (roughly) what I mean by saying that G0i gen-
erates diffeomorphisms of S. Similarly, G00 generates diffeomorphisms of the spacetime
R× S corresponding to time evolution.

A similar thing happens in quantum theory. BUT: in quantum theory, if a state is
annihilated by some observable, it implies that the state is invariant under the one-
parameter family of symmetries generated by that observable. This is not true in classical
mechanics. Indeed, it’s rather odd. But what it implies is that in step II we are really
restricting ourselves to kinematical states that are invariant under diffeomorphisms of
the spatial manifold S. This is why we call them “diffeomorphism-invariant” states.
Similarly, in step III we’re further restricting ourselves to states that are invariant under
time evolution. The final “physical states” are, at least heuristically, invariant under all
diffeomorphisms of spacetime. (So maybe the physical states are the ones that really
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should be called “diffeomorphism-invariant” — but it’s too late now.) While this may
seem odd, all it really means is that in the quantum theory of gravity — at least when
one does it this way — the physical states describe only those aspects of the world
that are independent of any choice of coordinate system. That has a certain charm,
philosophically speaking. It is, however, not something physicists are used to.

Now, the general scheme outlined above has been around ever since the work of
DeWitt:

1) Bryce S. DeWitt, “Quantum theory of gravity, I-III”, Phys. Rev. 160 (1967), 1113–
1148, 162 (1967) 1195–1239, 1239–1256.

However, the problem has always been making the scheme mathematically rigorous,
or else to do some kind of calculations that shed some light on the meaning of it all!
There are lots of problems. Let me not delve into them now, but simply cut directly to
the “new variables” idea for handling these problems. The key idea of Ashtekar was to
use as basic variables, not the metric on S and its first time derivative, but the “chiral spin
connection” on S and a “complex frame field”. To describe these would require a digres-
sion into differential geometry that I’m not in the mood for right now, especially since I
already explained this stuff a bit in “Week 7”. (There I call the chiral spin connection the
“right-handed” connection.)

I do, however, want to emphasize that the new variables rely heavily upon some of
the basic group-theoretic facts about 3 and 4 dimensions. The group of rotations in 3d
space is called SO(3), because mathematically these are 3 × 3 orthogonal matrices with
determinant 1. Now, a key fact in math and physics is that this group has the group
SU(2) of 2 × 2 complex unitary matrices with determinant 1 as a “double cover”. This
means roughly that there are two elements of this other group corresponding to each
element of SO(3). It’s this fact that allows the existence of spin- 12 particles!

Now, SU(2) is sitting inside a bigger group, SL(2,C), the group of all 2 × 2 complex
matrices with determinant 1, not necessarily unitary. Just as SU(2) is used to describe
the symmetries of spin-12 particles in space, SL(2,C) describes the symmetries of spin-
1
2 particles in spacetime. The reason is that SL(2,C) is the double cover of the group
SO(3, 1) of Lorentz transformations.

Given a Riemannian metric on the space S, there is always an “SO(3) connection”
describing how objects rotate when you move them around a loop, due to the curvature
of space. This is called the Levi–Civita connection. With a little work we can also think
of this as an SU(2) connection. However, Ashtekar works instead with the chiral spin
connection, which is an SL(2,C) connection cooked up from the Levi–Civita connection
and the first time derivative of the metric (which turns out to be closely related to the
“extrinsic curvature” of S as it sits in the spacetime R× S.)

The great advantage of Ashtekar’s “new variables” is that the Hamiltonian and diffeo-
morphism constraints are simpler in these variables. Unfortunately, they lead to a curious
new issue which at first seemed very nasty — the problem of “reality conditions”. This
has a lot to do with going from SU(2), which is a “real” group in a technical sense, to
SL(2,C), which is a “complex” group that’s roughly twice as big. Essentially, Ashtekar’s
formalism seems at first to be better suited to general relativity with a complex-valued
metric than to good old “real” general relativity. For quite a while people didn’t know
quite what to do about this, so a lot of work on the new variables more or less ignores
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this issue. Luckily, there is now a very elegant approach to handling it, worked out
by Ashtekar and collaborators. They are coming out with a couple of papers on this,
hopefully by mid-November:

2) Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, José Mourão and Thomas
Thiemann, “Coherent state transforms for spaces of connections”, available as
gr-qc/9412014.

Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, José Mourão and Thomas
Thiemann, “Quantization of diffeomorphism invariant theories of connections with
local degrees of freedom”, available as gr-qc/9504018.

The first paper constructs a kind of transform that takes functions on the space of SU(2)
connections on S into functions on the space of SL(2,C) connections on S. The “kine-
matical states” in Ashtekar’s approach are, roughly speaking, functions of the latter kind.
(Really they are more like “measures”.) This is some really pretty mathematics — it’s
a kind of generalization of the Bargmann–Segal transform to the case of functions on
spaces of connections.

Physically, the transform allows us to relate Ashtekar’s approach to the traditional
“metric” approach much more clearly, since, as I described, SU(2) connections are closely
related to metrics on S. The second paper should treat the physics behind this in
more detail, and also describe a rigorous construction of “loop states” — a large class
of diffeomorphism-invariant states which Rovelli and Smolin have claimed are actually
physical states. (For more on these, see below.) This means that to check Rovelli and
Smolin’s claim, the main thing we need is a rigorous treatment of the Hamiltonian con-
straint in quantum gravity.

Unfortunately, this is where it gets scary, since the Hamiltonian constraint is a very
tricky thing. For more on it, try:

3) M. Blencowe, “The Hamiltonian constraint in quantum gravity”, Nucl. Phys. B341
(1990), 213–251.

Bernd Bruegmann and Jorge Pullin, “On the constraints of quantum gravity in the
loop representation”, Nucl. Phys. B390 (1993), 399–438.

Bernd Bruegmann, On the Constraints of Quantum General Relativity in the Loop
Representation, Ph.D. Thesis, Syracuse University, 1993.

The loop states of Rovelli and Smolin are in one-to-one correspondence with knots
in space, or more precisely, isotopy classes of knots. (Roughly, two knots are isotopic
if you can get one from the other by applying a diffeomorphism of space that can be
continuously deformed to the identity.)

What is the physical meaning of these loop states? Roughly it’s this. Say you take
a spin- 12 particle and move it around in a path that traces out a knot. When you do
this using the Levi–Civita connection, it comes back “rotated” by some SU(2) matrix. If
you take the trace of this matrix (sum of diagonal entries) and divide by two, you get a
number between -1 and 1. This number is called a “Wilson loop”.

This should remind you of the Bohm–Aharonov effect where a split electron beam
takes two paths from A to B. Depending on the magnetic flux through the loop, one can
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have constructive or destructive interference in the split beam experiment. Mathemati-
cally, one can imagine moving the electron around a loop that starts at A, goes to B by
one path, and goes back to A by the other path. If this phase corresponding to going is
1 we get total constructive interference in the split beam experiment, while if it’s -1 we
get total destructive interference. So, just as the Bohm–Aharonov effect measures inter-
ference effects due to the magnetic field, the the above Wilson loop sort of measures the
interference effects due to gravity!

In the Rovelli–Smolin loop state corresponding to a particular knot K, the expectation
value of a Wilson loop around any knot K’ will be 1 if K and K’ are isotopic, and 0
otherwise! That’s the physical meaning of the loop states: they describe quantum states
of geometry in terms of the resulting interference effects on spin- 12 particles.

Now, there is a more general kind of diffeomorphism-state than than the loop states.
These are the spin network states! Here one fancies up the Wilson loop idea and imagines
a graph embedded in space — i.e. a bunch of edges and vertices — where each edge is
labelled by a spin that can be 0, 12 ,1, 12 , etc. In the simplest flavor of spin network, one
only allows 3 edges to meet at each vertex, and requires j3 to be of the form

j3 = |j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2 − 1, j1 + j2.

where j1, j2, j3 are the spins labelling the edges adjacent to the given vertex. For ex-
ample, we can have the the three spins be 1

2 ,3, and 5
2 , because it’s possible for a spin- 12

particle and a spin-3 particle to interact and form a spin- 52 particle. Here by “possible” I
simply mean that it doesn’t violate conservation of angular momentum. Mathematicians
would say the spins should be thought of as irreducible representations of SU(2), and the
condition above is just the condition that the representation j3 appears as a summand in
the tensor product of the representations j1 and j2.

Just as we can compute a kind of “Wilson loop” number from a knot that a spin- 12
particle goes around, we can compute a number from a spin network. I’ve thought about
spin networks for quite a while, since they are very important in topological quantum
field theories. A great introduction to how they show up in TQFTs, by the way, is:

4) Louis Crane, Louis H. Kauffman, and David N. Yetter, “State-sum invariants of
manifolds, I”, available as hep-th/9409167.

This explains how to cook up 3d quantum gravity (or more precisely, the Turaev–Viro
model) and a 4d TQFT field theory called the Crane–Yetter model using spin networks.

However, Rovelli’s talk on spin network states in quantum gravity (see “Week 41”),
followed by some good conversations, got me motivated to write up something on spin
network states:

5) John Baez,“Spin network states in gauge theory”, available as gr-qc/9411007.

Basically, I show that in the loop representation of any gauge theory, states at the kine-
matical level can be described by spin networks, slightly generalized. Heck, I’ll quote my
abstract:

Given a real-analytic manifold M , a compact connected Lie group G and a prin-
cipal G-bundle P →M , there is a canonical ‘generalized measure’ on the space
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A/G of smooth connections on P modulo gauge transformations. This allows
one to define a Hilbert space L2(A/G). Here we construct a set of vectors span-
ning L2(A/G). These vectors are described in terms of ‘spin networks’: graphs ϕ
embedded in M , with oriented edges labelled by irreducible unitary representa-
tions of G, and with vertices labelled by intertwining operators from the tensor
product of representations labelling the incoming edges to the tensor product of
representations labelling the outgoing edges. We also describe an orthonormal
basis of spin networks associated to any fixed graph ϕ. We conclude with a
discussion of spin networks in the loop representation of quantum gravity, and
give a category-theoretic interpretation of the spin network states.

I’m now hard at work trying to show that spin networks also give a complete de-
scription of states at the diffeomorphism-invariant level. Well, actually right NOW I’m
goofing off by writing this darn thing, but you know what I mean.

Rovelli and Smolin have come out with one of their papers on spin networks and they
should be coming out with another soon. These are not about the rigorous mathematics
of spin network states, but how to use them to really understand the physics of quantum
gravity. The first one out is:

6) Carlo Rovelli and Lee Smolin, “Discreteness of area and volume in quantum grav-
ity”, available as gr-qc/9411005.

This is perhaps the most careful computation so far that derives discreteness of geomet-
rical quantities directly from Einstein’s equations and the principles of quantum theory!
Let me quote the abstract:

We study the operator that corresponds to the measurement of volume, in non-
perturbative quantum gravity, and we compute its spectrum. The operator is
constructed in the loop representation, via a regularization procedure; it is
finite, background independent, and diffeomorphism-invariant, and therefore
well defined on the space of diffeomorphism invariant states (knot states). We
find that the spectrum of the volume of any physical region is discrete. A family
of eigenstates are in one to one correspondence with the spin networks, which
were introduced by Penrose in a different context. We compute the correspond-
ing component of the spectrum, and exhibit the eigenvalues explicitly. The other
eigenstates are related to a generalization of the spin networks, and their eigen-
values can be computed by diagonalizing finite dimensional matrices. Further-
more, we show that the eigenstates of the volume diagonalize also the area
operator. We argue that the spectra of volume and area determined here can
be considered as predictions of the loop-representation formulation of quantum
gravity on the outcomes of (hypothetical) Planck-scale sensitive measurements
of the geometry of space.
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Week 44

November 6, 1994

SPECIAL EDITION: THE END OF DONALDSON THEORY?

I got some news today from Allen Knutson. Briefly, it appears that Witten has come
up with a new way of doing Donaldson theory that is far easier than any previously
known. According to Taubes, many of the main theorems in Donaldson theory should
now have proofs that are 1/1000th as long!

I suppose to find this exciting one must already have some idea of what Donaldson
theory is. Briefly, Donaldson theory is a theory born in the 1980s that revolutionized
the study of smooth 4-dimensional manifolds by using an idea from physics, namely, the
self-dual Yang–Mills equations. The Yang–Mills equations describe most of the forces we
know and love (not gravity), but only in 4 dimensions can one get solutions of them
of a special form, known as self-dual solutions. (In physics these self-dual solutions are
known as instantons, and they were used by ’t Hooft to solve a problem plaguing particle
physics, called the U(1) puzzle.)

Mathematically, 4-dimensional manifolds are very different from manifolds of any
other dimension! For example, one can ask whether Rn admits any smooth structure
other than the usual one. (Technically, a smooth structure for a manifold is a maximal
set of coordinate charts covering the manifold which have smooth transition functions.
Loosely, it’s a definition of what counts as a smooth function.) The answer is no —
except if n = 4, where there are uncountably many smooth structures! These “exotic
R4’s” were discovered in the 1980’s, and their existence was shown using the work of
Donaldson using the self-dual solutions of the Yang–Mills equation, together with work
of the topologist Freedman. More recently, a refined set of invariants of smooth 4-
manifolds, the Donaldson invariants, have been developed using closely related ideas.

Some references are:

1) Simon K. Donaldson and Peter B. Kronheimer, The Geometry of Four-Manifolds,
Oxford University Press, Oxford, 1990.

Simon K. Donaldson, “Polynomial invariants for smooth four-manifolds”, Topology
29 (1990), 257–315.

Daniel S. Freed and Karen K. Uhlenbeck, Instantons and Four-Manifolds, Springer,
Berlin, 1984.

Charles Nash, Differential Topology and Quantum Field Theory, Academic Press,
London, 1991.

This is an extremely incomplete list, but it should be enough to get started. Or,
while you wait for the new, simplified treatments to come out, you could make some
microwave popcorn and watch the following video:

2) Simon K. Donaldson, “Geometry of four dimensional manifolds”, videocassette (ca.
60 min.), color, American Mathematical Society, Providence, Rhode Island, 1988.
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Now, what follows is my interpretation of David Dror Ben-Zvi’s comments on a lecture
by Clifford Taubes entitled “Witten’s Magical Equation”, these comments being kindly
passed on to me by Knutson. I have tried to flesh out and make sense of what I received,
and this required some work, and I may have screwed up some things. Please take it all
with a grain of salt. I only hope it gives some of the flavor of what’s going on!

So, we start with a compact oriented 4-manifold X with L a complex line bundle
over X having first Chern class equal to w2, the second Stiefel–Whitney class of TX,
modulo 2. If X is spin (meaning that the w2 = 0), take the bundle of spinors over X.
Otherwise, pick a Spin-c bundle and take the bundle of complex spinors over X. Note
that Spin-c structure is enough to define complex spinors on X, and it will always exist
if w2 is the mod 2 reduction of an integral characteristic class. For more on this sort of
stuff, try:

3) H. Blaine Lawson, Jr. and Marie-Louise Michelson, Spin Geometry, Princeton U.
Press, Princeton, 1989.

In either case, take our bundle of spinors, tensor it with the square root of L, and call
the resulting bundle B. (Perhaps someone can explain to me why L has a square root
here; it’s obvious if X is spin, but I don’t understand the other case so well.) The data
for our construction are now a connection A on L, and a section ψ of the self-dual part
of B. (Note: I’m not sure what the “self-dual part of B” is supposed to mean. I guess it
is something required to make the right-hand side of the formula below be self-dual in
the indices a, b.) Consider now two equations. The first is the Dirac equation for ψ. The
second is that the self-dual part F+ of the curvature of A be given in coordinates as

F+
ab = −1

2
〈ψ, eaebψ〉

where the basis 1-forms ea, eb act on ψ by Clifford multiplication.
Next form the moduli space M of solutions (A,ψ) modulo the action of the auto-

morphisms of L. The wonderful fact is that this moduli space is always compact, and
for generic metrics it’s a smooth manifold. Still more wonderfully (here I read the lines
between what was written), it is a kind of substitute for the moduli space normally used
in Donaldson theory, namely the moduli space of instantons. It is much nicer in that it
lacks the singularities characteristic of the other space.

What this means is that everything becomes easy! Apparently Taubes, Kronheimer,
Mrowka, Fintushel, Stern and the other bigshots of Donaldson theory are frenziedly
turning out new results even as I type these lines. On the one hand, the drastic simpli-
fications are a bit embarassing, since the technical complications of Donaldson theory
were the stuff of many erudite and difficult papers. On the other hand, Donaldson in-
variants were always notoriously difficult to compute. Taubes predicted that a purely
combinatorial formula for them may be around within a year. (Here it is interesting to
note the work of Crane, Frenkel, and Yetter in that direction; see “Week 2” and “Week
38”.) This is sure to lead to a deeper understanding of 4-dimensional topology, and quite
possibly, 4-dimensional physics as well.
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Week 45

November 12, 1994

DONALDSON THEORY UPDATE

In the previous edition of “This Week’s Finds” I mentioned a burst of recent work on
Donaldson theory. I provocatively titled it “The End of Donaldson Theory?”, since the
rumors I was hearing tended to be phrased in such terms. But I hope I made it clear
at the conclusion of the article that this recent work should lead to a lot of new results
in 4-dimensional topology! An example is Kronheimer and Mrowka’s proof of the Thom
conjecture.

Many thanks to my network of spies for obtaining a preprint of the following paper:

1) Peter B. Kronheimer and Tomasz S. Mrowka, “The genus of embedded surfaces in
the projective plane”.

Let me simply quote the beginning of the paper:

The genus of a smooth algebraic curve of degree d in CP2 is given by the formula
g = (d − 1)(d − 2)/2. A conjecture sometimes attributed to Thom states that
the genus of the algebraic curve is a lower bound for the genus of any smooth
2-manifold representing the same homology class. The conjecture has previously
been proved for d 6 4 and for d = 6, and less sharp lower bounds for the genus
are known for all degrees [references omitted]. In this note we confirm the
conjecture.

Theorem 1. Let S be an oriented 2-manifold smoothly embedded in CP2 so as
to represent the same homology class as an algebraic curve of degree d. Then
the genus g of S satisfies g > (d− 1)(d− 2)/2.

Very recently, Seiberg and Witten [references below] introduced new invariants
of 4-manifolds, closely related to Donaldson’s polynomial invariants [reference
omitted], but in many respects much simpler to work with. The new techniques
have led to more elementary proofs of many theorems in the area. Given the
monopole equation and the vanishing theorem which holds when the scalar
curvature is positive (something which was pointed out by Witten), the rest of
the argument presented here is not hard to come by. A slightly different proof of
the Theorem, based on the same techniques, has been found by Morgan, Szabo
and Taubes.

The reference to Donaldson’s polynomial invariants appears in “Week 44”. The refer-
ences to the new Seiberg–Witten invariants are:

2) Edward Witten,“Monopoles and four-manifolds”, available as hep-th/9411102.

Edward Witten and Nathan Seiberg, “Electric-magnetic duality, monopole conden-
sation, and confinement in N = 2 supersymmetric Yang–Mills theory”, available as
hep-th/9407087.

Edward Witten and Nathan Seiberg, “Monopoles, duality and chiral symmetry
breaking in N = 2 supersymmetric QCD”, available as hep-th/9408099.
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Differential geometers attempting to read the second two papers will find that they
contain no instance of the term “Donaldson theory”, and they may be frustrated to find
that these are very much physics papers. They concern the ground states of supersym-
metric Yang–Mills theory in 4 dimensions with gauge group SU(2). The “ground states”
of a field theory are its least-energy states, which represent candidates for the physical
vacuum. In certain theories there is not a unique ground state, but instead a “moduli
space” of ground states. Seiberg and Witten study these moduli spaces of ground states
in both the classical and quantum versions of SU(2) supersymmetric Yang–Mills theory
in 4 dimensions. They also consider the theory coupled to spinor fields, which they call
“quarks”, using the analogy of the theory to quantum chromodynamics, aka “QCD”.

I haven’t had time to go through their papers, since this isn’t my main focus of in-
terest. Perhaps the most useful thing I can do at this point is to use Kronheimer and
Mrowka’s clear description of their moduli space (which is presumably closely related
to Seiberg and Witten’s moduli spaces) to simplify and fill in the holes of what I wrote
in “Week 44”. I will aim my exposition to mathematicians, but make some elementary
digressions on physics to spice things up.

We start with a compact oriented Riemannian 4-manifold X, and assume we are
given a SpinC structure on X. Recall the meaning of this. First, the orthonormal frame
bundle of X has structure group SO(4), and a spin structure would be a double cover of
this which is a principal bundle with structure group given by the double cover of SO(4),
namely SU(2) × SU(2). Thus we get two principal bundles with structure group SU(2),
the left-handed and right-handed spin bundles. Using the fundamental representation of
SU(2), we obtain two vector bundles called the bundles of left-handed and right-handed
spinors. This “handedness” or “chirality” phenomenon for spinors is of great importance
in physics, since neutrinos are left-handed spinors — meaning, in down-to-earth terms,
that they always spin clockwise relative to their direction of motion. The fact that the
laws of nature lack chiral symmetry came as quite a shock when it was first discovered,
and part of Seiberg and Witten’s motivation in their second paper is to study mechanisms
for “spontaneous breaking” of chiral symmetry. This means simply that while the theory
has chiral symmetry, its ground states need not.

A SpinC structure is a bit more subtle, but it allows us to define bundles of left-handed
and right-handed spinors as U(2) bundles, which Kronheimer and Mrowka denote by
W+ and W−. The determinant bundle L of W+ is a line bundle on X. The first big
ingredient of the theory is a hermitian connection A on L. In physics lingo this is the
vector potential of a U(1) gauge field. This gives a Dirac operator DA mapping sections
of W+ to sections of W−. The connection A has curvature F , and the self-dual part
F+ of F can be identified with a section of sl(W+). (This is just a global version of the
isomorphism between the self-dual part of Λ2C4 and sl(2,C).)

The second big ingredient of the theory is a section ψ of W+, i.e. a left-handed
spinor field. There is a way to pair two sections of W+ to get a section of sl(W+), which
we write as σ(., .) and which is conjugate-linear in the first argument and linear in the
second. This is a global version of the similar pairing

σ(., .) : C2 × C2 → sl(2,C)

where σ(v, w) given by taking the traceless part of the 2 × 2 matrix v∗ ⊗ w. Here v∗ is
the element of the dual of C2 coming from v via the inner product on C2.
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To get the magical moduli space, we consider solutions (A,ψ) of

DAψ = 0

F+ = iσ(ψ,ψ).

Here we are thinking of F+ as a section of sl(W+). These are pretty reasonable equa-
tions for some sort of massless left-handed spinor field coupled to a U(1) gauge field. Let
M be the space of solutions modulo gauge transformations. Kronheimer and Mrowka
show the “moduli space” M is compact.

One can also perturb the equations above as follows. If we have any self-dual 2-form
δ on X we can consider

DAψ = 0

F+ + iδ = iσ(ψ,ψ).

and get a moduli space M(δ). This will still be compact if δ is nice (here I gloss over
issues of analysis).

Now, if X has an almost complex structure, Kronheimer and Mrowka show that one
can pick a SpinC structure forX such that, for “good” metrics and generic small δ,M(δ) is
a compact 0-dimensional manifold. Using this fact and some geometrical yoga, it follows
that the number n of points in M(δ), counted mod 2, is independent of (such) δ. (This
is essentially a glorified version of the fact that, when you look at the multiple images of
an object in a warped mirror and slowly bend the mirror, the images generically appear
or disappear in pairs.) Moreover, if the self-dual Betti number b+ of X is > 1, the space
of good metrics is path-connected, and n mod 2 is independent of the choice of good
metric. Kronheimer and Mrowka call this a “simple mod 2 version of the invariants of
Seiberg and Witten”. It is one ingredient of their proof of the Thom conjecture.
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Week 46

December 12, 1994

I will be on sabbatical during the first half of 1995. I’ll be roaming hither and thither,
and also trying to get some work done on n-categories, quantum gravity and such, so
this will be the last “This Week’s Finds” for a while. I have also taken a break from being
a co-moderator of sci.physics.research.

So, let me sign off with a roundup of diverse and sundry things! I’m afraid I’ll be
pretty terse about describing some of them. First for some news of general interest, then
a little update on Seiberg–Witten theory, then some neat stuff on TQFTs, n-categories,
quantum gravity and all that, and then various other goodies. . . .

1) Gary Stix, “The speed of write”, Scientific American, Dec. 1994, 106–111.

Jacques Leslie, “Goodbye, Gutenberg: pixilating peer review is revolutionizing
scholarly journals”, Wired 2.10, Oct. 1994. Available as https://www.wired.com/
1994/10/ejournals/.

Among other things, the above articles show that Paul Ginsparg is starting to get the
popular recognition he deserves for starting up hep-th. In case anyone out there doesn’t
know yet, hep-th is the “high-energy physics — theoretical” preprint archive, which rev-
olutionized communications within this field by making preprints easily available world-
wide, thus rendering many (but not all) aspects of traditional journals obsolete. The
idea was so good it quickly spread to other subjects. Within physics it went like this:

• High Energy Physics — Theory (hep-th), started 8/91

• High Energy Physics — Lattice (hep-lat), started 2/92

• High Energy Physics — Phenomenology (hep-ph), started 3/92

• Astrophysics (astro-ph), started 4/92

• Condensed Matter Theory (cond-mat), started 4/92

• General Relativity & Quantum Cosmology (gr-qc), started 7/92

• Nuclear Theory (nucl-th), started 10/92

• Chemical Physics (chem-ph), started 3/94

• High Energy Physics — Experiment (hep-ex), started 4/94

• Accelerator Physics (acc-phys), started 11/94

• Nuclear Experiment (nucl-ex), started 11/94

• Materials Theory (mtrl-th), started 11/94

• Superconductivity (supr-con), started 11/94
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Similar archives are sprouting up in mathematics (see below — but also note the
existence of the American Mathematical Society preprint server, described later in this
week’s finds).

There are many ways to access these preprint archives, since Ginsparg has kept up
very well with the times — indeed, so much better than I that I’m afraid to go into
any details for fear of making a fool of myself. The dernier cri, I suppose, is to access
the archives using the World-Wide Web, which is conveniently done by opening the
document

http://xxx.lanl.gov

If this makes no sense to you, my first and very urgent piece of advice is to learn about
the World-Wide Web (WWW), Mosaic, and the like, since they are wonderful and very
simple to use! In the meantime, however, you can simply send mail to various addresses
with subject header

help

and no message body, in order to get information. Some addresses are:

• acc-phys@xxx.lanl.gov (accelerator physics)

• astro-ph@xxx.lanl.gov (astrophysics)

• chem-ph@xxx.lanl.gov (chemical physics)

• cond-mat@xxx.lanl.gov (condensed matter)

• funct-an@xxx.lanl.gov (functional analysis)

• gr-qc@xxx.lanl.gov (general relativity / quantum cosmology)

• hep-lat@ftp.scri.fsu.edu (computational and lattice physics)

• hep-ph@xxx.lanl.gov (high energy physics phenomenological)

• hep-th@xxx.lanl.gov (high energy physics formal)

• hep-ex@xxx.lanl.gov (high energy physics experimental)

• nucl-th@xxx.lanl.gov (nuclear theory)

• nucl-ex@xxx.lanl.gov (nuclear experiment)

• mtrl-th@xxx.lanl.gov (materials theory)

• supr-con@xxx.lanl.gov (superconductivity)

• alg-geom@publications.math.duke.edu (algebraic geometry)

• auto-fms@msri.org (automorphic forms)

• cd-hg@msri.org (complex dynamics & hyperbolic geometry)
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• dg-ga@msri.org (differential geometry & global analysis)

• nlin-sys@xyz.lanl.gov (non-linear systems)

• cmp-lg@xxx.lanl.gov (computation and language)

• e-mail@xxx.lanl.gov (e-mail address database)

One might also want to check out the:

Directory of Electronic Journals, Newsletters, and Academic Discussion Lists:
Send e-mail to ann@cni.org at the Association of Research Libraries, +1 (202)
296-2296, fax +1 (202) 872 0884.

Let me say a bit about how the AMS preprint server works. Assuming you are hip to
the WWW, just go to

http://e-math.ams.org

You will then see a menu, and you can click on “Mathematical Preprints”, and then “AMS
Preprint Server”, where preprints are classified by subject. Alternatively, click on “New
Items This Month (all Subjects)”.

On a related note, you can also get some AMS stuff using telnet by doing

telnet e-math.ams.org

and using

e-math

as login and password. This doesn’t seem to get you to the preprints, though. For gopher
fans,

gopher e-math.ams.org

has roughly similar effects.

2) Carlo Rovelli and Lee Smolin, “Spin networks in quantum gravity”.

This paper is closely related to the earlier one in which Rovelli and Smolin argue
that discreteness of area and volume arise naturally in the loop representation of quan-
tum gravity, and also to my own paper on spin networks. (See “Week 43” for more on
these, and a brief intro to spin networks.) Basically, while my paper shows that spin
networks give a kind of basis of states for gauge theories with arbitrary (compact, con-
nected) gauge group, in this paper Rovelli and Smolin concentrate on the gauge groups
SL(2,C) and SU(2), which are relevant to quantum gravity, and work out a lot of aspects
particular to this case, in more of a physicist’s style. This makes spin networks into a
practical computational tool in quantum gravity, used to great effect in the paper on the
discreteness of area and volume.
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3) Abhay Ashtekar, “Recent mathematical developments in quantum general relativ-
ity”, available as gr-qc/9411055 (discussed in “Week 37”).

Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, Jose Mourao and Thomas
Thiemann, “Coherent state transforms for spaces of connections”, available as
gr-qc/9412014 (discussed in “Week 43”).

These are two papers on the loop representation of quantum gravity which I talked
about in earlier “finds”, and are out now. The former is a nice review of recent mathemat-
ically rigorous work; the latter takes a tremendous step towards handling the infamous
“reality conditions” problem.

4) Abhay Ashtekar and Jerzy Lewandowski, “Differential geometry on the space of
connections via graphs and projective limits”, available as hep-th/9412073.

I’ve spoken quite a bit about doing rigorous functional integration in gauge theory us-
ing ideas from the loop representation; this paper treats functional derivatives and other
things that are more differential than integral in nature. This is crucial in quantum grav-
ity because the main remaining mystery, the Wheeler–DeWitt equation or Hamiltonian
constraint, involves a differential operator on the space of connections. (For a wee bit
more, try “Week 11” or “Week 43”, where the Hamiltonian constraint is simply written
as G00 = 0.)

Let me quote their abstract:

In a quantum mechanical treatment of gauge theories (including general rel-
ativity), one is led to consider a certain completion, A, of the space of gauge
equivalent connections. This space serves as the quantum configuration space,
or, as the space of all Euclidean histories over which one must integrate in the
quantum theory. A is a very large space and serves as a “universal home”
for measures in theories in which the Wilson loop observables are well-defined.
In this paper, A is considered as the projective limit of a projective family of
compact Hausdorff manifolds, labelled by graphs (which can be regarded as
“floating lattices” in the physics terminology). Using this characterization, dif-
ferential geometry is developed through algebraic methods. In particular, we are
able to introduce the following notions on A: differential forms, exterior deriva-
tives, volume forms, vector fields and Lie brackets between them, divergence of
a vector field with respect to a volume form, Laplacians and associated heat
kernels and heat kernel measures. Thus, although A is very large, it is small
enough to be mathematically interesting and physically useful. A key feature of
this approach is that it does not require a background metric. The geometrical
framework is therefore well-suited for diffeomorphism invariant theories such
as quantum general relativity.

6) A. P. Balachandran, L. Chandar, Arshad Momen, “Edge states in gravity and black
hole physics”, available as gr-qc/9412019.

Ever since it started seeming that black holes have an entropy closely related to (and
often proportional to) the area of their event horizons, many physicists have sought
a better understanding of this entropy. In many ways, the nicest sort of explanation
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would say that the entropy was due to degrees of freedom living on the event horizon.
A concrete calculation along these lines was recently made by Steve Carlip (see “Week
41”) in the context of 2+1-dimensional gravity. The mechanism is mathematically very
similar to what happens in (a widely popular theory of) the fractional quantum Hall
effect! In both cases, Chern–Simons theory on a 3d manifold with boundary gives rise
to an interesting field theory on the boundary, or “edge”. The above paper clarifies this,
especially for those of us who don’t understand the fractional quantum Hall effect too
well. Let me quote:

Abstract: We show in the context of Einstein gravity that the removal of a spatial
region leads to the appearance of an infinite set of observables and their asso-
ciated edge states localized at its boundary. Such a boundary occurs in certain
approaches to the physics of black holes like the one based on the membrane
paradigm. The edge states can contribute to black hole entropy in these models.
A “complementarity principle” is also shown to emerge whereby certain “edge”
observables are accessible only to certain observers. The physical significance
of edge observables and their states is discussed using their similarities to the
corresponding quantities in the quantum Hall effect. The coupling of the edge
states to the bulk gravitational field is demonstrated in the context of (2+1)
dimensional gravity.

I can’t resist adding that I have a personal stake in the notion that a lot of interesting
things about quantum gravity will only show up when we consider it on manifolds with
boundary, including the area-entropy relations. The loop representation of quantum
gravity has a lot to do with knots and links, but on a manifold with boundary it has a lot
to do with tangles, which can contain arcs that begin and end at the boundary. I wrote a
paper on this a while back:

7) John Baez, “Quantum gravity and the algebra of tangles”, Jour. Class. Quantum
Grav. 10 (1993), 673–694. Available as hep-th/9205007.

and I’ll be coming out with another in a while, co-authored with Javier Muniain and
Dardo Piriz. The importance of manifolds with boundary for cutting-and-pasting con-
structions is also well-known in the theory of “extended” TQFTs (topological quantum
field theories). These cutting and pasting operations should allow one to describe ex-
tended TQFTs in n dimensions purely algebraically using “higher-dimensional algebra”.
So part of the plan here is to understand better the relation between quantum gravity,
TQFTs, and higher-dimensional algebra. Along these lines, a very interesting new paper
has come out:

8) Louis Crane and David Yetter, “On algebraic structures implicit in topological quan-
tum field theories”, available as hep-th/9412025.

This makes more precise some of Louis Crane’s ideas on “categorification”. Nice TQFTs
in 3 dimensions have a lot to do with Hopf algebras (like quantum groups), or alterna-
tively, their categories of representations, which are certain braided monoidal categories.
In this paper it’s shown that nice TQFTs in 4 dimensions have a lot to do with Hopf cat-
egories, or alternatively, their categories of representations, which are certain braided
monoidal 2-categories.

224

https://arxiv.org/abs/hep-th/9205007
https://arxiv.org/abs/hep-th/9412025


WEEK 46 DECEMBER 12, 1994

9) V. M. Kharlamov and V. G. Turaev, “On the definition of 2-category of 2-knots”,
Les Rencontres Physiciens-Mathématiciens de Strasbourg-RCP25 45 (1993), 151-166.
Available as http://www.numdam.org/item/RCP25 1993 45 151 0/.

This preprint, which I obtained through my network of spies, seems to be implicitly
claiming that the work of Fischer describing 2d surfaces in R4 via on braided monoidal
2-categories (see “Week 12”) is a bit wrong, but they don’t come out and say quite what
if anything is really wrong.

10) Greg Kuperberg, “Non-involutory Hopf algebras and 3-manifold invariants”, avail-
able as q-alg/9712047.

I noted the existence of a draft of this paper, and related work, in “Week 38”. Let me
quote:

Abstract: We present a definition of an invariant #(M,H), defined for every
finite-dimensional Hopf algebra (or Hopf superalgebra or Hopf object) H and
for every closed, framed 3-manifold M . When H is a quantized universal en-
vloping algebra, #(M,H) is closely related to well-known quantum link invari-
ants such as the HOMFLY polynomial, but it is not a topological quantum field
theory.

Okay, now for some miscellaneous interesting things. . .

11) J. Lambek, “If Hamilton had prevailed: quaternions in physics”, in Mathematical
Conversations, Springer, Berlin, pp. 259–274.

Lambek is mainly known for work in category theory, but he has a strong side-interest in
mathematical physics. This paper is, first of all, a “nostalgic account of how certain key
results in modern theoretical physics (prior to World War II) can be expressed concisely
in the labguage of quaternions, thus suggesting how they might have been discovered if
Hamilton’s views had prevailed.” But there is a very interesting new thing, too: a way
in which the group SU(3) × SU(2) × U(1) shows up naturally when considering Dirac’s
equation a la quaternions. This group is the gauge group of the Standard Model! Lambek
modestly says that there does not appear to be any significance to this coincidence. . . but
it would be nice, wouldn’t it?

12) Nina Byers, “The life and times of Emmy Noether; contributions of E. Noether to
particle physics”, available as hep-th/9411110.

Bert Schroer, “Reminiscences about many pitfalls and some successes of QFT within
the last three decades”, available as hep-th/9410085.

Roman Jackiw, “My encounters — as a physicist — with mathematics”, available
as hep-th/9410151.

These are some interesting historical/biographical pieces.

13) Karl Svozil, “Speedup in quantum computation is associated with attenuation of
processing probability”, available as hep-th/9412046.
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The subject of quantum computation has become more lively recently. I haven’t had time
to look at this paper, but quoting the abstract:

Quantum coherence allows the computation of an arbitrary number of distinct
computational paths in parallel. Based on quantum parallelism it has been con-
jectured that exponential or even larger speedups of computations are possible.
Here it is shown that, although in principle correct, any speedup is accompa-
nied by an associated attenuation of detection rates. Thus, on the average, no
effective speedup is obtained relative to classical (nondeterministic) devices.
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Week 47

January 17, 1995

Hi. I know I’m supposed to be taking a break from “This Week’s Finds,” but it’s a habit
that’s hard to quit. I just want to briefly mention a couple of new electronic venues for
mathematics and physics. First, there are a couple new preprint servers along the lines
of hep-th:

• Nuclear Experiment (nucl-ex@xxx.lanl.gov), started 12/94

• Quantum Physics (quant-ph@xxx.lanl.gov), started 12/94

To check these out, send email with subject header “help” and no message body to the
address listed, or use more slick modern method.

There are also a bunch of math preprint servers I have been neglecting to mention.
The newest one is devoted to “quantum algebra” (quantum groups and the like) and
knot theory! Here are some:

• Algebraic Geometry (alg-geom@eprints.math.duke.edu), started 2/92

• Functional Analysis (funct-an@xxx.lanl.gov), started 4/92

• Differential Geometry and Global Analysis (dg-ga@msri.org), started 6/94

• Automorphic Forms (auto-fms@msri.org), started 6/94

• Complex Dynamics and Hyperbolic Geometry (cd-hg@msri.org), started 6/94

• Quantum Algebra (Including Knot Theory) (q-alg@eprints.math.duke.edu), started
12/94

Also, there is a new electronic journal on the theory and applications of category
theory. This is a subject dear to my heart since much of the most interesting work on
topological quantum field theories uses category theory in an interesting way, so I hope
mathematicians and mathematical physicists interested in category theory turn to this
journal:

ANNOUNCEMENT AND CALL FOR PAPERS

This is to announce a new refereed electronic journal

THEORY AND APPLICATIONS OF CATEGORIES

The Editors, who are listed below, invite submission of articles

for publication in the first volume (1995) of the journal.

The Editorial Policy of the journal, basic information about

subscribing and some information for authors follows.
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More details are available from the journal’s WWW server at

URL http://www.tac.mta.ca/tac/

or by anonymous ftp from

ftp.tac.mta.ca

in the directory pub/tac.

EDITORIAL POLICY

The journal Theory and Applications of Categories will disseminate articles

that significantly advance the study of categorical algebra or methods, or

that make significant new contributions to mathematical science using

categorical methods. The scope of the journal includes: all areas of

pure category theory, including higher dimensional categories; applications

of category theory to algebra, geometry and topology and other areas of

mathematics; applications of category theory to computer science, physics

and other mathematical sciences; contributions to scientific knowledge

that make use of categorical methods.

Articles appearing in the journal have been carefully and critically

refereed under the responsibility of members of the Editorial Board.

Only papers judged to be both significant and excellent are accepted for

publication.

The method of distribution of the journal is via the Internet tools

WWW/gopher/ftp. The journal is archived electronically and in printed

paper format.

SUBSCRIPTION INFORMATION

Individual subscribers receive (by e-mail) abstracts of articles

as they are published. Full text of published articles is available

in .dvi and Postscript format. Details will be e-mailed to new

subscribers and are available by WWW/gopher/ftp. To subscribe,

send e-mail to tac@mta.ca including a full name and postal address.

For institutional subscription, send enquiries to the Managing Editor,

Robert Rosebrugh, <rrosebrugh@mta.ca>
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INFORMATION FOR AUTHORS

The typesetting language of the journal is TeX, and LaTeX is the

preferred flavour. TeX source of articles for publication should

be submitted by e-mail directly to an appropriate Editor.

Please obtain detailed information on submission format and

style files by WWW or anonymous ftp from the sites listed above.

You may also write to tac@mta.ca to receive details by e-mail.

EDITORIAL BOARD

John Baez, University of California, Riverside

baez@math.ucr.edu

Michael Barr, McGill University

barr@triples.math.mcgill.ca

Lawrence Breen, Universite de Paris 13

breen@math.univ-paris.fr

Ronald Brown, University of North Wales

r.brown@bangor.ac.ik

Jean-Luc Brylinski, Pennsylvania State University

jlb@math.psu.edu

Aurelio Carboni, University of Genoa

carboni@vmimat.mat.unimi.it

G. Max Kelly, University of Sydney

kelly_m@maths.su.oz.au

Anders Kock, University of Aarhus

kock@mi.aau.dk

F. William Lawvere, State University of New York at Buffalo

mthfwl@ubvms.cc.buffalo.edu

Jean-Louis Loday, Universite de Strasbourg

loday@math.u-strasbg.fr

Ieke Moerdijk, University of Utrecht

moerdijk@math.ruu.nl

Susan Niefield, Union College

niefiels@gar.union.edu
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Robert Pare, Dalhousie University

pare@cs.dal.ca

Andrew Pitts, University of Cambridge

ap@cl.cam.ac.uk

Robert Rosebrugh, Mount Allison University

rrosebrugh@mta.ca

Jiri Rosicky, Masaryk University

rosicky@math.muni.cz

James Stasheff, University of North Carolina

jds@charlie.math.unc.edu

Ross Street, Macquarie University

street@macadam.mpce.mq.edu.au

Walter Tholen, York University

tholen@vm1.yorku.ca

R. W. Thomason, Universite de Paris 7

thomason@mathp7.jussieu.fr

Myles Tierney, Rutgers University

tierney@math.rutgers.edu

Robert F. C. Walters, University of Sydney

walters_b@maths.su.oz.au

R. J. Wood, Dalhousie University

rjwood@cs.da.ca
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Week 48

February 26, 1995

There are a few things I’ve bumped into that I feel I should let folks know about, so here’s
a special issue from Munich, where the Weissbier is very good. (And not at all white, but
that’s another subject.)

One of the most exciting aspects of mathematics over the last few years — in my
utterly biased opinion — has been how topological quantum field theories have revealed
the existence of deep connections between 3-dimensional topology, complex analysis,
and algebra, particularly the algebra of quantum groups.

The most interesting topological quantum field theory in this game is Chern–Simons
theory. This a field theory in 3 dimensions, and the reason it’s called “topological” is that
you don’t need any metric or other geometrical structure on your 3d spacetime manifold
for this theory to make sense. Thus it admits all coordinate transformations (or more
precisely, all diffeomorphisms) as symmetries. In particular, this means that the quantity
folks like to compute whenever they see a quantum field theory — the partition function,
which you get by doing a path integral a la Feynman — is an invariant of 3-dimensional
manifold you happen to have taken as “spacetime”.

Now computing path integrals is often a very dubious and tricky business. They are
integrals over the space of all possible histories of the classical fields corresponding to
your quantum field theory. This is a big fat infinite-dimensional space, of the sort to
which ordinary integration theory doesn’t really apply. If you aren’t very careful, path
integrals often give infinite answers. So one very nice thing is that, suitably interpreted,
the path integrals in Chern–Simons theory actually make rigorous sense!

A key advance here was Atiyah’s axioms for topological quantum field theories (or
TQFTs). These axioms formalize exactly what properties you’d hope path integrals would
have in the case of a diffeomorphism-invariant theory. If, by no matter what devilish
tricks, one can get a theory that satisfies these axioms, it’s in many ways just as good if
one had figured out how to make sense of the path integrals by honest labor, because all
the manipulations one would normally want to do are then permitted. The marvelous
thing about Chern–Simons theory is that one can show the TQFT axioms hold starting
from some beautiful algebraic structures called quantum groups. Corresponding to every
“semisimple Lie group” — examples being the groups SU(n) of unitary complex nxn
matrices with determinant 1 — there is a quantum group, which is not really a group,
but a so-called “quasitriangular Hopf algebra.” Amusingly these quantum groups really
depend on Planck’s constant ~, and reduce to the ordinary groups in the “classical limit”
~→ 0!

Now, where these quantum groups come from has always been a bit of a puzzle. They
can be rigorously shown to exist, that’s for sure. There are also many good algebraic
reasons why they “should” exist. But it is still a bit remarkable that they have the exactly
the properties needed to get Chern–Simons theory to be a TQFT. So people have tried
in many ways to turn the tables on them, and get them from the path integrals. Lots of
these approaches have succeeded, but most of them involve a few subtleties here and
there, so mathematicians, who only feel happy when everything is *blindingly obvious*
(to them, that is, not you), have continued to seek the most beautiful, elegant way of
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getting at them.

1) Daniel Freed, “Quantum groups from path integrals”, available as q-alg/9501025.

This is a nice expository treatment of the work of Free and Quinn on topological
quantum field theories, particularly Chern–Simons theory with finite gauge group. In
this case, the path integral reduces to a finite sum and one really can get the quantum
group from the path integral very beautifully. But there are some differences in this case
of finite gauge group. For example, the resulting “finite quantum group” does not depend
on ~; it’s just the “quantum double” of the group algebra of the group. For more on what
this has to do with marvelous algebraic things like n-categories, the reader should check
out the paper by Freed cited in “Week 12”, which has subsequently been published:

2) Daniel Freed, “Higher algebraic structures and quantization”, Commun. Math. Phys.
159 (1994), 343–398.

and also

3) Daniel Freed and Frank Quinn, “Chern–Simons theory with finite gauge group”,
Commun. Math. Phys. 156 (1993), 435–472.

Now in addition to the path-integral approach to quantum field theory there is an-
other, the so-called Hamiltonian approach, which is very much like the approach people
usually learn in a first course on quantum mechanics: if you know the wavefunction of
your system at t = 0, the Hamiltonian tells you how it evolves in time from then on.
Now this has special subtleties in diffeomorphism-invariant theories. When there is no
unique best coordinate system, there’s no unique best notion of “time evolution”. This
leads to the so-called “problem of time”, very important in quantum gravity, but rather
easier to deal with in toy models like Chern–Simons theory.

Now if we take a 3-dimensional spacetime and look at the t = 0 slice, we will with
some luck get a 2-dimensional manifold, such as a sphere, torus, or more general n-
holed doughnut. This is where the complex analysis comes in, because the complex
plane is 2-dimensional, and we can cover these surfaces with coordinate systems that
look locally like the complex plane, making them into “Riemann surfaces” upon which
we can merrily proceed with complex analysis. In particular, the phase space of classical
Chern–Simons theory is something of which complex analysts have long been enamored,
namely the “moduli space of flat bundles” over our Riemann surface. (Let me reassure
physicists that this “flat” business is merely a weird way of saying that in Chern–Simons
theory the analog of the magnetic field vanishes.)

Now starting from the description of the classical phase space for Chern–Simons
theory one should be able to get ahold of the quantum theory by some “quantization”
business just as one does in elementary quantum mechanics, where the “classical phase
space” is the space of p’s and q’s, and to quantize one merely decrees that these no longer
commute:

pq − qp = −i~.

So one should be able to get ahold of quantum groups this way too: starting with the
“moduli space of flat bundles” and “quantizing” it. I had long why nobody did this in the
way which seemed most tempting and plausible to me. To lapse into jargon for a bit here,
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since the quantum group is obtained from the group by deformation quantization, where
the Poisson structure of the group itself is described by some “classical r-matrices”, and
since Chern–Simons theory is in some sense obtained by quantizing the moduli space,
where the Poisson structure was explicitly described by Goldman, it seemed natural to
me that somehow the classical r-matrices should be derivable from Goldman’s formulas.
But after a few wimpy tries at figuring it out, with not much success, I gave up. Luckily
it turns out someone else succeeded nicely, as I found out in a talk by Alekseev here at
the Mathematisches Institut of the Universität München:

4) V. V. Fock and A. A. Rosly, “Poisson structures on moduli of flat connections on
Riemann surfaces and r-matrix”, math/9802054.

They figured out a beautiful formula relating the classical r-matrices and the Poisson
structure on moduli space. Using this, Alekseev, Grosse, and Schomerus were able to
get at quantum groups quite directly from deformation quantization of moduli space,
though there are a few important points left to nail down:

5) Yu. Alekseev, H. Grosse, and V. Schomerus, “Combinatorial quantization of the
Hamiltonian Chern–Simons theory, I & II”. Available as hep-th/9403066 and hep-th/

9408097.

In fact Schomerus told me about this while I was in Cambridge Mass. over Christmas,
but somehow I didn’t pick up on the coolest thing about it, that it gets the quantum
groups quite naturally from Chern–Simons theory, via the relation between the Poisson
brackets on moduli space and the classical r-matrices.

Let’s see. This is getting technical so I’ll give in and get technical. One other paper
that I found out about while here studies rather similar issues, but from the viewpoint of
geometric quantization rather than deformation quantization. Axelrod, Della Pietra and
Witten did some very fundamental work on geometric quantization of Chern–Simons
theory:

6) Scott Axelrod, Steve Della Pietra and Edward Witten, “Geometric quantization of
Chern–Simons gauge theory”,Jour. Diff. Geom. 33 (1991), 787–902. Also available
as https://projecteuclid.org/euclid.jdg/1214446565.

but this only treated the case of Riemann surfaces, not the Riemann surfaces with punc-
tures that you need to think about when sticking knots in your 3-manifold. Martin Schot-
tenloher, one of the professors, here, gave me a nice review of the work of one of his
students on the case with punctures:

7) Martin Schottenloher, “Metaplectic quantization of the moduli space of flat and
parabolic bundles (after Peter Scheinhost)”, in Public. I. R. M. A. Strasbourg, 45
(1993), 43–70. Also available as
http://www.numdam.org/item/RCP25 1993 45 43 0/.

This uses a lot of complex geometry that’s beyond my ken, but one very exciting remark
penetrated my thick skull, namely that you really need to take into account the so-called
“metaplectic correction”, as one usually does in geometric quantization, and that in the
case of no punctures, this has the sole effect of accomplishing the mysterious “level shift”
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(k → k + N) that pervades SU(N) Chern–Simons theory. (Of course, I bet this must
be what’s going on for other gauge groups too.) Also, when there are punctures, you
apparently really need the metaplectic correction to get the right answers from geometric
quantization; the ad hoc level shift ain’t enough.

Well, I have some other things, but this issue seems more or less devoted to Chern–
Simons theory so far, and only Chern–Simons freaks are likely to have read this far, so
I’ll put off the rest for later.
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Week 49

February 27, 1995

For the last year or so I’ve been really getting interested in n-categories as a possible tool
for unifying a lot of strands in mathematics and physics. What’s an n-category? Well,
in a sense that’s the big question! Roughly speaking, it’s a structure where there are a
bunch of “objects”, and for any pair of objects x, y a bunch of “morphisms” from x to y,
written f : x → y, and for any pair of morphisms f, g : x → y a bunch of “2-morphisms”
from f to g, written F : f ⇒ g, and for any pair of 2-morphisms F,G : f ⇒ g a bunch
of “3-morphisms” from F to G, . . . and so on, up to n-morphisms. Ordinary categories,
or 1-categories, have been studied since the 1940s or so, when they were invented by
Eilenberg and Mac Lane. Anyone wanting to get going on those could try:

1) Saunders Mac Lane, Categories for the Working Mathematician, Springer, Berlin,
1988.

Roughly, categories give a general framework for dealing with situations where you
have “things” and “ways to go between things”, like sets and functions, vector spaces
and linear maps, points in a space and paths between points, etc. That’s a pretty broad
territory! n-categories show up when you also have “ways to go between ways”, “ways
to go between ways to go between ways”, etc. That may seem a little weird at first. But
in fact they show up in a lot of places if you look for them. Perhaps the most obvious
place is topology. If you think of a point in a space as an object, and a path between two
points as a morphism:

x
f−−−−→ g

you are easily tempted to think of a “path of paths” as a 2-morphism. Here a “path of
paths” is just a continuous 1-parameter family of paths from x to y, which you can think
of as tracing out a 2-dimensional surface, as follows:

x y

f

g

F

<latexit sha1_base64="lfo5N3fdI6+aHrjuxZxzNt16bnE="></latexit>

And one can keep on going and look at “paths of paths of paths”, etc. In fact, people in
homotopy theory do this all the time.

There is another example, equally primordial, which is a bit more “inbred” in flavor.
In other words, if you already know and love n-categories, there is a wonderful example
of an (n + 1)-category which you should know and love too! Now this isn’t so bad,
actually, because a 0-category is basically just a set, namely the set of objects. Since
everyone knows and loves sets, everyone can start here! Okay, there is a wonderful 1-
category called Set, the category of all sets. This has sets as its objects and functions
between sets as its morphisms. So now that you know an example of a 1-category, you
know and love 1-categories, right? Well, it turns out there is this wonderful thing called
Cat, the 2-category of all 1-categories. (Usually people restrict to “small” 1-categories,
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which have a mere set of objects, so that set theorists don’t start freaking out at a certain
point.) To understand why Cat is a 2-category is a bit of work, but as objects it has
categories, as morphisms it has the usual sort of morphisms between categories, so-
called “functors”, and as 2-morphisms it has the usual sort of things that go between
functors, so-called “natural transformations”. These are the bread and butter of category
theory; just take my word for it if you haven’t studied them yet! Okay, so Cat is a 2-
category, so now you know and love 2-categories, right? (Well, I haven’t even told you
the definitions, but just nod your head.) Guess what: there is this wonderful thing called
2Cat, the 3-category of all 2-categories! And so on.

So in short, the detailed theory of n-categories at each level automatically leads one
to get interested in (n + 1)-categories. Now for the bad news: so far, people have only
figured out the right definition of n-category for n = 0, 1, 2, 3. By the “right” definition
I mean the ultimate, most general definition, which should be the most useful in many
ways. So far people only know about “strict” n-categories for all n, which one can think
of as a special case of the ultimate ones; the ultimate 1-categories are just categories,
the ultimate 2-categories are often called bicategories (see the reference to Benabou in
“Week 35”), and ultimate 3-categories are usually called tricategories (see the reference
to the paper by Gordon, Power and Street) in “Week 29”. Tricategories were just defined
last year! They have a whole lot to do with knots, Chern–Simons theory, and other
3-dimensional phenomena, as one might expect. If we could understand the ultimate
4-categories — tetracategories? — it would probably help us with some of the riddles of
topology and physics in 4 dimensions. (Indeed, what little we do understand is already
helping a bit.)

So anyway, I have been trying to learn about these things, and had the good luck
to meet James Dolan via the net, who has helped me immensely, since he eats, lives
and breathes category theory, and he is now at Riverside hard at work figuring out the
ultimate definition of n-categories for all n. (Although when he reads this, he will not
be hard at work; he will be goofing off, reading the news.)

He and I have have written one paper so far espousing our philosophy concerning
n-categories, topology, and physics:

2) John Baez and James Dolan, “Higher-dimensional algebra and topological quan-
tum field theory”, Jour. Math. Phys. 36 (1995), 6073–6105. Also available as
q-alg/9503002.

One of the main themes of this paper is what I sometimes jokingly call the “periodic
table”. Say you have an (n + k)-category with only one object, one morphism, one
2-morphism, . . . and only one (k − 1)-morphism. Then all the interest lies in the k-
morphisms, the (k+ 1)-morphisms, and so on up to the (k+n)-morphisms. So there are
n interesting levels of morphism, and we can actually think of our (n + k)-category as
an n-category of a special sort. Let’s call this kind a “k-tuply monoidal n-category”. Now
we can make a chart of these:
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k-tuply monoidal n-categories

n = 0 n = 1 n = 2

k = 0 sets categories 2-categories

k = 1 monoids monoidal
categories

monoidal
2-categories

k = 2 commutative
monoids

braided monoidal
categories

braided monoidal
2-categories

k = 3 ” ” symmetric
monoidal
categories

weakly involutory
monoidal
2-categories

k = 4 ” ” ” ” strongly
involutory
monoidal
2-categories

k = 5 ” ” ” ” ” ”

First, I should emphasize that some parts of the chart as I’ve drawn it here are a
bit conjectural; since we don’t know what the most general 7-categories are like, for
example, we don’t really know for sure what 5-tuply monoidal 2-categories are like. The
exact status of all the entries on the table is made more clear in the paper. For now, let
me just say, first, that these various flavors of n-categories turn out to be of great interest
in topology — some have already been used a lot in topological quantum field theory
and knot theory, other less, so far, but they all seem to have lot to do with generalizations
of knot theory to different dimensions. Second, it seems that the nth column “stabilizes”
by the time you get down to the (n + 2)nd row. This very interesting pattern turns out
also to have a lot to do with knots and their generalizations, and also to a subject called
stable homotopy theory.

Now it also appears that there is a nice recipe for hopping down the columns. (Again,
we only understand this perfectly in certain cases, but the pattern seems pretty clear.)
In other words, there’s a nice recipe to get a (k+1)-tuply monoidal n-category from
a k-tuply monoidal one. It goes like this. Hang on to your seat. You start with a k-
tuply monoidal n-category C. It’s a special sort of (n + k)-category, so its an object in
(n+ k)Cat. But (n+ k)Cat, remember, is an (n+ k+ 1)-category. Now look at the largest
sub-(n+ k + 1)-category of (n+ k)Cat which has C as its only object, 1C (the identity of
C) as its only morphism, 11C as its only 2-morphism, 111C as its only 3-morphism, and so
on, up to 111... as its only k-morphism. Let’s call this C′. If one keeps count, this should
be a (k + 1)-tuply monoidal n-category. That’s how it goes.

Now say we do this to an example. Say we do it to the category C of all repre-
sentations of a finite group G. This is in fact a monoidal category, so the result C′ is
a braided monoidal category. It is, in fact, just the category of representations of the
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“quantum double” of G, which is an example of what one might call a “finite quantum
group”. These play a big role in the study of Chern–Simons theory with finite gauge
group (see the papers by Freed and Quinn in “Week 48”). One can also get the other
quantum groups with the aid of this “quantum double” trick. A good description of this
case appears in:

3) Christian Kassel and Vladimir Turaev, “Double construction for monoidal cate-
gories”, Acta Mathematica 175 (1995), 1–48. Also available as https://projecteuclid.
org/euclid.acta/1485890865.

So this is rather remarkable: starting from a finite group, and all this n-categorical
abstract nonsense, out pops precisely the raw ingredients for a perfectly respectable 3-
dimensional topological quantum field theory! Understanding why this kind of thing
works is part of the aim of Dolan’s and my paper, though there are some important
pieces of the puzzle that we don’t get around to mentioning there.

Right now I’m busily working out the details of how to get braided monoidal 2-
categories from monoidal 2-categories by the same trick, with the aid of Martin Neuchl
and Frank Halanke here. These should have a lot to do with 4-dimensional topological
quantum field theories (see e.g. the paper by Crane and Yetter cited in “Week 46”). And
here I can’t resist mentioning a very nice paper by Neuchl and Schauenburg,

4) Martin Neuchl and Peter Schauenburg, “Reconstruction in braided categories and
a notion of commutative bialgebra”, Jour. Pure and Applied Algebra 124 (1998),
241–259.

Let me conclude by describing this. I always let myself get a bit more technical at
the end of each issue, so I’ll do that now. The relationship between Hopf algebras and
monoidal categories is given by “Tannaka–Krein reconstruction theorems”, which give
conditions under which a monoidal category is equivalent to the category of represen-
tations of a Hopf algebra, and actually constructs the Hopf algebra for you. In physics
people use related but fancier “Doplicher–Haag–Roberts” theorems to reconstruct the
gauge group of a quantum field theory. This paper starts with the beautiful Tannaka–
Krein theorem in

5) Peter Schauenburg, “Tannaka duality for arbitrary Hopf algebras”, Algebra-Berichte
66 (1992).

Leaving out a bunch of technical conditions that make the theorem actually true, it
says roughly that when you have a braided monoidal category B, a category C, and a
functor f : C → B, there is a coalgebra object a in B, the universal one for which f
factors through the forgetful functor from aComod (the category of a-comodule objects
in B) to B. The point is that the ordinary Tannaka–Krein theorem is a special case of
this one where B is the category of vector spaces. The point of the new paper is as fol-
lows. Suppose C is actually braided monoidal and f preserves the braiding and monoidal
structure. Then we expect a to actually be something like commutative bialgebra object
in B. The paper makes this precise. There are actually some sneaky issues involved in
doing so. In particular, the “quantum double” trick for categories makes an appearance
here. I guess I’ll leave it at that!
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Week 50

March 12, 1995

Your roving mathematical physics reporter is now in Milan, where (when not busy eating
various kinds of cheese) he is discussing BF theory with his hosts, Paolo Cotta-Ramusino
and Maurizio Martellini. This is rather a long way to go to stumble on the October 1994
issue of the Journal of Mathematical Physics, but such is life. This issue is a special issue
on “Topology and Physics”, a nexus dear to my heart, so let me say a bit about some of
the papers in it.

1) Edward Witten, “Supersymmetric Yang–Mills theory on a four-manifold”, Jour.
Math. Phys. 35 (1994), 5101–5135. Available as hep-th/9403195.

This paper concerns the relation between supersymmetric Yang–Mills theory and
Donaldson theory, discovered by Seiberg and Witten, which not too long ago hit the
front page of various newspapers. (See “Week 44” and “Week 45” for my own yellow
journalism on the subject.) I don’t have anything new to say about this stuff, of which
I am quite ignorant. If you are an expert on N = 2 supersymmetric Yang–Mills theory,
hyper-Kähler manifolds, cosmic strings and the renormalization group, the paper should
be a piece of cake. Seriously, he does seem to be making a serious effort to communicate
the ideas in simple terms to us mere mortals, so it’s worth looking at.

2) Louis Crane and Igor Frenkel, “Four-dimensional topological quantum field theory,
Hopf categories, and the canonical bases”, Jour. Math. Phys. 35 (1994), 5136–
5154. Also available as hep-th/9405183.

I discussed this paper a wee bit in “Week 38”. Now you can actually see the pictures.
As we begin to understand n-categories (see “Week 49”) our concept of symmetry gets
deeper and deeper. This isn’t surprising. When all we knew about was 0-categories —
that is, sets! — our concept of symmetry revolved around the notion of a “group”. This is
a set G where you can multiply elements in an associative way, with an identity element
1 such that

1g = g1 = g

for all elements g of G, and where every element g has an inverse g−1 with

gg−1 = g−1g = 1.

For example, the group of rotations in n-dimensional Euclidean space. When we started
understanding 1-categories — that is, categories! — the real idea behind groups and
symmetry could be more clearly expressed. Sets have elements, and they are either
equal or not — no two ways about it. Categories have “objects”, and even though two
objects aren’t equal, they can still be “isomorphic”. An object can be isomorphic to itself
in lots of different ways: these are its symmetries, and the symmetries form a group. But
this is really just the tip of a still mysterious iceberg.

For example, in a 2-category, even though two objects aren’t equal, or even isomor-
phic, they can be “equivalent”, or maybe I should say “2-equivalent”. This is a still more
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general notion of “sameness”. I won’t try to define it just now, but I’ll just note that it
arises from the fact that in a 2-category one can ask whether two morphisms are iso-
morphic! (For people who followed “Week 49” and know some category theory, let me
note that the standard notion of equivalence of categories is a good example of this
“equivalence” business.)

As we climb up the n-categorical ladder, this keeps going. We get ever more subtle
refinements on the notion of “sameness”, hence ever subtler notions of symmetry. It’s all
rather mind-boggling at first, but not really very hard once you get the hang of it, and
since there’s lots of evidence that n-dimensional topological quantum field theories are
related to n-categories, I think these subtler notions of symmetry are going to be quite
interesting for physics.

And now, to wax technical for a bit (skip this paragraph if the last one made you
dizzy), it’s beginning to seem that the symmetry groups physicists know and love have
glorious reincarnations, or avatars if one prefers, at these higher n-categorical levels.
Take your favorite group — mine is SU(2), which describes 3d rotational symmetry hence
angular momentum in quantum mechanics. Its category of representations isn’t just any
old category, it’s a symmetric monoidal category! See the chart in “Week 49” if you
forget what this is. Now, there are more general things than groups whose categories
of representations are symmetric monoidal categories — for example, cocommutative
Hopf algebras. And there are other kinds of Hopf algebras — “quasitriangular” ones,
often known as “quantum groups” — whose categories of representations are braided
monoidal categories. The cool thing is that SU(2) has an avatar called “quantum SU(2)”
which is one of these quantum groups. Again, eyeball the chart in “Week 49”. Symmetric
monoidal categories are a special kind of 4-categories, which is why they show up so
much in 4d physics, while braided monoidal categories are a special kind of 3-categories,
which is why they (and quantum groups) show up in 3d physics. For example, quantum
SU(2) shows up in the study of 3d quantum gravity (see “Week 16”). Now the even cooler
thing is that while a quaistriangular Hopf algebra is a set with a bunch of operations,
there is a souped-up gadget, a “quasitriangular Hopf category”, which is a category with
an analogous bunch of operations, and these have a category of representations, but not
just any old 2-category, but in fact a braided monoidal 2-category. If you again eyeball
the chart, you’ll see this is a special kind of 4-category, so it should be related to 4d
topology and — this is the big hope — 4d physics. Now the really cool thing, which is
what Crane and Frenkel show here, is that SU(2) has yet another avatar which is one of
these quasitriangular Hopf categories.

Regardless of whether it has anything to do with physics, this business about how
symmetry groups have avatars living on all sorts of rungs of the n-categorical ladder is
such beautiful math that I’m sure it’s trying to tell us something. Right now I’m trying to
figure out just what.

3) Raoul Bott and Clifford Taubes, “On the self-linking of knots”, Jour. Math. Phys.
35 (1994), 5247–5287.

I’d need to look at this a few more times before I could say anything intelligent about it,
but it looks to be a very exciting way of understanding what the heck is really going on
as far as Vassiliev invariants, Feynman diagrams in Chern–Simons theory, and so on are
concerned — especially if you wanted to generalize it all to higher dimensions.
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Alas, I’m getting worn out, so let me simply list a few more papers, which are every
bit as fun as the previous ones. . . no disrespect intended. . . I just have to call it quits
soon. As always, it should be clear that what I write about and what I don’t is purely a
matter of whim, caprice, chance, and my own ignorance.

4) Christopher King and Ambar Sengupta, “An explicit description of the symplectic
struture of moduli spaces of flat connections”, Jour. Math. Phys. 35 (1994), 5338–
5353.

Christopher King and Ambar Sengupta, “The semiclassical limit of the two-dimensional
quantum Yang–Mills model”, Jour. Math. Phys. 35 (1994), 5354–5363.

5) D. J. Thouless, “Topological interpretations of quantum Hall conductance”, Jour.
Math. Phys. 35 (1994), 5362–5372.

6) J. Bellisard, A. van Elst, and H. Schulz-Baldes, “The noncommutative geometry of
the quantum Hall effect”, Jour. Math. Phys. 35 (1994), 5373–5451.

7) Steve Carlip and R. Cosgrove, “Topology change in (2+1)-dimensional gravity”,
Jour. Math. Phys. 35 (1994), 5477–5493.
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\noindent
These are the first 50 issues of \emph{This Week's Finds of Mathematical Physics}.
This series has sometimes been called the world's first blog, though it was originally 
posted on a ``usenet newsgroup'' called sci.physics.research --- a form of communication 
that predated the world-wide web.  I began writing this series 
as a way to talk about papers I was reading and writing, and in the first 50 issues 
I stuck closely to this format.   These issues focus rather tightly on quantum gravity,
topological quantum field theory, knot theory, and applications of $n$-categories to these
subjects.   However, there are also digressions into Lie algebras, elliptic curves, linear logic
and other subjects.

Tim Hosgood kindly typeset all 300 issues of \emph{This Week's Finds} in 2020. They
will be released in six installments of 50 issues each.  I have edited the issues here
to make the style a bit more uniform and also to change some references to preprints,
technical reports, etc.\ into more useful arXiv links.  This accounts for some anachronisms
where I discuss a paper that only appeared on the arXiv later.   

I thank Blake Stacey for helping me fix many mistakes.  There are undoubtedly many 
still remaining.  If you find some, please contact me and I will try to fix them.

\tableofcontents

\hypertarget{week1}{%
\section{January 19, 1993}\label{week1}}

I thought I might try something that may become a regular feature on
sci.physics.research, if that group comes to be. The idea is
that I'll briefly describe the papers I have enjoyed this week in
mathematical physics. I am making no pretense at being exhaustive or
objective\ldots{} what I review is utterly a function of my own biases
and what I happen to have run into. I am not trying to ``rate'' papers
in any way, just to entertain some people and perhaps inform them of
some papers they hadn't yet run into. ``This week'' refers to when I
read the papers, not when they appeared (which may be much earlier or
also perhaps later, since some of these I am getting as preprints).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  J.\ Scott Carter and Masahico Saito, ``Syzygies among elementary string 
  interactions in 2+1 dimensions'', \emph{Lett.\ Math.\ Phys.}
  \textbf{23} (1991), 287--300.

  J.\ Scott Carter and Masahico Saito, ``On formulations and solutions of simplex equations'', preprint.

  J.\ Scott Carter and Masahico Saito, ``A diagrammatic theory of knotted surfaces'', preprint.

 J.\ Scott Carter and Masahico Saito, ``Reidemeister moves for surface isotopies and their interpretations as moves to movies'', preprint.
\end{enumerate}

The idea here is to take what has been done for knots in
\(3\)-dimensional space and generalize it to ``knotted surfaces,'' that
is, embedded 2-manifolds in \(4\)-dimensional space. For knots it is
convenient to work with \(2\)-dimensional pictures that indicate over-
and under-crossings; there is a well-known small set of ``Reidemeister
moves'' that enable you to get between any two pictures of the same
knot. One way to visualize knotted surfaces is to project them down to
\(\mathbb{R}^3\); there are ``Roseman moves'' analogous to the
Reidemeister moves that enable to get you between any two projections of
the same knotted surface. Carter and Saito prefer to work with
``movies'' that display a knotted surface as the evolution of knots
(actually links) over time. Each step in such a movie consists of one of
the ``elementary string interactions.'' They have developed a set of
``movie moves'' that connect any two movies of the same knotted surface.
These papers contain a lot of fascinating pictures! And there does seem
to be more than a minor relation to string theory. For example, one of
the movie moves is very analogous to the 3rd Reidemeister move --- which
goes 
\[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-1)
        to [out=down,in=up] (2,-2)
        to (2,-3);
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-1)
        to (0,-2)
        to [out=down,in=up] (1,-3);
      \strand[thick] (2,0)
        to (2,-1)
        to [out=down,in=up] (1,-2)
        to [out=down,in=up] (0,-3);
    \end{knot}
  \end{tikzpicture}
  \raisebox{4em}{\quad=\quad}
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to (0,-1)
        to [out=down,in=up] (1,-2)
        to [out=down,in=up] (2,-3);
      \strand[thick] (1,0)
        to [out=down,in=up] (2,-1)
        to (2,-2)
        to [out=down,in=up] (1,-3);
      \strand[thick] (2,0)
        to [out=down,in=up] (1,-1)
        to [out=down,in=up] (0,-2)
        to (0,-3);
    \end{knot}
  \end{tikzpicture}
\] 
I won't try to draw the corresponding movie move, but just as the 3rd
Reidemeister move is the basis for the Yang--Baxter equation
\(R_{23}R_{13}R_{12} = R_{12}R_{13}R_{23}\) (the subscripts indicate
which strand is crossing which), the corresponding movie move is the
basis for a variant of the ``Frenkel--Moore'' form of the ``Zamolodchikov
tetrahedron equation'' which first arose in string theory. This variant
goes like
\(S_{124}S_{135}S_{236}S_{456} = S_{456}S_{236}S_{135}S_{124}\), and
Carter and Saito draw pictures that make this equation almost as obvious
as the Yang--Baxter equations.

In any event, this is becoming a very hot subject, since topologists are
interested in generalizing the new results on knot theory to higher
dimensions, while some physicists (especially Louis Crane) are convinced
that this is the right way to tackle the ``problem of time'' in quantum
gravity (which, in the loop variables approach, amounts to studying the
relationship of knot theory to the 4th dimension, time). In particular,
Carter and Saito are investigating how to construct solutions of the
Zamolodchikov equations from solutions of the Yang--Baxter equation ---
the goal presumably being to find invariants of knotted surfaces that
are closely related to the link invariants coming from quantum groups.
This looks promising, since Crane and Yetter have just constructed a
4-dimensional topological quantum field theory from the quantum
\(\mathrm{SU}(2)\). But apparently nobody has yet done it.

Lovers of category theory will be pleased to learn that the correct
framework for this problem appears to be the theory of \(2\)-categories.
These are categories with objects, morphisms between objects, and also
``2-morphisms'' between objects. The idea is simply that tangles are
morphisms between sets of points (i.e., each of the tangles in the
picture above are morphisms from 3 points to 3 points), while surfaces
in \(\mathbb{R}^4\) are \(2\)-morphisms between tangles. The instigators
of the \(2\)-categorical approach here seem to be Kapranov and
Voevodsky, whose paper ``\(2\)-categories and Zamolodhikov tetrahedra
equations'', to appear in \emph{Proc.\ Symp.\ Pure Math.}, is something I will
have to get ahold of soon by any means possible (I can probably nab it
from Oleg Viro down the hall; he is currently hosting Kharmalov, who is
giving a series of talks on knotted surfaces at \(2\)-categories here at
UCR). But it seems to be Louis Crane who is most strongly proclaiming
the importance of \(2\)-categories in \emph{physics}.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Jorge Pullin, ``Knot theory and quantum gravity in loop space: a primer'', to appear in 
  \emph{Proceedings of the Vth Mexican School of
  Particles and Fields}, ed.~J. L. Lucio, World Scientific, Singapore,
  now available as
  \href{https://arxiv.org/abs/hep-th/9301028}{\texttt{hep-th/9301028}}.
\end{enumerate}

This is a review of the new work on knot theory and the loop
representation of quantum gravity. Pullin is among a group who has been
carefully studying the ``Chern--Simons state'' of quantum gravity, so his
presentation, which starts with a nice treatment of the basics, leads
towards the study of the Chern--Simons state. This is by far the
best-understood state of quantum gravity, and is defined by
\(\mathrm{SU}(2)\) Chern--Simons theory in terms of the connection
representation, or by the Kauffman bracket invariant of knots in the
loop representation. It is a state of Euclideanized quantum gravity with
nonzero cosmological constant, and is not invariant under CP. Ashtekar
has recently speculated that it is a kind of ``ground state'' for
gravity with cosmological constant (evidence for this has been given by
Kodama), and that its CP violation may be a ``reason'' for why the
cosmological constant is actually zero (this part is extremely
speculative). Louis Crane, on the other hand, seems convinced that the
Chern--Simons state (or more generally states arising from modular tensor
categories) is \textbf{the wavefunction of the universe}. In any event,
it's much nicer to have one state of quantum gravity to play with than
none, as was the case until recently.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Lee Smolin, ``Time, measurement and information loss in quantum cosmology'', 
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9301016}{\texttt{gr-qc/9301016}}.
\end{enumerate}
\noindent
This is, as usual for Smolin, a very ambitious paper. It attempts to
sketch a solution of some aspects of the problem of time in quantum
gravity (in terms of the loop representation). I might as well quote
from the introduction:

\begin{quote}

Thus, to return to the opening question, if we are, within a
nonperturbative framework, to ask what happens after a black hole
evaporates, we must be able to construct spacetime diffeomorphism
invariant operators that can give physical meaning to the notion of
``after the evaporation.'' Perhaps I can put it in the following way:
the questions about loss of information or breakdown of unitary
evolution rely, implicitly, on a notion of time. Without reference to
time it is impossible to say that something is being lost. In a quantum
theory of gravity, time is a problematic concept which makes it
difficult to even ask such questions at the nonperturbative level,
without reference to a fixed spacetime manifold. {[}I would prefer to
say ``fixed background metric'' --- JB{]} The main idea, which it is the
purpose of this paper to develop, is that the problem of time in the
nonperturbative framework is more than an obstacle that blocks any easy
approach to the problem of loss of information in black hole
evaporation. It may be the key to its solution.

As many people have argued, the problem of time is indeed the conceptual
core of the problem of quantum gravity. Time, as it is conceived in
quantum mechanics is a rather different thing than it is from the point
of view of general relativity. The problem of quantum gravity,
especially when put in the cosmological context, requires for its
solution that some single concept of time be invented that is compatible
with both diffeomorphism invariance and the principle of superposition.
However, looking beyond this, what is at stake in quantum gravity is
indeed no less and no more than the entire and ancient mystery: What is
time? For the theory that will emerge from the search for quantum
gravity is likely to be the background for future discussions about the
nature of time, as Newtonian physics has loomed over any discussion
about time from the seventeenth century to the present.

I certainly do not know the solution to the problem of time. Elsewhere I
have speculated about the direction in which we might search for its
ultimate resolution. In this paper I will take a rather different point
of view, which is based on a retreat to what both Einstein and Bohr
taught us to do when the meaning of a physical concept becomes confused:
reach for an operational definition. Thus, in this paper I will adopt
the point of view that time is precisely no more and no less than that
which is measured by physical clocks. From this point of view, if we
want to understand what time is in quantum gravity then we must
construct a description of a physical clock living inside a relativistic
quantum mechanical universe.

\end{quote}

Technically speaking, what Smolin does is roughly as follows. He
considers quantum gravity coupled to matter, modelled in such a way that
the Hilbert space is spanned by states labelled by isotopy classes of:
any number \(N\) loops in a compact 3-manifold \(M\) (``space'') and
\(N\) surfaces with boundary in \(M\). (This trick is something I hadn't
seen before, though Smolin gives references to it.) He then introduces a
``clock field,'' which is just a free scalar field coupled to the
gravity, and does gauge-fixing to see what evolution with respect to
this clock field looks like. I will have to read this a number of times!



\hypertarget{week2}{%
\section{January 24, 1993}\label{week2}}

Well, this week I have had guests and have not been keeping up with the
literature. So ``this week's finds'' are mostly papers that have been
sitting around in my office and that I am now filing away.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Daniel Armand Ugon,
  Rodolfo Gambini, and Pablo Mora, ``Link invariants for intersecting loops'',
  October 1992 preprint, available from
  Gambini, Instituto de F\'isica, Facultad de Ciencias, Trist\'an Narvaja
  1674, Montevideo, Uruguay.
\end{enumerate}
\noindent
The authors generalize the standard trick for getting link invariants
from solutions of the Yang--Baxter equations, and show how to get link
invariants applicable to generalized links with 4-valent or 6-valent
vertices, that is, transverse double points, like \[
  \begin{tikzpicture}
    \begin{knot}[clip width=0]
      \strand[thick] (0,0)
      to [out=down,in=up] (1,-1);
      \strand[thick] (1,0)
      to [out=down,in=up] (0,-1);
    \end{knot}
  \end{tikzpicture}
\] and transverse triple points. This involves working with a
generalization of the braid group that includes generators for these
vertices as well as the usual generators for crossings. In this case of
4-valent vertices, rigorously working out the generators and relations
was done by Joan Birman in the paper below, but various people had used
the answer already. The case of triple points is very important in
physics due to the connection with the loop representation of quantum
gravity (which is what Gambini is working on these days). In this
representation, states are invariants of (possibly generalized) links,
and only by considering links with triple points can one define
operators such as the ``total volume of the universe''.

It is thus quite interesting that the authors make progress on
determining the ``right'' extension of the HOMFLY polynomial invariant
of links to links with transverse triple points --- that is, the
extension that one gets by doing calculations in \(\mathrm{SU}(n)\)
Chern--Simons theory. In a special case, namely when the HOMFLY
polynomial reduces to the Kauffman bracket (which corresponds to the Lie
group \(\mathrm{SU}(2)\)), one gets a state of quantum gravity that has
been under extensive investigation these days. The authors compute the
Kaufmann bracket of links with triple points using first order
perturbation theory in Chern--Simons theory. A nonperturbative
calculation would be very good to have!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Joan Birman, ``New points of view in knot theory'', \emph{Bull. Amer. Math. Soc.}
  \textbf{28} (1993), 253--287.  Also available as
  \href{https://arxiv.org/abs/math/9304209}{\texttt{math/9304209}}.
\end{enumerate}
\noindent
This is a nice review of the recent work on Vassiliev invariants of
links. Given an invariant of oriented links, one can extend it to links
with arbitrarily many double points by setting the value of the
invariant on a link with a double point \[
  \begin{tikzpicture}
    \begin{knot}[clip width=0]
      \strand[thick] (0,0)
      to [out=down,in=up] (1,-1);
      \strand[thick] (1,0)
      to [out=down,in=up] (0,-1);
    \end{knot}
  \end{tikzpicture}
\] to be the invariant of the link with the double point changed to \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
      to [out=down,in=up] (1,-1);
      \strand[thick] (1,0)
      to [out=down,in=up] (0,-1);
      \flipcrossings{1}
    \end{knot}
  \end{tikzpicture}
\] minus the invariant of the link with the double point changed to \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
      to [out=down,in=up] (1,-1);
      \strand[thick] (1,0)
      to [out=down,in=up] (0,-1);
    \end{knot}
  \end{tikzpicture}
\] Note that the link has to be oriented for this rule to make sense,
and the strands shown in the pictures above should be pointing
\emph{downwards}. Now, having made this extension, we say a link
invariant is a Vassiliev invariant of degree \(n\) if it vanishes on all
links with \(n+1\) or more double points.

It is interesting that this rule for extending link invariants to links
with double points, when applied to the Kauffman bracket, does
\emph{not} give the extension computed by Gambini et al in the paper
above. (This is not surprising, actually, but it shows that some
interesting things are going on in the subject of invariants for links
with self-intersections and Chern--Simons theory.)

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Louis Kauffman and
  P.\ Vogel, ``Link polynomials and a graphical calculus'', \emph{Jour.\ of Knot Theory and its Ramifications},
  \textbf{1} (1992), 59--104.
\end{enumerate}

This is another nice treatment of link invariants for generalized links
with self-intersections. It concentrates on the famous link invariants
coming from Chern--Simons theory --- the HOMFLY polynomial (from
\(\mathrm{SU}(n)\)) and the Kauffman polynomial (from
\(\mathrm{SO}(n)\)). Lots of good pictures.

And, switching back to the category theory, \(2\)-categories, and the
like, let me list these before filing them away:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
   Louis Crane, ``Categorical physics'', available as
  \href{https://arxiv.org/abs/hep-th/9301061}{\texttt{hep-th/9301061}}.

  Louis Crane and David Yetter, A categorical construction of 4d topological quantum field
  theories, available as
  \href{https://arxiv.org/abs/hep-th/9301062}{\texttt{hep-th/9301062}}.

  Louis Crane and Igor
  Frenkel, Hopf Categories and their representations, draft version.

  Louis Crane and Igor Frenkel, Categorification and the construction of topological quantum field
  theory, draft version.
\end{enumerate}

These outline Louis Crane's vision of an approach to generally covariant
\(4\)-dimensional quantum field theories (e.g.~quantum gravity or a
``theory of everything'') based on \(2\)-categories. ``Categorical
physics'' sketches the big picture, while the paper with Yetter provides
a juicy mathematical spinoff --- the first known four-dimensional TQFT,
based on the representations of quantum \(\mathrm{SU}(2)\) and very
similar in spirit to the Turaev--Viro construction of a 3d TQFT from
quantum \(\mathrm{SU}(2)\). The papers with Frenkel (apparently still
not in their final form) describe the game plan and hint at marvelous
things still to come. The conjecture is stated: ``a 4d TQFT can be
reconstructed from a tensor \(2\)-category''. This follows up on Crane's
earlier work on getting 3d TQFTs from modular tensor categories (big
example: the categories of representations of quantum groups at roots of
unity). And the authors define the notion of a Hopf category, show how
the category of module categories of a Hopf category is a tensor
\(2\)-category, and use ``categorification'' to turn the universal
enveloping algebra of a quantum group into a Hopf category. Sound
abstract? Indeed it is. But the aim is clear: to cook up 4d TQFTs from
quantum groups. Such quantum field theories might be physically
important; indeed, the one associated to \(\mathrm{SU}(2)\) is likely to
have a lot to do with quantum gravity.

I am currently perusing Kapranov and Voevodsky's massive paper on
\(2\)-categories, which seems to be the starting point for Crane's above
papers and also those of Carter/Saito that I mentioned last week. Next
week I should post an outline of what this paper does.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
   S.\ W.\ Hawking, R.\ Laflamme and G.\ W.\
  Lyons, ``The origin of time asymmetry'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9301017}{\texttt{gr-qc/9301017}}.
\end{enumerate}
\noindent
I haven't had a chance to read this one yet but it looks very ambitious
and is likely to be interesting. Let me just quote from the introduction
to get across the goal:

\begin{quote}
The laws of physics do not distinguish the future from the past
direction of time. More precisely, the famous CPT theorem says that the
laws are invariant under the combination of charge conjugation, space
inversion and time reversal. In fact effects that are not invariant
under the combination CP are very weak, so to a good approximation, the
laws are invariant under the time reversal operation T alone. Despite
this, there is a very obvious difference between the future and past
directions of time in the universe we live in. One only has to see a
film run backward to be aware of this.

There are are several expressions of this difference. One is the
so-called psychological arrow, our subjective sense of time, the fact
that we remember events in one direction of time but not the other.
Another is the electromagnetic arrow, the fact that the universe is
described by retarded solutions of Maxwell's equations and not advanced
ones. Both of these arrows can be shown to be consequences of the
thermodynamic arrow, which says that entropy is increasing in one
direction of time. It is a non trivial feature of our universe that it
should have a well defined thermodynamic arrow which seems to point in
the same direction everywhere we can observe. Whether the direction of
the thermodynamic arrow is also constant in time is something we shall
discuss shortly.

There have been a number of attempts to explain why the universe should
have a thermodynamic arrow of time at all. Why shouldn't the universe be
in a state of maximum entropy at all times? And why should the direction
of the thermodynamic arrow agree with that of the cosmological arrow,
the direction in which the universe is expanding? Would the
thermodynamic arrow reverse, if the universe reached a maximum radius
and began to contract?

Some authors have tried to account for the arrow of time on the basis of
dynamic laws. The discovery that CP invariance is violated in the decay
of the K meson, inspired a number of such attempts but it is now
generally recognized that CP violation can explain why the universe
contains baryons rather than anti baryons, but it can not explain the
arrow of time. Other authors have questioned whether quantum gravity
might not violate CPT, but no mechanism has been suggested. One would
not be satisfied with an ad hoc CPT violation that was put in by hand.

The lack of a dynamical explanation for the arrow of time suggests that
it arises from boundary conditions. The view has been expressed that the
boundary conditions for the universe are not a question for Science, but
for Metaphysics or Religion. However that objection does not apply if
there is a sense in which the universe has no boundary. We shall
therefore investigate the origin of the arrow of time in the context of
the no boundary proposal of Hartle \& Hawking. This was formulated in
terms of Einsteinian gravity which may be only a low energy effective
theory arising from some more fundamental theory such as superstrings.
Presumably it should be possible to express a no boundary condition in
purely string theory terms but we do not yet know how to do this.
However the recent COBE observations indicate that the perturbations
that lead to the arrow of time arise at a time during inflation when the
energy density is about \(10^{-12}\) of the Planck density. In this
regime, Einstein gravity should be a good approximation.

\end{quote}

\noindent
I'll skip some more technical stuff on the validity of perturbative
calculations in quantum gravity\ldots

\begin{quote}

One can estimate the wave functions for the perturbation modes by
considering complex metrics and scalar fields that are solutions of the
Einstein equations whose only boundary is the surface \(S\). When \(S\)
is a small three sphere, the complex metric can be close to that of part
of a Euclidean four sphere. In this case the wave functions for the
tensor and scalar modes correspond to them being in their ground state.
As the three sphere \(S\) becomes larger, these complex metrics change
continuously to become almost Lorentzian. They represent universes with
an initial period of inflation driven by the potential energy of the
scalar field. During the inflationary phase the perturbation modes
remain in their ground states until their wave lengths become longer
than the horizon size. The wave function of the perturbations then
remains frozen until the horizon size increases to be more than the wave
length again during the matter dominated era of expansion that follows
the inflation. After the wave lengths of the perturbations come back
within the horizon, they can be treated classically.

This behaviour of the perturbations can explain the existence and
direction of the thermodynamic arrow of time. The density perturbations
when they come within the horizon are not in a general state but in a
very special state with a small amplitude that is determined by the
parameters of the inflationary model, in this case, the mass of the
scalar field. The recent observations by COBE indicate this amplitude is
about \(10^{-5}\). After the density perturbations come within the
horizon, they will grow until they cause some regions to collapse as
proto-galaxies and clusters. The dynamics will become highly non linear
and chaotic and the coarse grained entropy will increase. There will be
a well defined thermodynamic arrow of time that points in the same
direction everywhere in the universe and agrees with the direction of
time in which the universe is expanding, at least during this phase.

The question then arises: If and when the universe reaches and maximum
size, will the thermodynamic arrow reverse? Will entropy decrease and
the universe become smoother and more homogeneous during the contracting
phase?

\end{quote}

\noindent
I'll skip some stuff on why Hawking originally thought entropy had to
decrease during the Big Crunch if the no-boundary proposal were
correct\ldots{} and why he no longer thinks so.

\begin{quote}

The thermodynamic arrow will agree with the cosmological arrow for half
the history of the universe, but not for the other half. So why is it
that we observe them to agree? Why is it that entropy increases in the
direction that the universe is expanding? This is really a situation in
which one can legitimately invoke the weak anthropic principle because
it is a question of where in the history of the universe conditions are
suitable for intelligent life. The inflation in the early universe
implies that the universe will expand for a very long time before it
contracts again. In fact, it is so long that the stars will have all
burnt out and the baryons will have all decayed. All that will be left
in the contracting phase will be a mixture of electrons, positrons,
neutrinos and gravitons. This is not a suitable basis for intelligent
life.

The conclusion of this paper is that the no boundary proposal can
explain the existence of a well defined thermodynamic arrow of time.
This arrow always points in the same direction. The reason we observe it
to point in the same direction as the cosmological arrow is that
conditions are suitable for intelligent life only at the low entropy end
of the universe's history.
\end{quote}



\hypertarget{week3}{%
\section{January 30, 1993}\label{week3}}

Here's this week's reading material. The first test will be in two
weeks. :-)

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
   Dror Bar-Natan, ``On the Vassiliev knot invariants'', Harvard
  University ``pre-preprint''.
\end{enumerate}

I went to U.C.\ San Diego this week to give a talk, and the timing was
nice, because Dror Bar-Natan was there. He is a student of Witten who
has started from Witten's ideas relating knot theory and quantum field
theory and developed them into a beautiful picture that shows how knot
theory, the theory of classical Lie algebras, and abstract Feynman
diagrams are three faces of the same thing. To put it boldly, in a
deliberately exaggerated form, Bar-Natan has proposed a conjecture
saying that knot theory and the theory of classical Lie algebras are one
and the same!

This won't seem very exciting if you don't know what a classical Lie
algebra is. Let me give a brief and very sketchy introduction,
apologizing in advance to all the experts for the terrible sins I will
commit, such as failing to distinguish between complex and real Lie
algebras.

Well, remember that a Lie algebra is just a vector space equipped with a
``bracket'' such that the bracket \([x,y]\) of any two vectors \(x\) and
\(y\) is again a vector, and such that the following hold:

\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\tightlist
\item
  skew-symmetry: \([x,y] = -[y,x]\).
\item
  bilinearity: \([x,ay] = a[x,y]\), \([x,y+z] = [x,y] + [x,z]\). (\(a\)
  is a number.)
\item
  Jacobi identity: \([x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0\).
\end{enumerate}

The best known example is good old \(\mathbb{R}^3\) with the cross
product as the bracket. But the real importance of Lie algebras is that
one can get one from any Lie group --- roughly speaking, a group that's
also a manifold, and such that the group operations are smooth maps. And
the importance of Lie groups is that they are what crop up as the groups
of symmetries in physics. The Lie algebra is essentially the
``infinitesimal version'' of the corresponding Lie group, as anyone has
seen who has taken physics and seen the relation between the group of
rotations in \(\mathbb{R}^3\) and the cross product. Here the group is
called \(\mathrm{SO}(3)\) and the Lie algebra is called
\(\mathfrak{so}(3)\). (So \(\mathbb{R}^3\) with its cross product is
called \(\mathfrak{so}(3)\).) One can generalize this to any number of
dimensions, letting \(\mathrm{SO}(n)\) denote the group of rotations in
\(\mathbb{R}^n\) and \(\mathfrak{so}(n)\) the corresponding Lie algebra.
(However, \(\mathfrak{so}(n)\) is not isomorphic to \(\mathbb{R}^n\)
except for \(n = 3\), so there is something very special about three
dimensions.)

Similarly, if one uses complex numbers instead of real numbers, one gets
a group \(\mathrm{SU}(n)\) and Lie algebra \(\mathfrak{su}(n)\). And if
one looks at the symmetries of a \(2n\)-dimensional classical phase
space --- so-called canonical transformations, or symplectic
transformations --- one gets the group \(\mathrm{Sp}(n)\) and Lie
algebra \(\mathfrak{sp}(n)\). To be precise, \(\mathrm{SO}(n)\) consists
of all \(n\times n\) orthogonal real matrices with determinant \(1\),
\(\mathrm{SU}(n)\) consists of all \(n\times n\) unitary complex
matrices with determinant \(1\), and \(\mathrm{Sp}(n)\) consists of all
\((2n)\times(2n)\) real matrices preserving a nondegenerate
skew-symmetric form.

These are all very important in physics. Indeed, all the ``gauge
groups'' of physics are Lie groups of a certain sort, so-called compact
Lie groups, and in the standard model all the forces are symmetrical
under some gauge group or other. Electromagnetism a la Maxwell is
symmetric under the group \(\mathrm{U}(1)\) of complex numbers of unit
magnitude, or ``phases''. The electroweak force (unified
electromagnetism and weak force) is symmetric under
\(\mathrm{U}(1) \times \mathrm{SU}(2)\), where one uses the fact that
one can build up bigger semisimple Lie groups as direct sums (also
called products) of smaller ones. The gauge group for the strong force
is \(\mathrm{SU}(3)\). And, finally, the gauge group of the whole
standard model is simply
\(\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)\), which
results from lumping the electroweak and strong gauge groups together.
This direct sum business also works for the Lie algebras, so the Lie
algebra relevant to the standard model is written
\(\mathfrak{u}(1) \times \mathfrak{su}(2) \times \mathfrak{su}(3)\).

There are certain very special Lie algebras called simple Lie algebras
which play the role of ``elementary building blocks'' in the world of
Lie algebras. They cannot be written as the direct sum of other Lie
algebras (and in fact there is an even stronger sense in which they
cannot be decomposed). On the other hand, the Lie algebra of any compact
Lie group is a direct sum of simple Lie algebras and copies of
\(\mathfrak{u}(1)\) --- the one-dimensional Lie algebra with zero Lie
bracket which, for technical reasons, people don't call ``simple''.

These simple Lie algebras were classified by the monumental work of
Killing, Cartan and others, and the classification is strikingly simple:
there are infinite series of ``classical'' Lie algebras of type
\(\mathfrak{su}(n)\), \(\mathfrak{so}(n)\), and \(\mathfrak{sp}(n)\),
and five ``exceptional'' Lie algebras called \(\mathrm{G}_2\),
\(\mathrm{F}_4\), \(\mathrm{E}_6\), \(\mathrm{E}_7\), and
\(\mathrm{E}_8\). Believe it or not, there is a deep connection between
the exceptional Lie algebras and the Platonic solids. But that is
another story, one I barely know\ldots.

Now, Witten showed how one could use quantum field theory to constuct an
invariant of knots, or even links, corresponding to any representation
of a compact Lie group. (You won't even need to know what a
representation is to understand what follows.) This had been done in a
different way, in terms of ``quantum groups,'' by Reshetikhin and Turaev
(following up on work by many other people). These invariants are
polynomials in a variable \(q\) (for ``quantum''), and if one writes
\(q\) as \(e^\hbar\) and expands a power series in \(\hbar\), the
coefficient of \(\hbar^n\) is a ``Vassiliev invariant of degree \(n\)''.
Recall from last week that given an invariant of oriented knots, one can
extend it to knot with arbitrarily many nice crossings by setting the
value of the invariant on a knot with a crossing like \[
  \begin{tikzpicture}
    \begin{knot}[clip width=0]
      \strand[thick] (0,0)
      to [out=down,in=up] (1,-1);
      \strand[thick] (1,0)
      to [out=down,in=up] (0,-1);
    \end{knot}
  \end{tikzpicture}
\] to be the invariant of the knot with the crossing changed to \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
      to [out=down,in=up] (1,-1);
      \strand[thick] (1,0)
      to [out=down,in=up] (0,-1);
      \flipcrossings{1}
    \end{knot}
  \end{tikzpicture}
\] minus the invariant of the knot with the crossing changed to \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
      to [out=down,in=up] (1,-1);
      \strand[thick] (1,0)
      to [out=down,in=up] (0,-1);
    \end{knot}
  \end{tikzpicture}
\] (Again, the knot has to be oriented for this rule to make sense, and
the strands shown in the pictures above should be pointing downwards.)
Having made this extension, one says a knot invariant is a Vassiliev
invariant of degree \(n\) if it vanishes on all knot with \(n+1\) or
more double points.

This is where Dror stepped in, roughly. First of all, he showed that the
Vassiliev invariant of degree \(n\) is just what you get when you do
Witten's quantum-field-theoretic calculations perturbatively using
Feynman diagrams and look at the terms of order \(n\) in Planck's
constant, \(\hbar\)! Secondly, and more surprisingly, he developed a
bunch of relationships between Feynman diagrams and pictures of knots!
The third and most amazing thing he did takes a bit longer to
explain\ldots{}

Roughly, he showed that any Vassiliev invariant of degree \(n\) is
determined by some combinatorial data called a ``weight system.'' He
showed that any representation of a Lie algebra determines a weight
system and hence a Vassiliev invariant. But the really interesting thing
he showed is that many of the things one can do for Lie algebras can be
done for arbitrary weight systems. This makes it plausible that
\textbf{every} weight system, hence every Vassiliev invariant, comes
from a representation of a simple Lie algebra. In fact, Dror conjectures
that every Vassiliev invariant comes from a representation of a
classical simple Lie algebra. Now there is another conjecture floating
around these days, namely that Vassiliev invariants almost form a
complete set --- that is, that if two knots cannot be distinguished by
any Vassiliev invariants, they must either be the same or differ simply
by reversing the orientation of all the strands. If BOTH these
conjectures are true, one has in some sense practically reduced the
theory of knots to the theory of the classical Lie algebras! This
wouldn't mean that all of sudden we know the answer to every question
about knots, but it would certainly help a lot, and more importantly, in
my opinion, it would show that the connection between topology and the
theory of Lie algebras is far more profound than we really understand.
The ramifications for physics, as I hope all my chatting about knots,
gauge theories and quantum gravity makes clear, might also be profound.

Well, we \emph{certainly} don't understand all this stuff yet, since we
don't know how to prove these conjectures! But Dror's conjecture ---
that all weight systems come from representations of simple Lie algebras
--- is tantalizingly close to being within grasp, since he has reduced
it to a fairly elementary combinatorial problem, which I will now state.
Note that ``elementary'' does not mean easy to solve! Just easy to
state.

Before I state the combinatorial problem, let me say something about the
evidence for the conjecture that all Vassiliev invariants come from
representations of classical Lie algebras. In addition to all sorts of
``technical'' evidence, Dror has shown the conjecture is true for
Vassiliev invariants of degree \(\leqslant 9\) by means of many hours of
computation using his Sparcstation. In fact, he said in his talk that he
felt guilty about having a Sparcstation unless it was always computing
something, and that even as he spoke his computer was busily verifying
the conjecture for higher degrees. (I suggested that it was the
Sparcstation that should feel guilty when it was not working, not him.)
He also advertised that his programs, a mixture of C and Mathematica
code, are available by anonymous ftp from \texttt{math.harvard}. Use
user name ``ftp'', go to the directory ``dror''. You folks with Crays
should feel VERY guilty if they are just sitting there and not helping
Dror verify this important conjecture. (I suggest that you first read
his papers and the file README in his directory, then check out his
programs, and then ask him where he's at and what would be worth doing.
Please don't pester him unless you are a good enough mathematician to
discuss this stuff intelligently and have megaflops to burn. If you want
to make a fool of yourself, \emph{don't} say I sent you.)

Okay, with no further ado, here's the conjecture in its elementary
combinatorial form. Let \(B\) be the vector space spanned by finite
graphs with univalent and ``oriented'' trivalent vertices, modulo some
relations\ldots{} first of all, a trivalent vertex is ``oriented'' if
there is a cyclic ordering of the three incident edges. That is, we
``orient'' the vertex \[
  \begin{tikzpicture}
    \draw[thick] (50:1.5) to (0:0);
    \draw[thick] (130:1.5) to (0,0);
    \draw[thick] (270:1.5) to (0,0);
    \draw[ultra thick,white] (0,0) circle (6pt);
    \draw[ultra thick,white] (0,0) circle (7pt);
    \node[scale=2,rotate=150] at (0,0) {$\circlearrowleft$};
  \end{tikzpicture}
\] by drawing a little clockwise or counterclockwise-pointing circle at
the vertex. (Or, for those of an algebraic bent, label the edges by
\(1\),\(2\),\(3\) but then mod out by cyclic permutations.) The
relations are:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  if we reverse the orientation of a trivalent vertex, that's equivalent
  to multiplying the graph by \(-1\). (Remember we're in a vector space
  spanned by graphs.)
\item
  \[
      \vcenter{\hbox{\begin{tikzpicture}
        \draw[thick] (-1,1) to (1,1);
        \draw[thick] (0,-1) to (0,1);
        \draw[thick] (-1,-1) to (1,-1);
      \end{tikzpicture}}}
      \quad=\quad
      \vcenter{\hbox{\begin{tikzpicture}[rotate=90]
        \draw[thick] (-1,0.85) to (1,0.85);
        \draw[thick] (0,-0.85) to (0,0.85);
        \draw[thick] (-1,-0.85) to (1,-0.85);
      \end{tikzpicture}}}
      \quad-
      \vcenter{\hbox{\begin{tikzpicture}
        \draw[thick] (-0.7,1) to (0.7,-1);
        \draw[thick] (0.7,1) to (-0.7,-1);
      \end{tikzpicture}}}
    \] (That is, we can make this substitution anywhere we want; these
  pictures might be part of a bigger graph. Note that the ``X'' is not a
  vertex, since there aren't quadrivalent vertices; it's just one edge
  going over or under another. It doesn't matter whether it goes over or
  under since these are abstract graphs, not graphs embedded in space.)
\end{enumerate}

Now, let \(B_m\) be the vector space spanned by ``labelled'' finite
graphs with univalent and oriented trivalent vertices, modulo some
relations\ldots{} but first I have to say what ``labelled'' means. It
means that each edge is labelled with a \(1\) or \(-1\). The relations
are:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  if we reverse the orientation of a trivalent vertex, it's the same as
  multiplying the labellings of all three incident edges by \(-1\).
\item
  \[
      \vcenter{\hbox{\begin{tikzpicture}
        \draw[thick] (-1,1) to (1,1);
        \draw[thick] (0,-1) to (0,1);
        \draw[thick] (-1,-1) to (1,-1);
      \end{tikzpicture}}}
      \quad=\quad
      \vcenter{\hbox{\begin{tikzpicture}[rotate=90]
        \draw[thick] (-1,0.85) to (1,0.85);
        \draw[thick] (0,-0.85) to (0,0.85);
        \draw[thick] (-1,-0.85) to (1,-0.85);
      \end{tikzpicture}}}
    \] \emph{if} the internal edge is labelled with a 1. (Here the 4
  external edges can have any labellings and we don't mess with that.)
\end{enumerate}

Now, define a linear map from \(B\) to \(B_m\) by mapping any graph to
the signed sum of the \(2^\text{number of edges}\) ways of labelling the
edges with \(1\) or \(-1\). Symbolically, \[
  \begin{tikzpicture}
    \draw[thick] (-1,0) to (1,0);
  \end{tikzpicture}
  \quad\mapsto\quad
  \begin{tikzpicture}
    \draw[thick] (-1,0) to (1,0);
    \node at (0,0.3) {$1$};
  \end{tikzpicture}
  \quad-\quad
  \begin{tikzpicture}
    \draw[thick] (-1,0) to (1,0);
    \node at (0,0.3) {$-1$};
  \end{tikzpicture}
\] Of course, one must work a bit to show this map is well-defined.
(This just takes a paragraph --- see Proposition 6.5 of Dror's paper.)

Okay, the conjecture is:

\begin{center}
            THIS MAP IS ONE-TO-ONE.
\end{center}
\noindent
If you can solve it, you've made great progress in showing that knots
and classical Lie groups are just two aspects of the same branch of
mathematics. Don't work on it, though, until you get Dror's paper and
make sure I stated it exactly right!!!!!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Abhay Ashtekar, ``Mathematical problems of non-perturbative quantum general relativity'',
  lectures delivered at the 1992 Les Houches summer
  school on Gravitation and Quantization, December 2, 1992, available as
  \href{https://arxiv.org/abs/gr-qc/9302024}{\texttt{gr-qc/9302024}}.
\end{enumerate}

This is a good overview of the loop variables approach to quantizing
general relativity as it currently stands. It begins with a review of
the basic difficulties with quantizing gravity, as viewed from three
perspectives: the particle physicist, the mathematical physicist, and
the general relativist. Technically, a main problem is that general
relativity consists of both evolution equations and constraint equations
on the initial data (which are roughly the metric of space at a given
time and its first time derivative, or really ``extrinsic curvature'').
So Ashtekar reviews Dirac's ideas on quantizing constrained systems
before sketching how this program is carried out for general relativity.

Then he considers a ``toy model'' --- quantum gravity in 2+1 dimensions.
This is a funny theory because \emph{classically} Einstein's equations
in 2+1 dimensions simply say that spacetime is flat (in a vacuum)! No
gravitational waves exist as in 3+1 dimensions, and one can say that the
information in the gravitational field is ``purely global'' --- locally,
everywhere looks the same as everywhere else (like Iowa), but there may
be global ``twists'' that you notice when going around a noncontractible
loop. There has been a lot of work on 2+1 gravity recently --- in a
sense this problem has been solved, by a number of methods --- and this
allows one to understand \emph{some} of the conceptual difficulties of
honest 3+1-dimensional quantum gravity without getting caught in an
endless net of technical complications.

Then Ashtekar jumps back to 3+1 dimensions and gives a more thorough
introduction to the loop variables approach. He ends by going through
some of the many open problems and possible ways to attack them.

I have worn myself out trying to do justice to Bar-Natan's work, so I
will postpone until next week a review of Kapranov and Voevodsky's paper
on \(2\)-categories.
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I will begin with a couple of small things and then talk about the work
of Kapranov and Voevodsky.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  R.\ Sole, D.\ Lopez, M.\ Ginovart and J.\ Valls, ``Self-organized criticality in Monte Carlo 
  simulated ecosystems'', \emph{Phys. Lett.}
  \textbf{A172} (1992), p.~56.
\end{enumerate}

This is mainly of interest to me thanks to a reference to some earlier
work on Conway's game of Life. At MIT, Tom Toffoli, Norm Margolus, and
grad students in the Physics of Computation group build special-purpose
computers for simulating cellular automata, the so-called CAM machines.
I have spent many enjoyable hours watching beautiful patterns do their
thing on a big-screen color TV while CAM 6 busily simulates them on a
\(256 \times 256\) lattice at the rate of many generations a second.
(The CAM 8 chip was still being debugged when I last checked.) More
recently, Jim Gilliam, a grad student here at UCR, found a very nice
program for the game of Life on Xwindows, called xlife. On my
Sparcstation it is even bigger and faster than CAM6. One can zoom in and
out, and, zooming all the way out, one sees something vaguely
reminiscent of nebulae of distant stars twinkling in the night
sky\ldots{} My computer science pal, Nate Osgood, muttered something
about the author, Chuck Silvers, using
cleverly optimized loops. It apparently can be found using the program
archie. Please don't ask \emph{me} for a copy, since it involves many
files.

The game of Life is actually one of the less fun cellular automata to
watch, since, contrary to its name, if one starts with a random
configuration it almost always eventually lapses into an essentially
static configuration (perhaps with some blinkers executing simple
periodic motions). I am pleased to find that this seemingly dull final
state might be fairly interesting in the study of self-organized
criticality! Recall that this is the phenomenon whereby a physical
system naturally works its way into a state such that the slightest
disturbance can have an arbitrarily large effect. The classic example is
a sand dune, which apparently works its way towards slopes close to the
critical one at which an avalanche occurs. Drop one extra grain of sand
on it and you can get a surprisingly wide distribution of possible sizes
for the resulting sandslide! Similar but more formidable effects may be
at work in earthquakes. The above paper cites

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
Per Bak, Kan Chen, and Michael Creutz, ``Self-organized criticality in the `Game of Life'",
\emph{Nature} \textbf{342} (1989), 780--782.
\end{enumerate}
\noindent
which claims that in the final state of the game of Life, the density of
clusters \(D(s)\) of size \(s\) scales as about \(s^{-1.4}\), and that
the probability that a small perturbation will cause a flurry of
activity lasting a time \(t\) scales as about \(t^{-1.6}\). I'm no
expert, but I guess that the fact that the latter is a power law rather
than an exponential would be a signal of self-organized criticality. But
the paper also cites

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
Charles Bennett and Marc S.\ Bourzutschy,```Life' not critical?'', 
\emph{Nature} \textbf{350} (1991), 468.
\end{enumerate}
\noindent
who claim that the work of Bac, Chen and Creutz is wrong. I haven't
gotten to read these papers; if anyone wants to report on them I'd be
interested.

The paper I read considers fancier variations on this theme,
investigating the possibility that ecosystems are also examples of
self-organized criticality. It's hard to know how to make solid science
out of this kind of thing, but I think there would be important
consequences if it turned out that the ``balance of nature,'' far from
being a stable equilibrium, was typically teetering on the brink of
drastic change.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  H.\ D.\ Zeh, ``There are no quantum jumps, nor are there particles!'', \emph{Phys.\ Lett.} \textbf{A173} (1993), 189--192.
\end{enumerate}
\noindent
Having greatly enjoyed Zeh's book \emph{The Physical Basis for the Direction
of Time} --- perhaps the clearest account of a famously murky subject ---
I naturally took a look at this particle despite its overheated title.
(Certainly exclamation marks in titles should add to one's crackpot
index.) It is a nice little discussion of ``quantum jumps'' and the
``collapse of the wavefunction'' that takes roughly the viewpoint I
espouse, namely, that all one needs is Schr\"odinger's equation (and lots
of hard work) to understand what's going on in quantum theory --- no
extra dynamical mechanisms. It's not likely to convince anyone who
thinks otherwise, but it has references that might be useful no matter
which side of the debate one is on.

Also, this just in --- what you've all been waiting for --- another
interpretation of quantum mechanics! It's a book by David Bohm and Basil
Hiley, entitled \emph{The Undivided Universe --- An Ontological
Interpretation of Quantum Theory}. I have only seen an advertisement so
far; it's published by Routledge. The contents include such curious
things as ``the ontological interpretation of boson fields.'' Read it at
your own risk.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  M.\ M.\ Kapranov and V.\ A.\ Voevodsky, 
   ``2-categories and Zamolodchikov tetrahedra equations'' in \emph{Algebraic 
   Groups and their Generalization: Quantum and Infinite-Dimensional Methods, 
   University Park, PA (1991)}, eds.\ W.\ J.\ Haboush and B.\ J.\ Parshall, 
   Proc.\ Sympos.\ Pure Math.\ \textbf{56}, American Mathematical Society,
   Providence, Rhode Island, 1994, pp.\ 177--259.
\end{enumerate}

This serious and rather dry paper is the basis for a lot of physicists
are just beginning to try to do: burst from the confines of 3
dimensions, where knots and topological quantum field theories like
Chern--Simons theory live, to 3+1 dimensions, where we live. The
``incomplete version'' I have now is 220 pages long, mostly commutative
diagrams, and doesn't have much to say about physics. But I have a hunch
that it will become required reading for many people fairly soon, so I'd
like to describe the main ideas in fairly simple terms.

I will start from scratch and then gradually accelerate. First, what's a
category? A category consists of a set of `objects' and a set of
`morphisms'. Every morphism has a `source' object and a `target' object.
(The easiest example is the category in which the objects are sets and
the morphisms are functions. If \(f\colon X\to Y\), we call \(X\) the
source and \(Y\) the target.) Given objects \(X\) and \(Y\), we write
\(\mathrm{Hom}(X,Y)\) for the set of morphisms `from' \(X\) `to' \(Y\)
(i.e., having \(X\) as source and \(Y\) as target).

The axioms for a category are that it consist of a set of objects and
for any 2 objects \(X\) and \(Y\) a set \(\mathrm{Hom}(X,Y)\) of
morphisms from \(X\) to \(Y\), and

\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\item
  Given a morphism \(g\) in \(\mathrm{Hom}(X,Y)\) and a morphism \(f\)
  in \(\mathrm{Hom}(Y,Z)\), there is morphism which we call \(f\circ g\)
  in \(\mathrm{Hom}(X,Z)\). (This binary operation \(\circ\) is called
  `composition'.)
\item
  Composition is associative: \((f\circ g)\circ h = f\circ (g\circ h)\).
\item
  For each object \(X\) there is a morphism \(\mathrm{id}_X\) from \(X\)
  to \(X\), called the `identity' on \(X\).
\item
  Given any \(f\) in \(\mathrm{Hom}(X,Y)\),
  \(f \circ \mathrm{id}_X = f\) and \(\mathrm{id}_Y \circ f = f\).
\end{enumerate}

Again, the classic example is \(\mathsf{Set}\), the category with sets
as objects and functions as morphisms, and the usual composition as
composition! But lots of the time in mathematics one is some category or
other, e.g.:

\begin{itemize}
\tightlist
\item
  \(\mathsf{Vect}\) --- vector spaces as objects, linear maps as
  morphisms
\item
  \(\mathsf{Group}\) --- groups as objects, homomorphisms as morphisms
\item
  \(\mathsf{Top}\) --- topological spaces as objects, continuous
  functions as morphisms
\item
  \(\mathsf{Diff}\) --- smooth manifolds as objects, smooth maps as
  morphisms
\item
  \(\mathsf{Ring}\) --- rings as objects, ring homomorphisms as
  morphisms
\end{itemize}
\noindent
or in physics:

\begin{itemize}
\tightlist
\item
  \(\mathsf{Symp}\) --- symplectic manifolds as objects,
  symplectomorphisms as morphisms
\item
  \(\mathsf{Poiss}\) --- Poisson manifolds as objects, Poisson maps as
  morphisms
\item
  \(\mathsf{Hilb}\) --- Hilbert spaces as objects, unitary operators as
  morphisms
\end{itemize}
\noindent
(The first two are categories in which one can do classical physics. The
third is a category in which one can do quantum physics.)

Now, what's a \(2\)-category? This has all the structure of a category
but now there are also ``2-morphisms,'' that is, morphisms between
morphisms! This is rather dizzying at first. Indeed, much of category
theory is rather dizzying until one has some good examples to lean on
(at least for down-to-earth people such as myself), so let us get some
examples right away, and leave the definition to Kapranov and Voevodsky!
My favorite example comes from homotopy theory. Take a topological space
\(X\) and let the objects of our category be points of \(X\). Given
\(x\) and \(y\) in \(X\), let \(\mathrm{Hom}(x,y)\) be the set of all
unparametrized paths from \(x\) to \(y\). We compose such paths simply
by sticking a path from \(x\) to \(y\) and a path from \(y\) to \(z\) to
get a path from \(x\) to \(z\), and we need unparametrized paths to make
composition associative. Now given two paths from \(x\) to \(y\), say
\(f\) and \(g\), let \(\mathrm{Hom}(f,g)\), the set of \(2\)-morphisms
from \(f\) to \(g\), be the set of unparametrized homotopies from \(f\)
to \(g\) --- that is, ways of deforming the path \(f\) continuously to
get the path \(g\), while leaving the endpoints fixed.

This is a very enlightening example since homotopies of paths are really
just ``paths of paths,'' making the name \(2\)-morphism quite
appropriate. (Some of you will already be pondering \(3\)-morphisms,
\(4\)-morphisms, but it's too late, they've already been invented! I
won't discuss them here.) The notation for \(2\)-morphisms is quite
cute: given \(f,g\) in \(\mathrm{Hom}(x,y)\), we write \(F\) in
\(\mathrm{Hom}(f,g)\) as the following diagram:
\[\includegraphics[scale=0.3]{../images/Fnatftog.pdf}\] 
In other words,
while ordinary morphisms are \(1\)-dimensional objects (arrows),
\(2\)-morphisms are \(2\)-dimensional ``cells'' filling in the space
between two ordinary morphisms. We thus see that going up to ``morphisms
between morphisms'' is closely related to going up to higher dimensions.
And this is really why ``braided monoidal \(2\)-categories'' may play as
big a role in four-dimensional field theory as ``braided monoidal
categories'' do in three-dimensional field theory!

Rather than write down the axioms for a \(2\)-category, which are in
Kapranov and Voevodsky, let me note the key new thing about
\(2\)-morphisms: there are two ways to compose them, ``horizontally''
and ``vertically''. First of all, given the following situation:
\[\includegraphics[scale=0.3]{../images/FFnat.pdf}\] we can compose
\(F\) and \(F'\) horizontally to get a \(2\)-morphism from \(f'\circ f\)
to \(g \circ g'\). (Check this out in the example of homotopies!) But
also, given the following situation:
\[\includegraphics[scale=0.3]{../images/FGnat.pdf}\] (\(f,g,h\) in
\(\mathrm{Hom}(x,y)\), \(F\) in \(\mathrm{Hom}(f,g)\), and \(G\) in
\(\mathrm{Hom}(g,h)\)), we can compose \(F\) and \(G\) vertically to get
a \(2\)-morphism from \(f\) to \(g\).

As Kapranov and Voevodsky note: ``Thus \(2\)-categories can be seen as
belonging to the realm of a new mathematical discipline which may be
called \textbf{2-dimensional algebra} and contrasted with usual
\(1\)-dimensional algebra dealing with formulas which are written in
lines.'' This is actually very important because already in the theory
of braided monoidal categories we began witnessing the rise of
mathematics that incorporated aspects of geometry into the notation
itself.

The theory of \(2\)-categories is not new; it was apparently invented by
Ehresmann, Benabou and Grothendieck in an effort to formalize the
structure possessed by the category of all categories. (If this notion
seems dangerously close to Russell's paradox, you are right --- but I
will not worry about such issues in what follows.) This category has as
its objects categories and as its morphisms ``functors'' between
categories. It is, in fact, a \(2\)-category, taking as the
\(2\)-morphisms ``natural transformations'' between functors. (For a
brief intro to functors and natural transformations, try my webpage
\href{http://math.ucr.edu/home/baez/categories.html}{``categories"}.) 
What is new to Kapranov and Voevodsky is the notion of a
monoidal \(2\)-category --- where one can take tensor products of
objects, morphisms, and 2-morphisms --- and ``braided'' monoidal
\(2\)-category --- where one has ``braidings'' that switch around the
two factors in a tensor product.

Let me turn to the possible relevance of all this to mathematical
physics. Here there is a nice \(2\)-category, namely the category of
``2-tangles.'' First recall the category of tangles:

The objects are simply the natural numbers \(\{0,1,2,3,\ldots\}\). We
think of the object \(n\) as a horizontal row of \(n\) points. The
morphisms in \(\mathrm{Hom}(n,m)\) are tangles connecting a row of \(n\)
points above to a row of \(m\) points below. Rather than define
``tangles'' I will simply draw pictures of some examples. Here is an
element of \(\mathrm{Hom}(2,4)\): \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-1)
        to [out=down,in=up] (2,-2);
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-1)
        to (0,-2);
      \strand[thick] (1,-2)
        to [out=up,in=up,looseness=1.5] (3,-2);
    \end{knot}
  \end{tikzpicture}
\] and here is an element of \(\mathrm{Hom}(4,0)\): \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to (0,-0.5)
        to [out=down,in=down,looseness=1.5] (1,-0.5)
        to (1,0);
      \strand[thick] (2,0)
        to (2,-0.5)
        to [out=down,in=down,looseness=1.5] (3,-0.5)
        to (3,0);
      \strand[thick] (2,-1.5)
        to [out=up,in=left] (2.5,-0.5);
      \strand[thick] (2.5,-0.5)
        to [out=right,in=up] (3,-1.5);
      \strand[thick] (2,-1.5)
        to [out=down,in=down] (3,-1.5);
      \flipcrossings{2}
    \end{knot}
  \end{tikzpicture}
\] Note that we can ``compose'' these tangles to get one in
\(\mathrm{Hom}(2,0)\): \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-1)
        to [out=down,in=up] (2,-2);
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-1)
        to (0,-2);
      \strand[thick] (1,-2)
        to [out=up,in=up,looseness=1.5] (3,-2);
    \end{knot}
    \begin{knot}[clip width=7]
      \strand[thick] (0,-2)
        to (0,-2.5)
        to [out=down,in=down,looseness=1.5] (1,-2.5)
        to (1,-2);
      \strand[thick] (2,-2)
        to (2,-2.5)
        to [out=down,in=down,looseness=1.5] (3,-2.5)
        to (3,-2);
      \strand[thick] (2,-3.5)
        to [out=up,in=left] (2.5,-2.5);
      \strand[thick] (2.5,-2.5)
        to [out=right,in=up] (3,-3.5);
      \strand[thick] (2,-3.5)
        to [out=down,in=down] (3,-3.5);
      \flipcrossings{2}
    \end{knot}
  \end{tikzpicture}
\] Now, given tangles \(f,g\) in \(\mathrm{Hom}(m,n)\), a \(2\)-morphism
from \(f\) to \(g\) is a ``2-tangle.'' I won't define these either, but
we may think of a 2-tangle from \(f\) to \(g\) roughly as a ``movie''
whose first frame is the tangle \(f\) and last frame is the tangle
\(g\), and each of whose intermediate frames is a tangle except at
certain times when a catastrophe occurs. For example, here's a 2-tangle
shown as a movie\ldots{} \[
  \begin{array}{p{8em}p{8em}p{8em}}
    \begin{tikzpicture}
      \begin{knot}
        \strand[thick] (0,0)
          to (0,-2);
        \strand[thick] (1,0)
          to (1,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 1};
    \end{tikzpicture}
    &
    \begin{tikzpicture}
      \begin{knot}
        \strand[thick] (0,0)
          to[out=right,in=right,looseness=0.4] (0,-2);
        \strand[thick] (1,0)
          to[out=left,in=left,looseness=0.4] (1,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 2};
    \end{tikzpicture}
    &
    \begin{tikzpicture}
      \begin{knot}
        \strand[thick] (0,0)
          to[out=right,in=right,looseness=0.7] (0,-2);
        \strand[thick] (1,0)
          to[out=left,in=left,looseness=0.7] (1,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 3};
    \end{tikzpicture}
    \\[1em]
    \hspace*{-1.8em}
    \raisebox{-1.6em}{
    \begin{tikzpicture}
      \begin{knot}[clip width=0]
        \strand[thick] (0,0)
          to (1,-2);
        \strand[thick] (1,0)
          to (0,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 4};
      \node at (0.5,-3) {(catastrophe!)};
    \end{tikzpicture}
    }
    &
    \begin{tikzpicture}
      \begin{knot}
        \strand[thick] (0,0)
          to[out=down,in=down,looseness=3] (1,0);
        \strand[thick] (0,-2)
          to[out=up,in=up,looseness=3] (1,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 5};
    \end{tikzpicture}
    &
    \begin{tikzpicture}
      \begin{knot}
        \strand[thick] (0,0)
          to[out=down,in=down,looseness=1.5] (1,0);
        \strand[thick] (0,-2)
          to[out=up,in=up,looseness=1.5] (1,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 6};
    \end{tikzpicture}
  \end{array}
\] Well, it'll never win an Academy Award, but this movie is pretty
important. It's a picture of the \(3\)-dimensional slices of a
2-dimensional surface in (3+1)-dimensional spacetime, and this surface
is perfectly smooth but has a saddle point which we are seeing in frame
4. It is one of what Carter and Saito (see
\protect\hyperlink{week2}{``Week 2''}) call the ``elementary string
interactions.'' The relevance to string theory is pretty obvious: we are
seeing a movie of part of a string worldsheet, which is a surface in
(3+1)-dimensional spacetime. My interest in 2-tangles and
\(2\)-categories is precisely because they offer a bridge between string
theory and the loop variables approach to quantum gravity, which may
actually be the \textbf{same thing} in two different disguises. You
heard it here first, folks!

The reader may have fun figuring out what the two ways of composing
2-morphisms amount to in the category of 2-tangles.

There are, in fact, many clues as to the relation between string theory
and \(2\)-categories, one being the Zamolodchikov equation. This is the
analog of the Yang--Baxter equation --- an equation important in the
theory of braids --- one dimension up. It was discovered by
Zamolodchikov in 1980; a 1981 paper that might be a bit easier to get is

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
A.\ B.\ Zamolodchikov, ``Tetrahedron equations and relativistic S-matrix for 
straight strings in 2+1 dimensions,'' \textsl{Commun.\ Math.\ Phys.\ }\textbf{79} 
(1981), 489--505. 
\end{enumerate}
\noindent
(It plays a
different role in the (3+1)-dimensional context, though.) Just as
braided monoidal categories are a good way to systematically find
solutions of the Yang--Baxter equation, braided monoidal
\(2\)-categories, as defined by Kapranov and Voevodsky, seem to be a
good way for finding solutions for the Zamolodchikov equation. (I will
post in a while about a new paper by Soibelman and Kazhdan that does
this. Also see the paper by Crane and Frenkel in
\protect\hyperlink{week2}{``Week 2''}.)

There are also lots of tantalizing ties between the loop variables
approach to quantum gravity and \(2\)-categories; one can see some of
these if one reads the work of Carter and Saito in conjunction with my
paper ``Quantum gravity and the algebra of tangles'' 
(\href{https://arxiv.org/abs/hep-th/9205007}{\texttt{hep-th/9205007}}).   
I hope to make these a lot clearer as time goes by.
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I think I'll start out this week's list of finds with an elementary
introduction to Lie algebras, so that people who aren't ``experts'' can
get the drift of what these are about. Then I'll gradually pick up
speed\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Vyjayanathi Chari and Alexander Premet, ``Indecomposable restricted
  representations of quantum \(\mathfrak{sl}_2\)'', University of
  California at Riverside, preprint.
\end{enumerate}

Vyjayanathi is our resident expert on quantum groups, and Sasha, who's
visiting, is an expert on Lie algebras in characteristic \(p\). They
have been talking endlessly across the hall from me and now I see that
it has born fruit. This is a pretty technical paper and I am afraid I'll
never really understand it, but I can see why it's important, so I'll
try to explain that!

Let me start with the prehistory, which is the sort of thing everyone
should learn. Recall what a Lie algebra is\ldots{} a vector space with a
``bracket'' operation such that the bracket \([x,y]\) of any two vectors
\(x\) and \(y\) is again a vector, and such that the following hold:

\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\tightlist
\item
  skew-symmetry: \([x,y] = -[y,x]\).
\item
  bilinearity: \([x,ay] = a[x,y]\), \([x,y+z] = [x,y] + [x,z]\). (\(a\)
  is any number)
\item
  Jacobi identity: \([x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0\).
\end{enumerate}

These conditions, especially the third, may look sort of weird if you
are not used to them, but the examples make it all clear. The easiest
example of a Lie algebra is \(\mathfrak{gl}(n,\mathbb{C})\), which just
means all \(n\times n\) complex matrices with the bracket defined as the
``commutator'': \[[x,y] = xy-yx.\] Then straightforward calculations
show a)--c) hold\ldots{} so these conditions are really encoding the
essence of the commutator.

Now recall that the trace of a matrix, the sum of its diagonal entries,
satisfies \(\operatorname{tr}(xy)\) = \(\operatorname{tr}(yx)\). So the
trace of any commutator is zero, and if we let
\(\mathfrak{sl}(n,\mathbb{C})\) denote the matrices with zero trace, we
see that it's a sub-Lie algebra of \(\mathfrak{gl}(n,\mathbb{C})\) ---
that is, if \(x\) and \(y\) are in \(\mathfrak{sl}(n)\) so is \([x,y]\),
so we can think of \(\mathfrak{sl}(n,\mathbb{C})\) as a Lie algebra in
its own right. Going from \(\mathfrak{sl}(n,\mathbb{C})\) to
\(\mathfrak{gl}(n,\mathbb{C})\) is essentially a trick for booting out
the identity matrix, which commutes with everything else (hence has
vanishing commutators). The identity matrix is the only one with this
property, so it's sort of weird, and it simplifies things to get rid of
it here.

The simplest of the \(\mathfrak{sl}(n,\mathbb{C})\)'s is the Lie algebra
\(\mathfrak{sl}(2,\mathbb{C})\), affectionately known simply as
\(\mathfrak{sl}(2)\), which is a \(3\)-dimensional Lie algebra with a
basis given by matrices people call \(E\), \(F\), and \(H\) for
mysterious reasons:
\[E=\left(\begin{array}{cc}0&1\\0&0\end{array}\right) \quad F=\left(\begin{array}{cc}0&0\\1&0\end{array}\right) \quad H=\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)\]
You will never be an expert on Lie algebras until you know by heart that
\[[H,E] = 2E, \quad [H,F] = -2F, \quad [E,F]  = H.\] Typically that's
the sort of remark I make before screwing up by a factor of two or
something, so you'd better check! This is a cute little multiplication
table\ldots{} but very important, since \(\mathfrak{sl}(2)\) is the
primordial Lie algebra from which the whole theory of ``simple'' Lie
algebras unfolds.

Physicists are probably more familiar with a different basis of
\(\mathfrak{sl}(2)\), the Pauli matrices:
\[\sigma_1=\left(\begin{array}{cc}0&1\\1&0\end{array}\right) \quad \sigma_2=\left(\begin{array}{cc}0&-i\\i&0\end{array}\right) \quad \sigma_3=\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)\]
For purposes of Lie algebra theory it's actually better to divide each
of these matrices by \(i\) and call the resulting matrices \(I\), \(J\),
and \(K\), respectively. We then have
\[IJ = -JI = K, \quad JK = -KJ = I, \quad KI = -IK = J, \quad I^2 = J^2 = K^2 = -1\]
which is just the multiplication table of the quaternions! From the
point of view of Lie algebras, though, all that matters is
\[[I,J] = 2K, \quad [J,K] = 2I, \quad [K,I] = 2J.\] Given the relation
of these things and cross products, it should be no surprise that the
Pauli matrices have a lot to with angular momentum around the \(x\),
\(y\), and \(z\) axes in quantum mechanics.

If we take all \emph{real} linear combinations of \(E\),\(F\),\(H\) we
get a Lie algebra over the \emph{real} numbers called
\(\mathfrak{sl}(2,\mathbb{R})\), and if we take all real linear
combinations of \(I\),\(J\),\(K\) we get a Lie algebra over the reals
called \(\mathfrak{su}(2)\). These two Lie algebras are two different
``real forms'' of \(\mathfrak{sl}(2)\).

Now, people know just about everything about \(\mathfrak{sl}(2)\) that
they might want to. Well, there's always something more, but I'm
certainly personally satisfied! I recall when as an impressionable
student I saw a book by Serge Lang titled simply
``\(\mathrm{SL}(2,\mathbb{R})\)'', big and fat and scary inside. I knew
what \(\mathrm{SL}(2,\mathbb{R})\) was, but not how one could think of a
whole book's worth of things to write about it! A whole book on \(2 \times 2\)
matrices??

Part of how one gets so much to say about a puny little Lie algebra like
\(\mathfrak{sl}(2)\) is by talking about its representations. What's a
representation? Well, first you have to temporarily shelve the idea that
\(\mathfrak{sl}(2)\) consists of \(2\times2\) matrices, and think of it
more abstractly simply as a 3-dimensional vector space with basis
\(E\),\(F\),\(H\), equipped with a Lie algebra structure given by the
multiplication table \([H,E] = 2E\), \([H,F] = -2F\), \([E,F] = H\). If
this is how I'd originally defined it, it would then be a little
\emph{theorem} that this Lie algebra has a ``representation'' as
\(2\times2\) matrices. And it would turn out to have other
representations too. For example, there's a representation as
\(3\times3\) matrices given by sending
\[E\mapsto\left(\begin{array}{ccc}0&1&0\\0&0&2\\0&0&0\end{array}\right) \quad F\mapsto\left(\begin{array}{ccc}0&0&0\\2&0&0\\0&1&0\end{array}\right) \quad H\mapsto\left(\begin{array}{ccc}2&0&0\\0&0&0\\0&0&-2\end{array}\right)\]
In other words, these matrices satisfy the same commutation relations as
\(E\),\(F\), and \(H\) do.

More generally, and more precisely, we say an \(n\)-dimensional
representation of a Lie algebra \(L\) (over the complex numbers) is a
linear function \(R\) from \(L\) to \(n\times n\) matrices such that
\[R([x,y]) = [R(x),R(y)]\] for all \(x,y\) in \(L\). Note that on the
left the brackets are the brackets in \(L\), while on the right they
denote the commutator of \(n\times n\) matrices.

One good way to understand the essence of a Lie algebra is to figure out
what representations it has. And in quantum physics, Lie algebra
representations are where it's at: the symmetries of the world are
typically Lie groups, each Lie group has a corresponding Lie algebra,
the states of a quantum system are unit vectors in a Hilbert space, and
if the system has a certain Lie group of symmetries there will be a
representation of the Lie algebra on the Hilbert space. As any particle
physicist can tell you, you can learn a lot just by knowing which
representation of your symmetry group a given particle has.

So the name of the game is classifying Lie algebra
representations\ldots{} and many tomes have been written on this by now.
To keep things from becoming too much of a mess it's crucial to make two
observations. First, there's an easy way to get new representations by
taking the ``direct sum'' of old ones: the sum of an \(n\)-dimensional
representation and an \(m\)-dimensional one is an \((n+m)\)-dimensional
one, for example. Another way, not so easy, to get new representations
from an old one is to look for ``subrepresentations'' of the given
representation. In particular, a direct sum of two representations has
them as subrepresentations. (I won't define ``direct sum'' and
``subrepresentation'' here\ldots{} hopefully those who don't know will
be tempted to look it up.)

So rather than classifying \emph{all} representations, it's good to
start by classifying ``irreducible'' representations --- those that have
no suprepresentations (other than themselves and the trivial
0-dimensional representation). This is sort of like finding prime
numbers\ldots{} they are ``building blocks'' in representation theory.
But things are a little bit messier, alas. We say a representation is
``completely reducible'' if it is a direct sum of irreducible
representations. Unfortunately, not all representations need be
completely reducible!

Let's consider the representations of \(\mathfrak{sl}(2,\mathbb{C})\).
(The more sophisticated reader should note that I am implicitly only
considering finite- dimensional complex representations!) Here life is
as nice as could be: all representations are completely reducible, and
there is just one irreducible \(n\)-dimensional representation for each
\(n\), with the 2-dimensional and \(3\)-dimensional representations as
above. (By the way, I really mean that there is only one irreducible
\(n\)-dimensional representation up to a certain equivalence relation!)
Physicists --- who more often work with the real form
\(\mathfrak{su}(2)\) --- call these the spin-\(0\), spin-\(\frac{1}{2}\),
spin-\(1\), etc. representations. The ``spin'' of a particle is, in
mathematical terms, just the thing that tells you which representation
of \(\mathfrak{su}(2)\) it corresponds to!

Now let me jump up several levels of sophistication. In the last few
years people have realized that Lie groups are just a special case of
something called ``quantum groups''\ldots{} nobody talks about ``quantum
Lie algebras'' but that's essentially a historical accident: quantum
groups are \emph{not} groups, they're a generalization of them, and they 
\emph{don't} have Lie algebras, but they have a generalization of them --- so-called
quantized enveloping algebras.

Quantum groups can be formed from simple Lie algebras, and they depend
on a parameter \(q\), a nonzero complex parameter. This parameter ---
\(q\) is for quantum, naturally --- can be thought of as \[e^\hbar\] The
exponential of Planck's constant! When we set \(\hbar = 0\) we get
\(q = 1\), and we get back to the ``classical case'' of plain
old-fashioned Lie algebras and groups. Every representation of a quantum
group gives an invariant of links (actually even tangles), and these
link invariants are functions of \(q\). If we take the \(n\)th
derivative of one of these invariants with respect to \(\hbar\) and
evaluate it at \(\hbar = 0\) we get a ``Vassiliev invariant of degree
\(n\)'' (see \protect\hyperlink{week3}{``Week 3''} for the definition).
Better than that, when \(q\) is a root of unity each quantum group gives
us a \(3\)-dimensional ``topological quantum field theory,'' or TQFT
known as Chern--Simons theory. In particular, we get an invariant of
compact oriented 3-manifolds. So there is a hefty bunch of mathematical
payoffs from quantum groups. And there are good reasons to think of them
as the right generalization of groups for dealing with symmetries in the
physics of 2 and 3 dimensions. If string theory \emph{or} the loop
variables approach to quantum gravity have any truth to them, quantum
groups play a sneaky role in honest \(4\)-dimensional physics too.

In particular, there is a quantum version of \(\mathfrak{sl}(2)\) called
\(\mathfrak{sl}_q(2)\). When \(q = 1\) we essentially have the good old
\(\mathfrak{sl}(2)\). Chari and Premet have just worked out a lot of the
representation theory of \(\mathfrak{sl}_q(2)\). First of all, it's been
known for some time that as long as \(q\) is not a root of unity ---
that is, as long as we don't have \[q^n = 1\] for some integer \(n\) ---
the story is almost like that for ordinary \(\mathfrak{sl}(2)\). Namely,
there is one irreducible representation of each dimension, and all
representations are completely reducible. This fails at roots of unity
--- which turns out to be the reason why one can cook up TQFTs in this
case. It turns out that if \(q\) is an \(n\)th root of unity one can
still define representations of dimension 0,1,2,3, etc., more or less
just like the classical case, but only those of dimension
\(\leqslant n\) are irreducible. There are, in fact, exactly \(n\)
irreducible representations, and the fact that there are only finitely
many is what makes all sorts of neat things happen. The
\(k\)-dimensional representations with \(k \geqslant n\) are not
completely reducible. And, besides the representations that are
analogous to the classical case, there are a bunch more. They have not
been completely classified --- they are, according to Chari, a mess! But
she and Premet have classified a large batch of the ``indecomposable''
ones, that is, the ones that aren't direct sums of other ones. I guess
I'll leave it at that.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  David Kazhdan and Iakov Soibelman, ``Representations of the quantized
  function algebras, \(2\)-categories and Zamolodchikov tetrahedra
  equations'', \emph{The Gelfand Mathematical Seminars 1990--1992}, Springer,
  Berlin, 1993, pp.\ 163--71.
\end{enumerate}
\noindent
In this terse paper, Kazhdan and Soibelman construct a braided monoidal
\(2\)-category using quantum groups at roots of unity. As I've said a
few times, people expect braided monoidal \(2\)-categories to play a
role in generally covariant 4d physics analogous to what braided
monoidal categories do in 3d physics. In particular, one might hope to
get invariants of \(4\)-dimensional manifolds, or of surfaces embedded
in 4-manifolds, this way. (See last week's post for a little bit about
the details.) I don't feel I understand this construction well enough
yet to want to say much about it, but it is clearly related to the
construction of a braided monoidal \(2\)-category from the category of
quantum group representations given by Crane and Frenkel (see
\protect\hyperlink{week2}{``Week 2''}).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Adrian Ocneanu, ``A note on simplicial dimension shifting'', available
  as \href{http://arxiv.org/abs/hep-th/9302028}{\texttt{hep-th/9302028}}.
\end{enumerate}
\noindent
Ouch! This paper claims to show that the very charming 4d TQFT
constructed by Crane and Yetter in ``A categorical construction of 4d
topological quantum field theories''
(\href{http://arxiv.org/abs/hep-th/9301062}{\texttt{hep-th/9301062}}) is
trivial! In particular, he says the resulting invariant of compact
oriented 4-manifolds is identically equal to 1. If so, it's back to the
drawing board. Crane and Yetter took the 3d TQFT coming from
\(\mathfrak{sl}_q(2)\) at roots of unity and then used a clever trick to
get 3-manifolds from a simplicial decomposition of a 4-manifold to get a
4d TQFT. Ocneanu claims this trick, which he calls ``simplicial
dimension shifting,'' only gives trivial 4-manifold invariants.

I am not yet in a position to pass judgement on this, since both
Crane/Yetter and Ocneanu are rather sketchy in key places. If indeed
Ocneanu is right, I think people are going to have to get serious about
facing up to the need for \(2\)-categorical thinking in
\(4\)-dimensional generally covariant physics. I had asked Crane, a big
proponent of \(2\)-categories, why they played no role in his 4d TQFT,
and he said that indeed he felt like the kid who took apart a watch, put
it back together, and found it still worked even though there was a
piece left over. So maybe the watch didn't really work without that
extra piece after all. In late March I will go to the Conference on
Quantum Topology thrown by Crane and Yetter (at Kansas State U. at
Manhattan), and I'm sure everyone will try to thrash this stuff out.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Abhay Ashtekar and Jerzy Lewandowski, ``Representation theory of
  analytic holonomy \(C^*\)-algebras'', available as
  \href{http://arxiv.org/abs/gr-qc/9311010}{\texttt{gr-qc/9311010}}.
\end{enumerate}
\noindent
This paper is a follow-up of the paper

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Abhay Ashtekar and Chris Isham, ``Representations of the holonomy
  algebras of gravity and non-Abelian gauge theories'', \emph{Journal of
  Classical and Quantum Gravity} \textbf{9} (1992), 1069--1100. Also
  available as
  \href{http://arxiv.org/abs/hep-th/9202053}{\texttt{hep-th/9202053}}.
\end{enumerate}
\noindent
and sort of complements another,

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  John Baez, ``Link invariants, holonomy algebras and functional
  integration'', available as
  \href{http://arxiv.org/hep-th/9301063}{\texttt{hep-th/9301063}}.
\end{enumerate}

The idea here is to provide a firm mathematical foundation for the loop
variables representation of gauge theories, particularly quantum
gravity. Ashtekar and Lewandowski consider an algebra of gauge-invariant
observables on the space of \(\mathfrak{su}(2)\) connections on any
real-analytic manifold, namely that generated by piecewise analytic
Wilson loops. This is the sort of thing meant by a ``holonomy algebra''.
They manage to construct an explicit diffeomorphism-invariant state on
this algebra. They also relate this algebra to a similar algebra for
\(\mathfrak{sl}(2)\) connections --- the latter being what really comes
up in quantum gravity. And they do a number of other interesting things,
all quite rigorously. My paper dealt instead with an algebra generated
by ``regularized'' or ``smeared'' Wilson loops, and showed that there
was a 1-1 map from diffeomorphism-invariant states on this algebra to
invariants of framed links --- thus showing that the loop variables
picture, in which states are given by link invariants, doesn't really
lose any of the physics present in traditional approaches to gauge
theories. I am busy at work trying to combine Ashtekar and Lewandowski's
ideas with my own and push this program further --- my own personal goal
being to make the Chern--Simons path integral rigorous --- it being one
of those mysterious ``measures on the space of all connections mod gauge
transformations'' that physicists like, which unfortunately aren't
really measures, but some kind of generalization thereof. What it
\emph{should} be is a state (or continuous linear functional) on some
kind of holonomy algebra.
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\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Alexander Vilenkin, ``Quantum cosmology'', talk given at
  Texas/Pascos 1992 at Berkeley, available as
  \href{https://arxiv.org/abs/gr-qc/9302016}{\texttt{gr-qc/9302016}}.
\end{enumerate}
\noindent
This is, as Vilenkin notes, an elementary review of quantum cosmology.
It won't be news to anyone who has kept up on that subject (except
perhaps for a few speculations at the end), but for those who haven't
been following this stuff, like myself, it might be a good way to get
started.

Let's get warmed up\ldots.

Quantizing gravity is mighty hard. For one thing, there's the ``problem
of time'' --- the lack of a distinguished time parameter in
\emph{classical} general relativity means that the usual recipe for
quantizing a dynamical system --- ``represent time evolution by the
unitary operators \(\exp(-iHt)\) on the Hilbert space of states, where \(t\) is
the time and \(H\), the Hamiltonian, is a self-adjoint operator'' --- breaks
down! As Wheeler so picturesquely put it, in general relativity we have
``many-fingered time''; there are lots of ways of pushing a spacelike
surface forwards in time.

But if we simplify the heck out of the problem, we might make a little
progress. (This is a standard method in physics, and whether or not it's
really justified, it's often the only thing one can do!) For one thing,
note that in the Big Bang cosmology there is a distinguished ``rest
frame'' (or more precisely, field of timelike vectors) given by the
galaxies, if we discount their small random motions. In reality these
are maybe not so small, and maybe not so random --- such things as the
``Virgo flow'' show this --- but we're talking strictly theory here,
okay? --- so don't bother us with facts! So, if we imagine that things
go the way the simplest Big Bang models predict, the galaxies just sit
there like dots on a balloon that is being inflated, defining a notion
of ``rest'' at each point in spacetime. This gives a corresponding
notion of time, since one can measure time using clocks that are at rest
relative to the galaxies. Then, since we are pretending the universe is
completely homogeneous and isotropic --- and let's say it's a closed
universe in the shape of a 3-sphere, to be specific --- the metric is
given by
\[dt^2-r(t)^2[(d\psi)^2 + (\sin \psi)^2{(d\theta)^2 + (\sin \theta)^2 (d\varphi)^2}]\]
What does all this mean? Here \(r(t)\) is the radius of the universe as
a function of time, the following stuff is just the usual metric on the
unit 3-sphere with hyperspherical coordinates \(\psi\), \(\theta\),
\(\varphi\) generalizing the standard coordinates on the 2-sphere we all
learn in college:
\[(d\psi)^2 + (\sin \psi)^2{(d\theta)^2 + (\sin \theta)^2 (d\varphi)^2}\]
and the fact that the metric on spacetime is \(dt^2\) minus a bunch of
stuff reflects the fact that spacetime geometry is ``Lorentzian,'' just
as in flat Minkowski space the metric is 
\[dt^2-dx^2-dy^2-dz^2.\] 
The name of the game in this simple sort of Big Bang cosmology is thus
finding the function \(r(t)\)! To do this, of course, we need to see
what Einstein's equations reduce to in this special case, and since
Einstein's equations tell us how spacetime curves in response to the
stress-energy tensor, this will depend on what sort of matter we have
around. We are assuming that it's homogeneous and isotropic, whatever it
is, so it turns out that all we need to know is its density \(\rho\) and
pressure \(P\) (which are functions of time). We get the equations
\[\begin{aligned}r''/r &= -\frac{4\pi}{3}(\rho+3P) \\ (r')^2 &= \frac{8\pi}{3}\rho r^2-1\end{aligned}\]
Here primes denote differentiation with respect to \(t\), and I'm using
units in which the gravitational constant and speed of light are equal
to 1.

Let's simplify this even more. Let's assume our matter is ``dust,''
which is the technical term for zero pressure. We get two equations:
\[\begin{aligned}r''/r &= -\frac{4\pi}{3}\rho \\ (r')^2 &= \frac{8\pi}{3}\rho r^2-1\end{aligned}\tag{1}\]
Now let's take the second one, differentiate with respect to \(t\),
\[2r''r' = \frac{8\pi}{3}(\rho'r^2 + 2 \rho r r')\] plug in what the
first equation said about r'\,',
\[-\frac{8\pi}{3} \rho r r' = \frac{8\pi}{3}(\rho' r^2 + 2 \rho r r')\]
clear out the crud, and lo: \[3 \rho r' = -\rho' r\] or, more
enlighteningly, \[\frac{d(\rho r^3)}{dt} = 0.\] This is just
``conservation of dust'' --- the dust density times the volume of the
universe is staying constant. This, by the way, is a special case of the
fact that Einstein's equations \emph{automatically imply} local
conservation of energy (i.e., that the stress-energy tensor is
divergence-free).

Okay, so let's say \(\rho r^3 = D\), with \(D\) being the total amount
of dust. Then we can eliminate \(\rho\) from equations (1) and get:
\[\begin{aligned}r'' &= -\frac{4\pi D}{3r^2} \\ (r')^2-\frac{8\pi}{3}\frac{D}{r} &= -1 \end{aligned}\tag{2}\]
What does this mean? Well, the first one looks like it's saying there's
a force trying to make the universe collapse, and that the strength of
this force is proportional to \(1/r^2\). Sound vaguely familiar? It's
actually misleadingly simple --- if we had put in something besides dust
it wouldn't work quite this way --- but as long as we don't take it too
seriously, we can just think of this as gravity trying to get the
universe to collapse. And the second one looks like it's saying that the
``kinetic'' energy proportional to \((r')^2\), plus the ``potential''
energy proportional to \(-1/r\), is constant! In other words, we have a
nice analogy between the Big Bang cosmology and a very old-fashioned
system, a classical particle in one dimension attracted to the origin by
a \(1/r^2\) force!

It's easy enough to solve this equation, and easier still to figure it
out qualitatively. The key thing is that since the total ``energy'' in
the second equation of (2) is negative, there won't be enough ``energy''
for \(r\) to go to infinity, that is, there'll be a Big Bang and then a
big crunch. Here's \(r\) as a function of \(t\), roughly: \[
  \begin{tikzpicture}
    \draw[->] (0,0) to (5,0) node[label=below left:{$t$}]{};
    \draw[->] (0,0) to (0,2.5) node[label=below left:{$r$}]{};
    \draw[thick] plot [smooth,tension=1] coordinates {(0,0) (2,1.5) (4,0)};
  \end{tikzpicture}
\] 
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What goes up, must come down! This curve, which I haven't drawn too
well, is just a cycloid, which is the curve traced out by a point on the
rim of rolling wheel. So, succumbing to romanticism momentarily we could
call this picture \emph{one turn of the great wheel of time}\ldots.
But there is \emph{no} reason to expect further turns, because the
differential equation simply becomes singular when \(r = 0\). We may
either say it doesn't make sense to speak of ``before the Big Bang'' or
``after the big crunch'' --- or we can look for improved laws that avoid
these singularities. (I should repeat that we are dealing with
unrealistic models here, since for example there is no evidence that
there is enough matter around to ``close the universe'' and make this
solution qualitatively valid --- it may well be that there's a Big Bang
but no big crunch. In this case, there's only one singularity to worry
about, not two.)

People have certainly not been too ashamed to study the \emph{quantum}
theory of this system (and souped-up variants) in an effort to get a
little insight into quantum gravity. We would expect that quantum
effects wouldn't matter much until the radius of the universe is very
small, but when it \emph{is} very small they would matter a lot, and
maybe --- one might hope --- they would save the day, preventing the
nasty singularities. I'm not saying they \emph{do} --- this is hotly debated
--- but certainly some people hope they do. Of course, serious quantum
gravity should take into account the fact that geometry of spacetime has
all sorts of wiggles in it --- it isn't just a symmetrical sphere. This may
make a vast difference in how things work out. (For example, the big
crunch would be a lot more exciting if there were lots of black holes
around by then.) The technical term for the space of all metrics on
space is ``superspace'' (sigh), and the toy models one gets by ignoring
all but finitely many degrees of freedom are called ``minisuperspace''
models.

Let's look at a simple minisuperspace model. The simplest thing to try
is to take the classical equations of motion (2) and try to quantize
them just like one would a particle in a potential. This is a delicate
business, by the way, because one can't just take some classical
equations of motion and quantize them in any routine way. There are lots
of methods of quantization, but all of them require a certain amount of
case-by-case finesse.

The idea of ``canonical quantization'' of a classical system with one
degree of freedom --- like our Big Bang model above, where the one
degree of freedom is \(r\) --- is to turn the ``position'' (that's
\(r\)) into a multiplication operator and the ``momentum'' (often that's
something like \(r'\), but watch out!) into a differentation operator,
say \(-i \hbar \frac{d}{dr}\), so that we get the ``canonical
commutation relations'' \[[-i \hbar \frac{d}{dr}, r] = -i \hbar.\] We
then take the formula for the energy, or Hamiltonian, in terms of
position and momentum, and plug in these operators, so that the
Hamiltonian becomes an operator. (Here various ``operator-ordering''
problems can arise, because the position and momentum commuted in the
original classical system but not anymore!) To explain what I mean, why
don't I just do it!

So: I said that the formula
\[(r')^2-\frac{8\pi}{3} \frac{D}{r} = -1 \tag{3}\] looks a lot like a
formula of the form ``kinetic energy plus potential energy is
constant''. Of course, we could multiply the whole equation by anything
and get a valid equation, so it's not obvious that the ``right''
Hamiltonian is \[(r')^2-\frac{8\pi}{3} \frac{D}{r}\] or (adding 1
doesn't hurt) \[(r')^2-\frac{8\pi}{3} \frac{D}{r} + 1\] In fact, note
that multiplying the Hamiltonian by some function of \(r\) just amounts
to reparametrizing time, which is perfectly fine in general relativity.
In fact, Vilenkin and other before him have decided it's better to
multiply the Hamiltonian above by \(r^2\). Why? Well, it has to do with
figuring out what the right notion of ``momentum'' is corresponding to
the ``position'' \(r\). Let's do that. We use the old formula
\[p = \frac{dL}{dq'}\] relating momentum to the Lagrangian, where for us
the position, usually called \(q\), is really \(r\).

The Lagrangian of general relativity is the ``Ricci scalar'' \(R\) --- a
measure of curvature of the metric --- and in the present problem it
turns out to be
\[R = 6 \left(\frac{r''}{r} + \frac{(r')^2}{r^2}\right)\] But we are
reducing the full field theory problem down to a problem with one degree
of freedom, so our Lagrangian should be the above integrated over the
3-sphere, which has volume \(16 \pi r^3/3\), giving us
\[32\pi (r''r^2 + (r')^2 r)\] However, the \(r''\) is a nuisance, and we
only use the integral of the Lagrangian with respect to time (that's the
action, which classically is extremized to get the equations of motion),
so let's do an integration by parts, or in other words add a total
divergence, to get the Lagrangian \[L = -32\pi (r')^2 r.\]
Differentiating with respect to \(r'\) we get the momentum ``conjugate
to \(r\)'', \[p = -64\pi r'r.\] Now I notice that Vilenkin uses as the
momentum simply \(-r'r\), somehow sweeping the monstrous \(64\pi\) under
the rug. I have the feeling that this amounts to pushing this factor
into the definition of \(\hbar\) in the canonical commutation relations.
Since I was going to set \(\hbar\) to 1 in a minute anyway, this is okay
(honest). So let's keep life simple and use \[p = -r'r.\] Okay! Now
here's the point, we want to exploit the analogy with good old quantum
mechanics, which typically has Hamiltonians containing something like
\(p^2\). So let's take our preliminary Hamiltonian
\[(r')^2-\frac{8\pi}{3} \frac{D}{r} + 1\] and multiply it by \(r^2\),
getting \[H = p^2-\frac{8\pi D}{3}r + r^2.\] Hey, what's this? A
harmonic oscillator! (Slightly shifted by the term proportional to
\(r\).) So the universe is just a harmonic oscillator\ldots{} I guess
that's why they stressed that so much in all my classes!

Actually, despite the fact that we are working with a very simple model
of quantum cosmology, it's not quite \emph{that} simple. First of all,
recall our original classical equation, (3). This constrained the energy
to have a certain value. I.e., we are dealing not with a Hamiltonian in
the ordinary sense, but a ``Hamiltonian constraint'' --- typical of
systems with time reparametrization invariance. So our quantized
equation says that the ``wavefunction of the universe,'' \(\psi(r)\),
must satisfy \[H \psi = 0.\] Also, unlike the ordinary harmonic
oscillator we have the requirement that \(r\geqslant0\). In other word,
we're working with a problem that's like a harmonic oscillator and a
``wall'' that keeps \(r\geqslant0\). Think of a particle in a potential
like this: 
\newpage
\[
  \begin{tikzpicture}
    \draw[->] (0,0) to (5,0) node [label=below left:{$r$}]{};
    \draw[->] (0,-0.7) to (0,2.5) node[label=below left:{$V(r)$}]{};
    \draw[thick] plot [smooth,tension=1] coordinates {(0,0) (1.8,-0.5) (4,2.5)};
  \end{tikzpicture} 
\] 
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Here \(V(r) = -(8\pi D/3)r + r^2\). The minimum of \(V\) is at
\(r = 4 \pi D/3\) and the zeroes are at \(r = 0\) and \(8 \pi D/3\).
Classically, a particle with zero energy starting at \(r = 0\) will roll
to the right and make it out to \(r = 4\pi D/3\) before rolling back to
\(r = 0\). This is basically the picture we had in Figure 1, except that
we've reparametrized time so we have simple harmonic motion instead of
cycloid.

Quantum mechanically, however one must pick boundary conditions at
\(r = 0\) to make the problem well-defined!

This is where the fur begins to fly!! Hawking and Vilenkin have very
different ideas about what the right boundary conditions are. And note
that this is not a mere technical issue, since they determine the
wavefunction of the universe in this approach! I will not discuss this
since Vilenkin does so quite clearly, and if you understand what I have
written above you'll be in a decent position to understand him. I will
just note that Vilenkin, rather than working with a universe full of
``dust,'' considers a universe in which the dominant contribution to the
stress-energy tensor is the cosmological constant, that is, the negative
energy density of a ``false vacuum'', which believers in inflation (such
as Vilenkin) think powered the exponential growth of the universe at an
early stage. So his equations are slightly different from those above
(and are only meant to apply to the early history of the universe).

{[}Let me just interject a question to the experts if I may --- since
I've written this long article primarily to educate myself. It would
seem to me that the equation \(H \psi = 0\) above would only have a
normalizable solution if the boundary conditions were fine-tuned! I.e.,
maybe the equation \(H \psi = 0\) itself determines the boundary
conditions! This would be very nice; has anyone thought of this? It
seems reasonable because, with typical boundary conditions, the operator
\(H\) above will have pure point spectrum (only eigenvalues) and it
would be rather special for one of them to be \(0\), allowing a
normalizable solution of \(H \psi = 0\). Also, corrections and education
of any sort are welcomed. I would love to discuss this with some
experts.{]}

Anyway, suppose we find some boundary conditions and calculate \(\psi\),
the ``wavefunction of the universe.'' (I like repeating that phrase
because it sounds so momentous, despite the fact that we are working
with a laughably oversimplified toy model.) What then? What are the
implications for the man in the street?

Let me get quite vague at this point. Think of the radius of the
universe as analogous to a particle moving in the potential of Figure 2.
In the current state of affairs classical mechanics is an excellent
approximation, so it seems to trace out a classical trajectory. Of
course it is really obeying the laws of quantum mechanics, so the
trajectory is really a ``wave packet'' --- technically, we use the WKB
approximation to see how the wave packet can seem like a classical
trajectory. But near the Big Bang or big crunch, quantum mechanics
matters a lot: there the potential is rapidly varying (in our simple
model it just becomes a ``wall'') and the wave packet may smear out
noticeably. (Think of how when you shoot an electron at a nucleus it
bounces off in an unpredictable direction --- it's wavefunction just
tells you the \emph{probability} that it'll go this way or that!) So
some quantum cosmologists have suggested that if there is a big crunch,
the universe will pop back out in a highly unpredictable, random kind of
way!

I should note that Vilenkin has a very different picture. Since this
stuff makes large numbers of assumptions with very little supporting
evidence, it is science that's just on the brink of being mythology.
Still, it's very interesting.
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\item
  Lee Smolin, ``Finite, diffeomorphism invariant observables in quantum
  gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/9302011}{\texttt{gr-qc/9302011}}.
\end{enumerate}

The big problem in canonical quantization of gravity, once one gets
beyond ``mini-'' and ``midisuperspace'' models, is to find enough
diffeomorphism-invariant observables. There is a certain amount of
argument about this stuff, and various approaches, but one common
viewpoint is that the ``physical'' observables, that is, the really
observable observables, in general relativity are those that are
invariant under all diffeomorphisms of spacetime. I.e., those that are
independent of any choice of coordinates. For example, saying ``My
position is \((242,2361,12,-17)\)'' is not diffeomorphism-invariant, but
saying ``I'm having the time of my life'' is. It's hard to find lots of
(tractable) diffeomorphism invariant observables --- or even any! Try
figuring out how you would precisely describe the shape of a rock
without introducing any coordinates, and you'll begin to see the
problem. (The quantum mechanical aspects make it harder.)

Rovelli came up a while back with a very clever angle on this problem.
It's rather artificial but still a big start. Using a ``field of
clocks'' he was able to come up with interesting diffeomorphism
invariant observables. The idea is simply that if you had clocks all
around you could say ``when the bells rang 2 a.m. I was having the time
of my life'' --- and this would be a diffeomorphism-invariant statement,
since rather than referring to an abstract coordinate system it
expresses the coincidence of two physical occurences, just like ``the
baseball broke through the window''. Then he pushed this idea to define
``evolving constants of motion'' --- a deliberate oxymoron --- to deal
with the famous ``problem of time'' in general relativity: how to treat
time evolution in a coordinate-free manner on a spacetime that's not
flat and, worse, whose geometry is ``uncertain'' a la Heisenberg? This
is treated, by the way, in
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  Carlo Rovelli, ``Time in quantum gravity: an hypothesis'', \emph{Phys.\
  Rev.} \textbf{D43} (1991), 442--456.
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Also, an excellent and very thorough review of the problem of time and
various proposed solutions, including Rovelli's, is given in
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  Chris J. Isham, ``Canonical quantum gravity and the problem of time'',
  125 pages, available as
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Anyway, in a paper I very briefly described in
\protect\hyperlink{week1}{``Week 1''}:
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  Lee Smolin, ``Time, measurement and information loss in quantum
  cosmology'', available as
  \href{https://arxiv.org/abs/gr-qc/9301016}{\texttt{gr-qc/9301016}}.
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Smolin showed, how, using a clever trick sketched in the present paper
to get ``observables'' invariant under spatial but not temporal
observables, together with Rovelli's idea, one could define lots of \emph{real}
observables, invariant under spacetime diffeomorphisms that is, thus
making a serious bite into this problem.

I warn the reader that there is a fair amount that is not too realistic
about these methods. First there's the ``clock field'' --- this can
actually be taken as a free massless scalar field, but in so doing there
is the likelihood of serious technical problems. Some of these are
discussed in
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  P. Hajicek, ``Comment on `Time in quantum gravity --- an
  hypothesis''', \emph{Phys. Rev.} \textbf{D44} (1991), 1337--1338.
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(But I haven't actually read this, just Isham's description.) Also, the
clever trick of the present paper is to couple gravity to an
antisymmetric tensor gauge field so that in addition to having loops as
part of one's ``loop representation,'' one has surfaces --- a ``surface
representation''. But this antisymmetric tensor gauge field is not the
sort of thing that actually seems to arise in physics (unless I'm
missing something). Still, it's a start. I think I'll finish by quoting
Smolin's abstract:

\begin{quote}
Two sets of spatially diffeomorphism invariant operators are constructed
in the loop representation formulation of quantum gravity. This is done
by coupling general relativity to an anti- symmetric tensor gauge field
and using that field to pick out sets of surfaces, with boundaries, in
the spatial three manifold. The two sets of observables then measure the
areas of these surfaces and the Wilson loops for the self-dual
connection around their boundaries. The operators that represent these
observables are finite and background independent when constructed
through a proper regularization procedure. Furthermore, the spectra of
the area operators are discrete so that the possible values that one can
obtain by a measurement of the area of a physical surface in quantum
gravity are valued in a discrete set that includes integral multiples of
half the Planck area. These results make possible the construction of a
correspondence between any three geometry whose curvature is small in
Planck units and a diffeomorphism invariant state of the gravitational
and matter fields. This correspondence relies on the approximation of
the classical geometry by a piecewise flat Regge manifold, which is then
put in correspondence with a diffeomorphism invariant state of the
gravity-matter system in which the matter fields specify the faces of
the triangulation and the gravitational field is in an eigenstate of the
operators that measure their areas.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{In the Space and Time marriage we have the greatest Boy meets Girl
story of the age. To our great-grandchildren this will be as poetical a
union as the ancient Greek marriage of Cupid and Psyche seems to us.}

--- Lawrence Durrell
\end{quote}
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  Abhay Ashtekar, ``Mathematical problems of non-perturbative quantum general relativity''
  (lectures delivered at the 1992 Les Houches summer school on
  Gravitation and Quantization), 87 pages, Plain TeX,
  available as
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I described this paper in \protect\hyperlink{week3}{``Week 3''}, but now
it's available from gr-qc. It's a good quick introduction to the loop
representation of quantum gravity.
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  Abhay Ashtekar, \emph{Lectures on Non-perturbative Canonical Gravity}, World Scientific Press, 1991.
\end{enumerate}

This book, which I finally obtained, is \emph{the} introduction to the
loop representation of quantum gravity. What's the loop representation?
Well, this is a long story, so you really should read the book. But just
to get you going, let me describe Ashtekar's ``new variables,'' which
form the basis for Rovelli and Smolin's construction of the loop
representation.

First, recall that general relativity is usually thought of as a theory
about a metric on spacetime --- more precisely, a Lorentzian metric.
Here spacetime is a \(4\)-dimensional manifold, and a Lorentzian metric
allows you to calculate the ``dot product'' of any two tangent vectors
at a point. This is in quotes because, while a normal dot product might
look like
\[(v_0,v_1,v_2,v_3)\cdot(w_0,w_1,w_2,w_3) = v_0w_0 + v_1w_1 + v_2w_2 + v_3w_3\]
relative to some basis, for a Lorentzian metric we can always find a
basis of the tangent space such that
\[(v_0,v_1,v_2,v_3)\cdot(w_0,w_1,w_2,w_3) = v_0w_0 -v_1w_1 -v_2w_2 -v_3w_3\]
Now the metric in general relativity defines a ``connection,'' which
tells you a tangent vector might ``twist around'' as you parallel
translate it, that is, move it along while trying to keep it from
rotating unnecessarily. Here ``twist around'' is in quotes because,
since you are parallel translating the vector, it's not really
``twisting around'' in the usual sense, but it might seem that way
relative to some coordinate system. For example, if you used polar
coordinates to describe parallel translation on the plane, it might seem
that the unit vector in the \(r\) direction ``twisted around'' towards the
\(\theta\) direction as you dragged it along. But in another coordinate
system --- say the usual \(x\)-\(y\) system --- it would not appear to
be ``twisting around''. This fact is expressed by saying ``the
connection is not a tensor''.

But from the connection we can cook up a big fat tensor, the ``Riemann
tensor'' \(R^i_{jkl}\), which says how much the vector in the \(l\)th
direction (here the indices range from 0 to 3) twists towards the
\(i\)th direction when you move it around a teeny little square in the
\(j\)-\(k\) plane. The Lagrangian in ordinary GR is just the integral of
the ``Ricci scalar curvature,'' \(R\), which is gotten from the Riemann
tensor by ``contraction'', i.e.~summing over the indices in a certain
way: \[R = R^i_{ji}{}^j\] where we are raising indices using the metric
in a manner beloved by physicists and feared by many mathematicians. If
you integrate the Lagrangian over a region of spacetime you get the
``action'', and in classical general relativity (in a vacuum, for
simplicity) one can formulate the laws of motion simply by saying: any
teeny change in the metric that vanishes on the boundary of the region
should leave the action constant to first order. In other words, the
solutions of the equations of general relativity are the *stationary
points* of the action. If you know how to do variational calculus you
can derive Einstein's equations from this variational principle, as it's
called. Mathematicians will be pleased to know that Hilbert beat
Einstein to the punch here, so the integral of \(R\) is called the
``Einstein--Hilbert'' action for general relativity.

But there's another formulation of general relativity in terms of an
action principle. This is called the ``Palatini'' action --- and
actually I'm going to describe a slight variation on it, that is
conceptually simpler, and apparently appears for the first time in
Ashtekar's book. The Palatini approach turns out to be more elegant and
is a nice stepping-stone to the Ashtekar approach. In the Palatini
approach one thinks of general relativity not as being a theory of a
metric, but of a ``tetrad'' and an ``\(\mathfrak{so}(3,1)\)
connection''. To explain what these are, I will cut corners and assume
all the fiber bundles lurking around are trivial; the experts will
easily be able to figure out the general case. So: an (orthonormal)
tetrad, or ``vierbein,'' is a just a kind of field on spacetime which at
each point consists of an (ordered) orthonormal basis of the tangent
space. If we express the metric in terms of a tetrad, it looks just like
the formula for the standard ``inner product''
\[(v_0,v_1,v_2,v_3)\cdot(w_0,w_1,w_2,w_3) = v_0w_0 -v_1w_1 -v_2w_2 -v_3w_3\]
This allows us to identify the group of linear transformations of the
tangent space that preserve the metric with the group of linear
transfomations preserving the standard ``inner product,'' which is
called \(\mathrm{SO}(1,3)\) since there's one plus sign and three
minuses. And from the connection mentioned above one gets an
\(\mathrm{SO}(1,3)\) connection, or, what's more or less the same thing,
an \(\mathfrak{so}(1,3)\)-valued \(1\)-form, that is, a kind of field
that can eat a tangent vector at any point and spits out element of the
Lie algebra \(\mathfrak{so}(1,3)\).

What's \(\mathfrak{so}(1,3)\)? Well, elements of \(\mathfrak{so}(1,3)\)
include ``infinitesimal'' rotations and Lorentz transformations, since
\(\mathrm{SO}(1,3)\) is generated by rotations and Lorentz
transformations. More precisely, \(\mathfrak{so}(1,3)\) is a
6-dimensional Lie algebra having as a basis the three infinitesimal
rotations \(J_1\), \(J_2\), and \(J_3\) around the three axes, and the
three infinitesimal Lorentz transformations or ``boosts'' \(K_1\),
\(K_2\), \(K_3\). The bracket in this most important Lie algebra is
given by
\[\begin{aligned}\,[J_i,J_j] & = J_k \\ [K_i,K_j] &= -J_k \\ [J_i,K_j] &= K_k\end{aligned}\]
where \((i,j,k)\) is a cyclic permutation of \((1,2,3)\). (I hope I
haven't screwed up the signs.) Note that the \(J\)'s by themselves form
a Lie subalgebra called \(\mathfrak{so}(3)\), the Lie algebra of the
rotation group \(\mathrm{SO}(3)\). Note that \(\mathfrak{so}(3)\) is
isomorphic to the the cute little Lie algebra \(\mathfrak{su}(2)\) I
described in my post \protect\hyperlink{week5}{``Week 5''}; \(J_1\),
\(J_2\), and \(J_3\) correspond to the guys \(I\), \(J\), and \(K\)
divided by two.

The \(\mathfrak{so}(1,3)\) connection has a curvature, and using the
tetrads again we can identify this with the Riemann curvature tensor. So
the Palatini trick is to rewrite the Einstein--Hilbert action in terms of
the curvature of the \(\mathfrak{so}(1,3)\) connection and the tetrad
field. This is called the Palatini action. Charmingly, even though the
tetrad field is utterly unphysical, we can treat it and the
\(\mathfrak{so}(1,3)\) connection as independent fields and, doing
calculus of variations to find stationary points of the action, we get
equations equivalent to Einstein's equations.

Ashtekar's ``new variables'' --- from this point of view --- rely on a
curious and profound fact about \(\mathfrak{so}(1,3)\). Note that
\(\mathfrak{so}(1,3)\) is a Lie algebra over the real numbers. But if we
allow ourselves to form \emph{complex} linear combinations of the
\(J\)'s and \(K\)'s, thus:
\[\begin{aligned}M_i &= (J_i + iK_i)/2 \\ N_i &= (J_i -iK_i)/2\end{aligned}\]
(please don't mix up the subscript \(i = 1,2,3\) with the other \(i\),
the square root of minus one) we get the following brackets:
\[\begin{aligned}\,[M_i,M_j] &= M_k \\ [N_i,N_j] &= N_k \\ [M_i,N_j] &= 0\end{aligned}\]
I think the signs all work but I wouldn't trust me if I were you. The
wonderful thing here is that the \(M\)'s and \(N\)'s commute with each
other, and each set has commutation relations just like the \(J\)'s! The
\(J\)'s, recall, are infinitesimal rotations, and the Lie algebra they
span is \(\mathfrak{so}(3)\). So in a sense the Lie algebra of the
Lorentz group can be ``split'' into ``left-handed'' and ``right-handed''
copies of \(\mathfrak{so}(3)\), also known as ``self-dual'' and
``anti-self-dual'' copies. This is, in fact, what lies behind the
handedness of neutrinos, and many other wonderful things.

But let me phrase this result more precisely. Since we allowed ourselves
complex linear combinations of the \(J\)'s and \(K\)'s, we are now
working in the ``complexification'' of the Lie algebra
\(\mathfrak{so}(3,1)\), and we have shown that this Lie algebra over the
complex numbers splits into two copies of
\(\mathfrak{so}(3,\mathbb{C})\), the complexification of
\(\mathfrak{so}(3)\).

Ashtekar came up with some ``new variables'' for general relativity in
the context of the Hamiltonian approach. Here we are working in the
Lagrangian approach, where things are simpler because they are
``generally covariant,'' not requiring a split of spacetime into space
and time. The Lagrangian approach to the new variables is due to Samuel,
Jacobson and Smolin, and in this approach all they amount to is this:
\(\mathfrak{so}(1,3)\) connection of the Palatini approach, think of the
\(\mathfrak{so}(1,3)\) as sitting inside the complexification thereof,
and consider only the ``right-handed'' part! Thus, from an
\(\mathfrak{so}(1,3)\) connection, we get a
\(\mathfrak{so}(3,\mathbb{C})\) connection. The ``new variables'' are
just the tetrad field and this \(\mathfrak{so}(3,\mathbb{C})\)
connection.

I have tried to keep down the indices but I think I will write down the
Palatini Lagrangian and then the ``new variables'' Lagrangian, without
explaining exactly what they mean, just to show how amazingly
similar-looking they are. In the Palatini approach we have a tetrad
field, which now we write in its full glory as \(e_I^i\), and the
curvature of the \(\mathfrak{so}(1,3)\) connection, which now we write
as \(\Omega_{ij}^{IJ}\). The Lagrangian is then
\[e_I^i e_J^j \Omega_{ij}^{IJ}\] (which we integrate against the usual
volume form to get the action). In the new variables approach we have a
tetrad field again, and we write the curvature of the
\(\mathfrak{so}(3,\mathbb{C})\) connection as \(F_{ij}^{IJ}\). (This
turns out to be just the ``right-handed'' part of \(\Omega_{ij}^{IJ}\).)
The Lagrangian is \[e_I^i e_J^j F_{ij}^{IJ} !\] Miraculously, this also
gives Einstein's equations.

What's utterly unclear from what I've said so far is why this helps so
much in trying to quantize gravity. I may eventually get around to
writing about that, but for now, read the book!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  David Yetter and Louis Crane, ``We are not stuck with gluing'',
  available as
  \href{https://arxiv.org/abs/hep-th/9302118}{\texttt{hep-th/9302118}}.
\end{enumerate}
\noindent
Well, in \protect\hyperlink{week2}{``Week 2''} I mentioned Crane and
Yetter's marvelous construction of a 4d topological quantum field theory
using the representations of the quantum group \(SU_q(2)\) --- and in
\protect\hyperlink{week5}{``Week 5''} I mentioned Ocneanu's ``proof''
that the resulting 4-manifold invariants were utterly trivial (equal to
1 for all 4-manifolds). Now Crane and Yetter have replied, saying that
their 4-manifold invariants are not trivial and that Ocneanu interpreted
their paper incorrectly. I look forward to the conference on quantum
topology in Kansas at the end of May, where the full story will
doubtless come out.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
   R.\ Capovilla, J.\ Dell and T.\ Jacobson, 
   ``The initial value problem in light of Ashtekar's variables'', available as
  \href{https://arxiv.org/abs/gr-qc/9302020}{\texttt{gr-qc/9302020}}.
\end{enumerate}
\noindent
The advantage of Ashtekar's new variables is that they simplify the form
of the constraint equations one gets in the initial-value problem for
general relativity. This is true both of the classical and quantum
theories. Rovelli and Smolin used this to find, for the first time, lots
of states of quantum gravity defined by link invariants. Here the above
authors are trying to apply the new variables to the \emph{classical}
theory.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Sergey Piunikhin, ``Combinatorial expression for universal Vassiliev link invariant'', 
  available as
  \href{https://arxiv.org/abs/hep-th/9302084}{\texttt{hep-th/9302084}}.
\end{enumerate}

Somebody ought to teach those Russians how to use the word ``the'' now
that the cold war is over. Anyway, this paper defines a kind of
universal object for Vassiliev invariants, which is sort of similar to
what I was trying to do in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
John Baez, ``Link invariants of finite type and perturbation theory'', \emph{Lett.\ Math.\ Phys.} \textbf{26} (1992) 43--51.  Also available as \href{https://arxiv.org/abs/hep-th/9207041}
{\texttt{hep-th/9207041}}.
\end{enumerate}
\noindent
but more concrete, and (supposedly) simpler than Kontsevich's approach.
My parenthesis simply indicates that I haven't had time to figure out
what's going on here.


\hypertarget{week8}{%
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I was delighted to find that Louis Kauffman wants to speak at the
workshop at UCR on knots and quantum gravity; he'll be talking on
``Temperley--Lieb recoupling theory and quantum invariants of links and
manifolds''. His books

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
   Louis Kauffman, 
   \emph{On Knots}, Annals of Mathematics Studies \textbf{115}, Princeton
   U.\ Press, Princeton, 1987.
\end{enumerate}
\noindent
and more recently

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
    Louis Kauffman, 
  \emph{Knots and Physics}, World Scientific Press, Singapore, 1991.
\end{enumerate}
\noindent
are a lot of fun to read, and convinced me to turn my energies towards
the intersection of knot theory and mathematical physics. As you can see
by the title of the series he's editing, he is a true believer the deep
significance of knot theory. This was true even before the Jones
polynomial hit the mathematical physics scene, so he was well-placed to
discover the relationship between the Jones polynomial (and other new
knot invariants) and statistical mechanics, which seems to be what won
him his fame. He is now the editor of a journal, \emph{Journal of Knot
Theory and its Ramifications}.

He sent me a packet of articles and preprints which I will briefly
discuss. If you read \emph{any} of the stuff below, \emph{please} read
the delightful reformulation of the 4-color theorem in terms of cross
products that he discovered! I am strongly tempted to assign it to my
linear algebra class for homework\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
   Louis Kauffman, ``Map coloring and the vector cross product'',
  \emph{J.\ Comb.\ Theory} \textbf{48} (1990), 145--154.

   Louis Kauffman, ``Map coloring, $q$-deformed spin networks, and Turaev--Viro invariants
  for 3-manifolds'', \emph{Int.\ Jour.\  Mod.\ Phys.}
  \textbf{6} (1992), 1765--1794.

   Louis Kauffman, ``An algebraic approach to the planar colouring problem'', 
   \emph{Commun.\ Math.\ Phys.} \textbf{152} (1993), 565--590.
\end{enumerate}
\noindent
As we all know, the usual cross product of vectors in \(\mathbb{R}^3\)
is not associative, so the following theorem is slightly interesting:

\begin{quote}
{\rm 
\textbf{Theorem.} Consider any two bracketings of a product of any
finite number of vectors, e.g.:
\[L = a \times (b \times ((c \times d) \times e) \quad\text{and}\quad  R = ((a \times b) \times c) \times (d \times e).\]
Let \(i\), \(j\), and \(k\) be the usual canonical basis for
\(\mathbb{R}^3\): \[i = (1,0,0), \quad j = (0,1,0), \quad k = (0,0,1).\]
Then we may assign \(a,b,c,\ldots\) values taken from \(\{i,j,k\}\) in
such a way that \(L = R\) and both are nonzero.
} 
\end{quote}

But what's really interesting is:

\begin{quote}
{\rm 
\textbf{Meta-Theorem.} The above proposition is equivalent to the
4-color theorem. Recall that this theorem says that any map on the plane
may be colored with 4 colors in such a way that no two regions with the
same color share a border (an edge).
}
\end{quote}

What I mean here is that the only way known to prove this Theorem is to
deduce it from the 4-color theorem, and conversely, any proof of this
Theorem would easily give a proof of the 4-color theorem! As you all
probably know, the 4-color theorem was a difficult conjecture that
resisted proof for about a century before succumbing to a computer-based
proof that required the consideration of many, many special cases:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Kenneth Appel and Wolfgang Haken, \emph{Every Planar Map is Four Colorable}
  Contemporary Mathematics \textbf{98} American Mathematical Society, Providence
  Rhode Island, 1989.
\end{enumerate}

So the Theorem above may be regarded as a \emph{profoundly} subtle
result about the ``associativity'' of the cross product!

Of course, I hope you all rush out now and find out how this Theorem is
equivalent to the 4-color theorem. For starters, let me note that it
uses a result of Tait: first, to prove the 4-color theorem it's enough
to prove it for maps where only 3 countries meet at each vertex (since
one can stick in a little new country at each vertex), and second,
4-coloring such a map is equivalent to coloring the \emph{edges} with 3
colors in such a way that each vertex has edges of all 3 colors
adjoining it. The 3 colors correspond to \(i\), \(j\), and \(k\)!

Kauffman and Saleur (the latter a physicist) come up with another
algebraic formulation of the 4-color theorem in terms of the
Temperley--Lieb algebra. The Temperley--Lieb algebra \(TL_n\) is a cute
algebra with generators \(e_1, \ldots, e_{n-1}\) and relations that
depend on a constant \(d\) called the ``loop value'':
\[\begin{aligned}e_i^2 &= de_i \\ e_i e_{i+1} e_i &= e_i \\ e_i e_{i-1} e_i &= e_i \\ e_i e_j &= e_j e_i \quad\text{for } |i-j| > 1.\end{aligned}\]
The point of it becomes clear if we draw the \(e_i\) as tangles on \(n\)
strands. Let's take \(n = 3\) to keep life simple. Then \(e_1\) is \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1,0);
      \strand[thick] (0,-2)
        to [out=up,in=up,looseness=2] (1,-2);
      \strand[thick] (2,0)
        to (2,-2);
    \end{knot}
  \end{tikzpicture}
\] while \(e_2\) is \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (1,0)
        to [out=down,in=down,looseness=2] (2,0);
      \strand[thick] (1,-2)
        to [out=up,in=up,looseness=2] (2,-2);
      \strand[thick] (0,0)
        to (0,-2);
    \end{knot}
  \end{tikzpicture}
\] In general, \(e_i\) ``folds over'' the \(i\)th and \((i+1)\)st
strands. Note that if we square \(e_i\) we get a loop --- e.g., \(e_1\)
squared is \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1,0);
      \strand[thick] (0,-2)
        to [out=up,in=up,looseness=2] (1,-2);
      \strand[thick] (0,-2)
        to [out=down,in=down,looseness=2] (1,-2);
      \strand[thick] (0,-4)
        to [out=up,in=up,looseness=2] (1,-4);
      \strand[thick] (2,0)
        to (2,-4);
    \end{knot}
  \end{tikzpicture}
\] 
Here we are using the usual product of tangles (see my webpage  
\href{http://math.ucr.edu/home/baez/tangles.html}{``tangles''}). 
Now the rule in Temperley--Lieb land
is that we can get rid of a loop if we multiply by the loop value \(d\);
that is, the loop ``equals'' \(d\). So \(e_1\) squared is just \(d\)
times \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1,0);
      \strand[thick] (0,-4)
        to [out=up,in=up,looseness=2] (1,-4);
      \strand[thick] (2,0)
        to (2,-4);
    \end{knot}
  \end{tikzpicture}
\] which --- since we are doing topology --- is the same as \(e_1\).
That's why \(e_i^2 = de_i\).

The other relations are even more obvious. For example, \(e_1 e_2 e_1\)
is just \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1,0);
      \strand[thick] (0,-4)
        to [out=up,in=up,looseness=2] (1,-4);
      \strand[thick] (2,0)
        to (2,-1.5)
        to [out=down,in=down,looseness=1.4] (1,-1.5)
        to [out=up,in=up,looseness=1.4] (0,-1.5)
        to (0,-2.5)
        to [out=down,in=down,looseness=1.4] (1,-2.5)
        to [out=up,in=up,looseness=1.4] (2,-2.5)
        to (2,-4);
    \end{knot}
  \end{tikzpicture}
\] which, since we are doing topology, is just \(e_1\)! Similarly,
\(e_2 e_1 e_2 = e_1\), and \(e_i\) and \(e_j\) commute if they are far
enough away to keep from running into each other.

As an exercise for combinatorists: figure out the dimension of \(TL_n\).

Okay, very cute, one might say, but so what? Well, this algebra was
actually first discovered in statistical mechanics, when Temperley and
Lieb were solving a \(2\)-dimensional problem:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
H. N. V. Temperley and E. H. Lieb, ``Relations between the `percolation' 
and `coloring' problem and other
graph-theoretical problems associated with regular planar lattices:
some exact results on the `percolation' problem'', \emph{Proc. Roy. Soc. Lond.}
\textbf{322} (1971), 251--280.
\end{enumerate}
\noindent
It gained a lot more fame when it appeared as the explanation for the
Jones polynomial invariant of knots --- although Jones had been using it
not for knot theory, but in the study of von Neumann algebras, and the
Jones polynomial was just an unexpected spinoff. Its importance in knot
theory comes from the fact that it is a quotient of the group algebra of
the braid group (as explained in \emph{Knots and Physics}). It has also
found a lot of other applications; for example, I've used it in my paper
on quantum gravity and the algebra of tangles. So it is nice to see that
there is also a formulation of the 4-color theorem in terms of the
Temperley--Lieb algebra (which I won't present here).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Louis Kauffman, ``Knots and physics'', \emph{Proc. Symp. Appl.
  Math.} \textbf{45} (1992), 131--246.

   Louis Kauffman, ``Spin networks, topology and discrete physics'',
  University of Illinois at Chicago preprint.

   Louis Kauffman,``Vassiliev invariants and the Jones polynomial'',
  University of Illinois at Chicago preprint.

  Louis Kauffman, ``Gauss codes and quantum groups'', University of
  Illinois at Chicago preprint.

   Louis Kauffman and H. Saleur,``Fermions and link invariants'',
  Yale University preprint YCTP-P21-91, July 5, 1991.

  Louis Kauffman, ``State models for link polynomials'',
  \emph{L'Enseignement Mathematique}, \textbf{36} (1990), 1--37.

  F. Jaeger, Louis Kauffman and H.
  Saleur, ``The Conway polynomial in \(\mathbb{R}^3\) and in thickened surfaces: a
  new determinant formulation'', preprint.
\end{enumerate}

These are a variety of papers on knots, physics and everything\ldots.
The more free-wheeling among you might enjoy the comments at the end of
the first paper on ``knot epistemology.''

I am going to a conference on gravity at U.C.\ Santa Barbara on Friday and
Saturday, which I why I am posting this early, and why I have no time to
describe the above papers. I'll talk about my usual obsessions, and hear
what other people are up to, perhaps bringing back some words of wisdom
for next week's ``This Week's Finds''.
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\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  Boguslaw Broda,``Surgical invariants of four-manifolds'', preprint
  available as
  \href{https://arxiv.org/abs/hep-th/9302092}{\texttt{hep-th/9302092}}.
\end{enumerate}

There a number of attempts underway to get invariants of
four-dimensional manifolds (and 4d topological quantum field theories)
by techniques analogous to those that worked in three dimensions. The
3-manifold invariants and 3d topological quantum field theories got
going with the work of Witten on Chern--Simons theory, but since this was
not rigorous a number of ways were devised to make it so. These seem
different at first glance but all give the same answer. Two approaches
that use a lot of category theory are the Heegard splitting approach
(due to Crane, Kohno and Kontsevich, in which one writes a 3-manifold as
two solid \(n\)-holed tori glued together by a diffeomorphism of their
boundaries), and the surgery on links approach (due to Reshetikhin and
Turaev, in which one builds up 3-manifolds by starting with the
3-sphere, cutting out thickened links and gluing them back in a
different way, allowing one to define invariants of 3-manifolds from
link invariants). In the case of 3 dimensions a nice paper relating the
Heegard splitting and the surgery on links approaches is

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
 Sergey Piunikhin, ``Reshetikhin-Turaev and Crane-Kohno-Kontsevich 3-manifold invariants
coincide'', \emph{Journal of Knot Theory and its Ramifications} \textbf{2} (1993), 65--95.
\end{enumerate}

People are now trying to generalize all these ideas to 4-manifolds.
There is already an interesting bunch of 4-manifold invariants out
there, the Donaldson invariants, which are hard to compute, but were
shown (heuristically) by Witten to be related to a quantum field theory.
Lately people have been trying to define invariants using category
theory; these may or may not turn out to be the same.

I've already been trying to keep you all updated on the story about
Crane and Yetter's 4d TQFT. This week I'll discuss another approach,
with a vast amount of help from Daniel Ruberman, a topologist at
Brandeis. Any errors in what I write on this are likely to be due to my
misunderstandings of what he said --- caveat emptor! Broda's paper is
quite terse --- probably due to the race that is going on --- and is
based on:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
E. Cesar de Sa, ``A link calculus for 4-manifolds'', in \emph{Topology
of Low-Dimensional Manifolds, Proc. Second Sussex Conf.}, Springer Lecture
Notes in Mathematics \textbf{722}, Springer, Berlin, 1979, pp.~16--30.
\end{enumerate}
\noindent
so I should start by describing what little I understand of de Sa's
work.

One can describe (compact, smooth) 4-manifolds in terms of handlebody
decomposition. This allows one to actually draw pictures representing
4-manifolds. A lot of times when people first hear about topology they
get they impression that it's all about rubber doughnuts, M\"obius strips,
and other Dali-esque wiggly objects in hyperspace. Then, when they take
courses in it, they are confronted with nasty separation axioms and
cohomology theories! This is just to scare away outsiders! Handlebody
theory really \emph{is} about wiggly objects in hyperspace, and it's
lots of fun --- though to be good in it you need to know your point set
topology and your algebraic topology, I'm afraid --- and much better
than I do!

Recall:
\[\begin{aligned}D^n &= \mbox{unit ball in $\mathbb{R}^n$} \\ S^n &= \mbox{unit sphere in $\mathbb{R}^{n+1}$}\end{aligned}\]
In particular note that \(S^0\) is just two points. Note that:

\begin{itemize}
\tightlist
\item
  the boundary of \(D^4\) is \(S^3\)
\item
  the boundary of \(D^3 \times D^1\) is
  \(D^3 \times S^0 \cup S^2 \times D^1\)
\item
  the boundary of \(D^2 \times D^2\) is
  \(D^2 \times S^1 \cup S^1 \times D^2\)
\item
  the boundary of \(D^1 \times D^3\) is
  \(D^1 \times S^2 \cup S^0 \times D^3\)
\item
  the boundary of \(D^4\) is \(S^3\)
\end{itemize}

I have written this rather redundant chart in a way that makes the
pattern very clear and will come in handy below for those who aren't
used to this stuff.

To build up a 4-manifold we can start with a ``0-handle,'' \(D^4\),
which has as boundary \(S^3\).

Then we glue on ``1-handles,'' that is, copies of \(D^3 \times D^1\).
Note that part of the boundary of \(D^1 \times D^3\) is
\(D^3 \times S^0\), which is two \(D^3\)'s; when we glue on a 1-handle
we simply attach these two \(D^3\)'s to the \(S^3\) by a diffeomorphism.
The resulting space is not really a smooth manifold, but it can be
smoothed. It then becomes a smooth 4-manifold with boundary.

Then we glue on ``2-handles'' by attaching copies of \(D^2 \times D^2\)
along the part of their boundary that is \(D^2 \times S^1\). Then we
smooth things out.

Then we glue on ``3-handles'' by attaching copies of \(D^1 \times D^3\)
along the part of their boundary that is \(D^1 \times S^2\). Then we
smooth things out.

Then we glue on ``4-handles'' by attaching copies of \(D^4\) along their
boundary, i.e.~\(S^3\).

We can get any compact oriented 4-manifold this way using attaching maps
that are compatible with the orientations. The reader who is new to this
may enjoy constructing 2-manifolds in an analogous way. Compact oriented
2-manifolds with boundary are just \(n\)-holed tori.

What's cool is that with some tricks one can still \emph{draw} what's
going in the case of 3-manifolds and 4-manifolds. Here I'll just
describe how it goes for 4-manifolds, since that's what Cesar de Sa and
Broda are thinking about. By the way, a good introduction to this stuff
is

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
\emph{The Topology of 4-manifolds}, by Robion C. Kirby, Springer
Lecture Notes in Mathematics \textbf{1374}, 1989.
\end{enumerate}
\noindent
So --- here is how we \emph{draw} what's going on. I apologize for being
somewhat sketchy here (sorry for the pun, too). I am a bit rushed since
I'm heading off somewhere else next weekend\ldots{} and I am not as
familiar with this stuff as I should be.

So, when we start with our 0-handle, or \(D^4\), we ``draw'' its
boundary, \(S^3\). Think of \(S^3\) as \(\mathbb{R}^3\) and a point at
infinity. Since we use perspective when drawing pictures of 3-d objects,
this boils down to pretending that our blackboard is a picture of
\(S^3\)!

As we add handles we continue to ``draw'' what's happening at the
boundary of the 4-manifold we have at each stage of the game. 1-handles
are attached by gluing a \(D^3 \times D^1\) onto the boundary along two
\(D^3\)'s --- or balls --- so we can just draw the two balls.

2-handles are attached by gluing a \(D^2 \times D^2\) onto the boundary
of the 4-manifold we have so far along a \(D^2 \times S^1\) --- or solid
torus, so we just need to figure out how to draw an embedded solid
torus. Well, for this we just need to draw a knot (that is, an embedded
circle), and write an integer next to it saying how many times the
embedded solid torus ``twists'' --- plus or minus depending on clockwise
or counterclockwise --- as we go around the circle. In other words, an
embedded solid torus is (up to diffeomorphism) essentially the same as a
framed knot. If we are attaching a bunch of 2-handles we need to draw a
framed link.

Things get a bit hairy in the case when one of the framed links goes
through one of the 1-handles that we've already added. It's easier to
draw this situation if we resort to another method of drawing the
1-handles. It's a bit more subtle, and took me quite a while to be able
to visualize (unfortunately I seem to have to visualize this stuff to
believe it). So let's go back to the situation where we have \(D^4\),
with \(S^3\) as its boundary, and we are adding 1-handles. Instead of
drawing two balls, we draw an unknotted circle with a dot on it! The dot
is just to distinguish this kind of circle from the framed links we
already have. But what the circle \emph{means} is this. The circle is
the boundary of an obvious \(D^2\), and we can push the interior of this
\(D^2\) (which is sitting in the \(S^3\)) into the interior of \(D^4\).
If we then remove a neighborhood of the \(D^2\), what we have left is
\(S^1 \times D^3\), which is just the result of adding a 1-handle to
\(D^4\).

This is probably easier to visualize one dimension down: if we have a
good old unit ball, \(D^3\), and slap an interval, or \(D^1\), onto its
boundary, and then push the interior of the interval into the interior
of the ball, and remove a neighborhood of the interval, what we have
left is just an \(S^1 \times D^2\).

So in short, we can draw all the 1-handles by drawing unlinked,
unknotted circles with dots on them, and then draw all the 2-handles by
drawing framed links that don't intersect these circles.

At this point, if you have never seen this before, you are probably
dreading the 3-handles and 4-handles. Luckily a theorem comes to our
rescue! If we start at the other end of our handlebody decomposition, as
it were, we start with 4-handles and glue on 3-handles. If you ponder
the chart and see what the pattern of what we're doing is, you'll see
that a single 4-handle with some 3-handles stuck on is just the same as
a 0-handle with some 1-handles stuck on. So when we now glue this thing
(or things) onto the stuff we've built out of 0-, 1-, and 2-handles, we
are doing so using a diffeomorphism of its boundary. But a theorem of
Laudenbach and Poenaru,

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item 
F. Laudenbach and V. Poenaru, 
``A note on \(4\)-dimensional handlebodies'', \emph{Bull. Math. Soc. France} \textbf{100} (1972),
337--344.
\end{enumerate}
\noindent
says that any such diffeomorphism extends to one of the interior. This
means that it doesn't make a darn bit of difference which diffeomorphism
we use to glue it on. In short, all the information is contained in the
1- and 2-handles, so we can \emph{draw} 4-manifolds by first drawing a
batch of unknotted unlinked circles with dots on them and then drawing a
framed link in the complement.

(A question for the experts, since I'm just learning this stuff: in
the above we seem to be assuming that there's only one 0-handle. Is this
an okay assumption or do we need something fancier if there's more?)

Now a given 4-manifold may have lots of different handlebody
decompositions. So, as usual, we would like to have a finite set of
``moves'' that allow us to get between any pair of handlebody
decompositions of the same 4-manifold. Then we can construct a
4-manifold invariant by cooking up a number from a handlebody
decomposition --- presented as a picture as above, if we want --- and
showing that it doesn't change under these ``moves''.

So, what de Sa did was precisely to find such a set of moves. (There,
that's what I understand of his work!)

And what Broda did was precisely to use the Kauffman bracket invariant
of framed links to cook up an invariant of 4-manifolds from the
handlebody decomposition --- which, note, involves lots of links. Recall
that the Kauffman bracket assigns to each link a polynomial in one
variable, \(q\). Here ``\(q\)'' is just the same \(q\) that appears in
the quantum group \(SU_q(2)\). As I mentioned in
\protect\hyperlink{week5}{``Week 5''}, this acts quite differently when
\(q\) is a root of unity, and the 3d topological quantum field theories
coming from quantum groups, as well as Crane and Yetter's 4d topological
quantum field theory, come from considering this root-of-unity case. So
it's no surprise that Broda requires \(q\) to be a root of unity.

Ruberman had some other remarks about Broda's invariant, but I think I
would prefer to wait until I understand them\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Abhay Ashtekar,  Ranjeet S.\ Tate and Claes Uggla, ``Minisuperspaces: symmetries and quantization'', available as
  \href{https://arxiv.org/abs/gr-qc/9302026}{\texttt{gr-qc/9302026}}.

  Abhay Ashtekar, Ranjeet S.\ Tate and Claes Uggla, ``Minisuperspaces: observables and quantization'', available as
  \href{https://arxiv.org/abs/gr-qc/9302027}{\texttt{gr-qc/9302027}}.
\end{enumerate}

I was just at the Pacific Coast Gravity Meeting last weekend and heard
Ranjeet Tate talk on this work. Recall first of all that minisuperspaces
are finite-dimensional approximations to the phase space of general
relativity, and are used to get some insight into quantum gravity. I
went through an example in \protect\hyperlink{week6}{``Week 6''}. In
these papers, the authors quantize various ``Bianchi type''
minisuperspace models. The ``Bianchi type'' business comes from a
standard classification of homogeneous (but not necessarily isotropic)
cosmologies and having a lot of symmetry. It is based in part on
Bianchi's classification of 3-dimensional Lie algebras into nine types.
The second paper gives a pretty good review of this stuff before diving
into the quantization, and I should learn it!

The most exciting aspect of these papers, at least to the dilettante
such as myself, is that one can quantize these models and show that
quantization does NOT typically remove the singularities (``Big Bang''
and/or ``big crunch''). Of course, these models have only finitely many
degrees of freedom, and are only a caricature of full-fledged quantum
gravity, so one can still argue that \emph{real} quantum gravity will
get rid of the singularities. But a number of general relativists are
arguing that this is not the case, and we simply have to learn to live
with singularities. So it's good to look at models, however simple,
where one can work things out in detail, and not just argue about
generalities.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Alan D.\ Rendall, ``Unique determination of an inner product by adjointness relations in
  the algebra of quantum observables'',
  Max-Planck-Institut f\"ur Astrophysik preprint.
\end{enumerate}

I had known Rendall from his work on the perturbative expansion of the
time evolution operators in classical general relativity. He became
interested in quantum gravity a while ago and visited Ashtekar and
Smolin at Syracuse University, since (as he said) the best way to learn
is by doing. There he wrote this paper on Ashtekar's approach to finding
the right inner product for the space of states of quantum gravity. I
had heard about this paper, but hadn't seen it until I met Rendall at
the gravity meeting last weekend. He gave me a copy and explained it. It
is a simple and beautiful paper --- such nice mathematical results that
I am afraid someone else may have found them earlier somewhere.

Ashtekar's idea is to fix the inner product by requiring that the
physical observables, which are operators on the space of states, be
self-adjoint. Rendall shows the following. Let \(A\) be a *-algebra
acting on a vector space \(V\). Let us say that an inner product on
\(V\) is ``strongly admissable'' if 1) the representation is a
*-representation with respect to this inner product, 2) for each element
of \(A\), the corresponding linear transformation on \(V\) is bounded
relative to the norm given by this inner product, and 3) the completion
of \(V\) in the inner product is a topologically irreducible
representation of \(A\). Rendall shows the uniqueness of a strongly
admissable inner product on any representation \(V\) of \(A\) (up to a
constant multiple). Of course, such an inner product need not exist, but
when it does, it is unique. This is as nice a result along these lines
as one could hope for. He also has a more complicated result that
applies to unbounded operators. A good piece of work on the foundations
of quantum theory!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Arlen Anderson, ``Thawing the frozen formalism: the difference between observables and
  what we observe'', preprint available
  as \href{https://arxiv.org/abs/gr-qc/9211028}{\texttt{gr-qc/9211028}}.
\end{enumerate}

There were a number of youngish folks giving talks at the gravity
meeting who have clearly been keeping up with the recent work on the
problem of time and other conceptual problems in quantum gravity. In
very brief terms, the problem of time is that in general relativity, we
have not a Hamiltonian in the traditional sense, but a ``Hamiltonian
constraint'' \(H = 0\), so when we quantize it superficially appears
that there are no dynamics whatsoever (as it seems like we have a zero
Hamiltonian!). That's the reason for the term ``frozen formalism'' ---
and the desire to ``thaw'' it, or find the dynamics lurking in it. In
fact, the Hamiltonian constraint is just a reflection of the fact that
general relativity has no preferred time coordinate, and we are just
learning how to deal with the quantum theory of such systems. For a good
survey of the problem and some new proposed solutions, I again refer
everyone to Isham's paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Chris J. Isham, ``Canonical quantum gravity and the problem of time'', 
  125 pages, available as
  \href{https://arxiv.org/abs/gr-qc/9210011}{\texttt{gr-qc/9210011}}.
\end{enumerate}

In particular, one interesting approach is due to Rovelli, and is called
``evolving constants of motion'' (a deliberate and very accurate
oxymoron). While there are serious technical problems with this
approach, it's very natural from a physical point of view --- at least
once you get used to it. I have the feeling that the younger physicists
are, as usual, getting used to it a lot more quickly than the older
folks who have been pondering the problem of time for many years.
Anderson is one of these younger folks, and his paper develops Rovelli's
approach in terms of in a toy model, namely the case of two free
particles satisfying the Schr\"odinger equation.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Cayetano Di Bartolo, Rodolfo Gambini and
  Jorge Griego, ``The extended loop group: an infinite dimensional manifold associated
  with the loop space'', 42 pages, available as
  \href{https://arxiv.org/abs/gr-qc/9303010}{\texttt{gr-qc/9303010}}.
\end{enumerate}

Unfortunately I don't have the time now to give this paper the
discussion it deserves. Gambini is one of the original inventors of the
loop representation of gauge theories, so his work is especially worth
paying attention to. He explained the idea of this paper to me a while
back. Its aim is to provide a workable ``calculus'' for the loop
representation by enlarging the ordinary loop group to a larger group
which is actually an infinite-dimensional Lie group --- the point being
that the usual loop group doesn't have a Lie algebra, but this one does.
As one might expect, the Lie algebra of this group is closely related to
the theory of Vassiliev invariants. The paper considers some
applications to quantum gravity and knot theory.
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The most substantial part of this issue is some remarks by Daniel
Ruberman on the paper I was talking about last time by Boguslaw Broda. They
apparently show that Broda's invariant is not as new as it might appear.
But they're rather technical, so I'll put them near the end, and start
off with something on the light side, and then note some interesting
progress on the Vassiliev invariant scene.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Marcia Bartusiak, ``Beyond Einstein --- is space loopy?'',
  \emph{Discover}, April 1993.
\end{enumerate}

In the airport in Montreal I ran into this article, which was the cover
story, with an upside-down picture of Einstein worked into a bunch of
linked key-rings. I bought it --- how could I resist? --- since it is
perhaps the most ``pop'' exposition of the loop representation of
quantum gravity so far. Those interested in the popularization of modern
physics might want to compare

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\setcounter{enumi}{1}
\item
John Horgan, ``Gravity quantized? A radical theory of gravity weaves space from tiny
loops'', \emph{Scientific American}, September 1992.
\end{enumerate}

Given the incredible hype concerning superstring theory, which seems to
have faded out by now, I sort of dread the same thing happening to the
loop representation of quantum gravity. It is intrinsically less
hype-able, since it does not purport to be a theory of everything, and it
comes right after superstrings were supposed to have solved all the
mysteries of the universe. Also, its proponents are (so far) a more
cautious breed than the string theorists --- note the question marks in
both titles! But we will see\ldots.

Marcia Bartusiak is a contributing editor of Discover and the author of
a book on current topics in astronomy and astrophysics, \emph{Thursday's
Universe}, which I haven't read. She'll be coming out with a book in
June, \emph{Through a Universe Darkly}, that's supposed to be about how
theories of cosmology have changed down through the ages. She does a
decent job of sketching vaguely the outlines of the loop representation
to an audience who must be presumed ignorant of quantum theory and
general relativity. Of course, there is also a certain amount of
human-interest stuff, with Ashtekar, Rovelli and Smolin (quite rightly)
coming off as the heroes of the story. There are, as usual, little boxes
with gee-whiz remarks like

\begin{verbatim}
            WITH REAMS OF PAPER
                         SPREAD OUT
               OVER THE KITCHEN TABLE
                 THEY FOUND
               SOLUTION AFTER SOLUTION
               FOR EQUATIONS
                     THOUGHT IMPOSSIBLE TO SOLVE
\end{verbatim}
(which is, after all, true --- nobody had previously found solutions to
the constraint equations in canonical quantum gravity, and all of a
sudden here were lots of 'em!). And there are some amusing discussions
of personality: ``Affable, creative, and easy-going, Rovelli quickly
settled into the role of go-between, helping mesh the analytic powers of
the quiet, contemplative Ashtekar with the creativity of the brash,
impetuous Smolin.'' And discussions of how much messier Smolin's office
is than Ashtekar's.

In any event, it's a fun read, and I recommend it. Of course, I'm
biased, so don't trust me.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
   Sergey Piunikhin,``Vassiliev invariants contain more information than all knot
  polynomials'', preprint. 

  Sergey Piunikhin, ``Turaev--Viro and Kauffman-Lins invariants for 3-manifolds coincide'',
  \emph{Journal of Knot Theory and its
  Ramifications} \textbf{1} (1992), 105--135.

  Sergey Piunikhin, ``Different presentations of 3-manifold invariants arising in rational
  conformal field theory'', preprint.

   Sergey Piunikhin, ``Weights of Feynman diagrams, link polynomials and Vassiliev knot
  invariants'', preprint.

  Sergey Piunikhin ``Reshetikhin--Turaev and Crane--Kohno--Kontsevich 3-manifold invariants
  coincide'', preprint.
\end{enumerate}

I received a packet of papers by Piunikhin a while ago. The most new and
interesting thing is the first paper listed above. In
\protect\hyperlink{week3}{``Week 3''} I noted a conjecture of Bar-Natan
that all Vassiliev invariants come from quantum group knot invariants
(or in other words, from Lie algebra representations.) Piunikhin claims
to refute this by showing that there is a Vassiliev invariant of degree
6 that does not. (However, other people have told me his claim is
misleading!) I have been too busy to read this paper yet.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Bernd Bruegmann, Bibliography of publications related to classical and quantum
  gravity in terms of the Ashtekar variables, available as
  \href{https://arxiv.org/abs/gr-qc/9303015}{\texttt{gr-qc/9303015}}.
\end{enumerate}

Let me just quote the abstract; this should be a handy thing:

\begin{quote}
This bibliography attempts to give a comprehensive overview of all the
literature related to the Ashtekar variables. The original version was
compiled by Peter Huebner in 1989, and it has been subsequently updated
by Gabriela Gonzalez and Bernd Bruegmann. Information about additional
literature, new preprints, and especially corrections are always
welcome.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Boguslaw Broda,``Surgical invariants of four-manifolds'', preprint
  available as
  \href{https://arxiv.org/ps/hep-th/9302092}{\texttt{hep-th/9302092}}.
  (Revisited --- see \protect\hyperlink{week9}{``Week 9''})
\end{enumerate}

Let me briefly recall the setup: we describe a compact 4-manifold by a
handlebody decomposition, and represent this decomposition using a link
in \(S^3\). The 2-handles are represented by framed knots, while the
1-handles are represented by copies of the unknot (which we may think of
as having the zero framing). The 1-handles and 2-handles play quite a
different role in constructing the 4-manifold --- which is why one
normally draws the former as copies of the unknot with a \emph{dot} on
them --- but Broda's construction does NOT care about this. Broda simply
takes the link, forgetting the dots, and cooks up a number from it,
using cabling and the Kauffman bracket at an root of unity. Let's call
Broda's invariant by \(b(M)\) --- actually for each primitive \(r\)th
root of unity, we have \(b_r(M)\).

Broda shows that this is a 4-manifold invariant by showing it doesn't
change under the de Sa moves. One of these consists of adding or
deleting a Hopf link \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7pt]
      \strand[thick] (0,0)
        to [out=up,in=up,looseness=2] (1,0)
        to [out=down,in=down,looseness=2] (0,0);
      \strand[thick] (0.5,0)
        to [out=up,in=up,looseness=2] (1.5,0)
        to [out=down,in=down,looseness=2] (0.5,0);
      \flipcrossings{2}
    \end{knot}
  \end{tikzpicture}
\] in which both components have the zero framing and one represents a
1-handle and the other a 2-handle. This move depends on the fact that we
can ``cancel'' a 1-handle and 2-handle pair, a special case of a general
result in Morse theory.

But since Broda's invariant doesn't care which circles represent
1-handles and which represent 2-handles, Broda's invariant is also
invariant under adding two 2-handles that go this way. This amounts to
taking a connected sum with \(S^2 \times S^2\). I.e.,
\(b(M) = b(M\# S^2 \times S^2)\).

Now, Ruberman told me a while back that we must also have
\(b(M) = b(M\#\mathbb{CP}^2\#-\mathbb{CP}^2)\), that is, the invariant
doesn't change under taking a connected sum with a copy of
\(\mathbb{CP}^2\) (complex projective 2-space) and an
orientation-reversed copy of \(\mathbb{CP}^2\). This amounts to adding
or deleting a Hopf link in which one component has the zero framing and
the other has framing 1. I didn't understand this, so I pestered
Ruberman some more, and this is what he says (modulo minor edits). I
have not had time to digest it yet:

\begin{quote}
The first question you asked was about the different framings on a
2-handle which goes geometrically once over a 1-handle, i.e.~makes a
Hopf link in which one of the circles is special (i.e is really a
1-handle, i.e.~in Akbulut--Kirby's notation is drawn with a dot.) The
answer is that the framing doesn't matter, since the handles cancel.
This is explained well (in the PL case) in Rourke-Sanderson's book.
(Milnor's book on the h-cobordism theorem explains it in terms of Morse
functions, in the smooth case.)

From this, it follows that
\(b(M) = b(M\#S^2 \times S^2) = b(M\#\mathbb{CP}^2\#-\mathbb{CP}^2)\).
For \(M\) is unchanged if you add a cancelling 1,2 pair, independent of
the framing on the 2-handle. If you change the special circle to an
ordinary one, \(b(M)\) doesn't change. On the other hand, M has been
replaced by its sum with either \(S^2 \times S^2\) or
\(\mathbb{CP}^2 \# -\mathbb{CP}^2\), depending on whether the framing on
the 2-handle is even or odd. (Exercise: why is only the parity
relevant?)

Now as I pointed out before, if one replaces all of the 1-handles
(special circles) of a 4-manifold with 2-handles, the invariant doesn't
change. This operation corresponds to doing surgery on the 4-manifold,
along the cores of the 1-handles. In particular, the manifold has
changed by a cobordism. (This is a basic construction; when you do
surgery you produce a cobordism, in this case it's \(M \times I\) with
2-handles attached to it along the circles which you surgered.)

From this, I will now show that Broda's invariant is determined by the
signature. (This is in the orientable case. Actually it seems that his
invariant is really an invariant of an oriented manifold.) The argument
above says that for any \(M\), there is an \(M'\), with
\(b(M) = b(M')\), where \(M'\) has no 1-handles, and where \(M\) and
\(M'\) are cobordant. In particular, \(M'\) is simply connected. So it
suffices to show that \(b(N) = b(N')\) if \(N\) and \(N'\) are simply
connected.

So now you can assume you have two simply connected manifolds \(N,N'\)
which are cobordant via a \(5\)-dimensional cobordism W, which you can
also assume simply connnected. By high-dimensional handlebody theory,
you can get rid of the 1-handles and 4-handles of \(W\), and assume that
all the 2-handles are added, then all of the 3-handles. If you add all
the 2-handles to N, you get
\(N\#k(S^2 \times S^2)\#l(\mathbb{CP}^2\#(-\mathbb{CP}^2))\) for some
\(k\) and \(l\). (Here is where simple connectivity is relevant; the
attaching circle of a 2-handle is null-homotopic, and therefore isotopic
to an unknotted circle. It's a simple exercise to see what happens when
you do surgery on a trivial circle, ie you add on \(S^2 \times S^2\) or
\(\mathbb{CP}^2 \# -\mathbb{CP}^2\). On the other hand you get the same
manifold as the result of adding 2-handles to \(N'\). So
\[N\#k(S^2 x S^2)\#l(\mathbb{CP}^2\#(-\mathbb{CP}^2)) = N'\#k'(S^2 x S^2)\#l'(\mathbb{CP}^2\#(-\mathbb{CP}^2)),\]
so by previous remarks \(b(N) = b(N')\), i.e \(b\) is a cobordism
invariant.

Now: \(b\) is also multiplicative under connected sum, because connected
sum just takes the union of the link diagrams. The cobordism group is
\(\mathbb{Z}\), detected by the signature, so \(b\) must be a multiple
of the signature, modulo some number. (Maybe at this point I realize
\(b\) should be \(b_r\) or some such). If you compute (as a grad student
Tian-jin Li did for me) \(b_r(\mathbb{CP}^2)\), you find that \(b_r\)
lives in the group of \(r\)th (or maybe \(4r\)th; I'm at home and don't
have my note) roots of unity.

My conclusion: this invariant is a rather complicated way to compute the
signature of a 4-manifold (modulo \(r\) or \(4r\)) from a link diagram
of the manifold.

There is an important moral of the story, which is perhaps not obvious
to someone outside of 4-manifolds. Any invariant which purports to go
beyond classical ones (i.e.\ invariants of the intersection form) must
treat \(\mathbb{CP}^2\) and \(-\mathbb{CP}^2\) very differently. It
seems to be the case that many manifolds which are different (i.e.\
nondiffeomorphic) become diffeomorphic after you add on
\(\mathbb{CP}^2\). Thus any useful invariant should get rather
obliterated by adding \(\mathbb{CP}^2\). On the other hand,
non-diffeomorphic manifolds seem to stay non-diffeomorphic, no matter
how many \(-\mathbb{CP}^2\)'s you add on. This phenomenon doesn't seem
to be exhibited by any of the quantum-group type constructions for
3-manifolds; as it shouldn't, since (from the 3-manifold point of view)
an unknot with framing + or -1 doesn't change the 3-manifold. So if
you're looking for a combinatorial invariant, it seems critical that you
try to build in the asymmetry wrt orientation which 4-manifolds seem to
possess.

Exercise: do the nonorientable case. The answer should be that \(b\) is
determined by the Euler characteristic, \(\mod 2\).
\end{quote}
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I'm hitting the road again tomorrow and will be going to the Quantum
Topology conference in Kansas until Sunday, so I thought I'd post this
week's finds early. As a result they'll be pretty brief. Let me start
with one that I mentioned in \protect\hyperlink{week9}{``Week 9''} but
is now easier to get:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Alan D.\ Rendall, ``Unique determination of an inner product by adjointness relations in
  the algebra of quantum observables'',
  available as
  \href{https://arxiv.org/abs/gr-qc/9303026}{\texttt{gr-qc/9303026}}.
\end{enumerate}
\noindent
and then mention another thing I've gotten as a spinoff from the gravity
conference at UCSB:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Ranjeet S.\ Tate, \emph{An Algebraic Approach to the Quantization of Constrained Systems:
  Finite Dimensional Examples}, Ph.D.\ thesis, Physics Department,
  Syracuse University, August 1992,
  \texttt{SU-GP-92/8-1}.
\end{enumerate}

Both the technical problems of ``canonical'' quantum gravity and one of
the main conceptual problems --- the problem of time --- stem from the
fact that general relativity is a system in which the initial data have
constraints. So improving our understanding of quantizing constrained
classical systems is important in understanding quantum gravity.

Let me say a few words about these constraints and what I mean by
``canonical'' quantum gravity.

First consider the wave equation in 2 dimensions. This is an equation
for a function from \(\mathbb{R}^2\) to \(\mathbb{R}\), say
\(\varphi(t,x)\), where \(t\) is a timelike and \(x\) is a spacelike
coordinate. The equation is simply
\[\frac{d^2\varphi}{dt^2} -\frac{d^2\varphi}{dx^2} = 0.\] Now this
equation can be rewritten as an evolutionary equation for initial data
as follows. We consider pairs of functions \((Q,P)\) on \(\mathbb{R}\)
--- which we think of \(\varphi\) and \(d\varphi/dt\) on ``space'', that
is, on a surface \(t = \text{constant}\). And we rewrite the
second-order equation above as a first-order equation:
\[\frac{d}{dt}(Q,P) = \left(P,\frac{d^2Q}{dx^2}\right).\tag{1}\] This is
a standard trick. We call the space of pairs \((Q,P)\) the ``phase
space'' of the theory. In canonical quantization, we treat this a lot
like the space \(\mathbb{R}^2\) of pairs \((q,p)\) describing the
initial position and momentum of a particle. Note that for a harmonic
oscillator we have an equation a whole lot like (1):
\[\frac{d}{dt}(q,p) = (p,-q).\] This is why when we quantize the wave
equation it's a whole lot like the harmonic oscillator.

Now in general relativity things are similar but more complicated. The
analog of the pairs \((\varphi, d\varphi/dt)\) are pairs \((Q,P)\) where
\(Q\) is the metric on spacetime restricted to a spacelike hypersurface
--- that is, the ``metric on space at a given time'' --- and \(P\) is
concocted from the extrinsic curvature of that hypersurface as it sits
in spacetime. Now the name of the game is to turn Einstein's equation
for the metric into a first-order equation sort of like (1). The problem
is, in general relativity there is no god-given notion of time. So we
need to \emph{pick} a ``lapse function'' on our hypersurface, and a
``shift vector field'' on our hypersurface, which say how we want to
push our hypersurface forwards in time. The lapse function says at each
point how much we push it in the normal direction, while the shift
vector field says at each point how much we push it in some tangential
direction. These are utterly arbitrary and give us complete flexibility
in how we want to push the hypersurface forwards. Even if spacetime was
flat, we could push the hypersurface forwards in a dull way like: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (3,0) node[label=right:{new}]{};
    \draw[thick] (0,-0.5) to (3,-0.5) node[label=right:{old}]{};
  \end{tikzpicture}
\] or in a screwy way like \[
  \begin{tikzpicture}
    \draw[thick] plot [smooth] coordinates {(0,0) (0.7,1) (1.5,0) (2.5,0.5) (2.8,0) (3,0)} node[label=right:{new}]{};
    \draw[thick] (0,-0.5) to (3,-0.5) node[label=right:{old}]{};
  \end{tikzpicture}
\] Of course, in general relativity spacetime is usually not flat, which
makes it ultimately impossible to decide what counts as a ``dull way''
and what counts as a ``screwy way,'' which is why we simply allow all
possible ways.

Anyway, having \emph{chosen} a lapse function and shift vector field, we
can rewrite Einstein's equations as an evolutionary equation. This is a
bit of a mess, and it's called the ADM (Arnowitt--Deser--Misner)
formalism. Schematically, it goes like
\[\frac{d}{dt}(Q,P) = (\text{stuff}_1,\text{stuff}_2).\tag{2}\] 
where both ``\(\text{stuff}_1\)'' and ``\(\text{stuff}_2\)'' depend on 
both \(Q\) and \(P\) in a pretty
complex way.

But there is a catch. While the evolutionary equations are equivalent to
6 of Einstein's equations (Einstein's equation for general relativity is
really 10 scalar equations packed into one tensor equation), there are 4
more of Einstein's equations which turn into \emph{constraints} on \(Q\)
and \(P\). 1 of these constraints is called the Hamiltonian constraint
and is closely related to the lapse function; the other 3 are called the
momentum or diffeomorphism constraints and are closely related to the
shift vector field.

For those of you who know Hamiltonian mechanics, the reason why the
Hamiltonian constraint is called what it is is that we can write it as
\[H(Q,P) = 0\] for some combination of \(Q\) and \(P\), and this
\(H(Q,P)\) acts a lot like a Hamiltonian for general relativity in that
we can rewrite (2) using the Poisson brackets on the ``phase space'' of
all \((Q,P)\) pairs as
\[\begin{aligned}\frac{d}{dt}Q &= \{P,H(Q,P)\} \\ \frac{d}{dt}P &= \{Q,H(Q,P)\}.\end{aligned}\]
The funny thing is that \(H\) is not zero on the space of all \((Q,P)\)
pairs, so the equations above are nontrivial, but it does vanish on the
submanifold of pairs satisfying the constraints, so that, in a sense,
``the Hamiltonian of general relativity is zero''. But one must be
careful in saying this because it can be confusing! It has confused lots
of people worrying about the problem of time in quantum gravity, where
they naively think ``What --- the Hamiltonian is zero? That means
there's no dynamics at all!''

The problem in quantizing general relativity in the ``canonical''
approach is largely figuring out what to do with the constraints. It was
Dirac who first seriously tackled such problems, but the constraints in
general relativity always seemed intractible (when quantizing) until
Ashtekar invented his ``new variables'' for quantum gravity, that all of
a sudden make the constraints look a lot simpler. Ashtekar also has
certain generalizations of Dirac's general approach to quantizing
systems with constraints, and part of what Tate (who was a student of
Ashtekar) is doing is to study a number of toy models to see how
Ashtekar's ideas work.

I should note that there are lots of other ways to handle problems with
constraints, like BRST quantization, that aren't mentioned here at all.

Well, I'm off to Kansas and I hope to return with a bunch of goodies and
some gossip about 4-manifold invariants, topological quantum field
theories and the like. Lee Smolin will be talking there too so I will
try to extract some information about quantum gravity from him.



\hypertarget{week12}{%
\section{April 10, 1993}\label{week12}}

I had a lot of fun at the ``Quantum Topology'' conference at Kansas
State University, in Manhattan (yes, that's right, Manhattan, Kansas,
the so-called ``Little Apple''), and then spent a week recovering. Now
I'm back, ready for the next quarter\ldots{}

The most novel idea I ran into at the conference was due to Oleg Viro,
who, ironically, is right here at U. C. Riverside. He spoke on work with
Turaev on generalizing the Alexander module (a classical knot invariant)
to get a similar sort of module from any \(3\)-dimensional topological
quantum field theory. A ``topological quantum field theory,'' or TQFT
for short, is (in the language of physics) basically just a generally
covariant quantum field theory, one that thinks all coordinate systems
are equally good, just as general relativity is a generally covariant
classical field theory. For a more precise definition of TQFTs (which
even mathematicians who know nothing of physics can probably follow),
see my article
\href{http://math.ucr.edu/home/baez/symmetries.html}{``symmetries''}. In
any event, I don't think Viro's work exists in printed form yet; I'll
let you all know when something appears.

The most lively talk was one by Louis Crane and David Yetter, the
organizers of the conference. As I noted a while back, they claimed to
have constructed a FOUR-dimensional TQFT based on some ideas of Ooguri,
who was working on \(4\)-dimensional quantum gravity. This would be very
exciting as long as it isn't ``trivial'' in some sense, because all the
TQFTs developed so far only work in \(3\)-dimensional spacetime. A
rigorous 4-dimensional TQFT might bring us within striking distance of a
theory of quantum gravity --- this is certainly Crane's goal. Ocneanu,
however, had fired off a note claiming to prove that the Crane--Yetter
TQFT was trivial, in the sense that the partition function of the field
theory for any compact oriented 4-manifold equalled 1! In a TQFT, the
partition function of the field theory on a compact manifold is a
invariant of the manifold, and if it equalled 1 for all manifolds, it
would be an extremely dull invariant, hence a rather trivial TQFT.

So, on popular demand, Crane and Yetter had a special talk at 8 pm in
which they described their TQFT and presented results of calculations
that showed the invariant did NOT equal 1 for all compact oriented
4-manifolds. So far they have only calculated it in some special cases:
\(S^4\), \(S^3 \times S^1\), and \(S^2 \times S^2\). Amusingly, Yetter
ran through the calculation in the simplest case, \(S^4\), in which the
invariant \emph{does} happen to equal 1. But he persuaded most of us (me
at least) that the invariant really is an invariant and that he can
calculate it. I say ``persuade'' rather than prove because he didn't
present a proof that it's an invariant; the current proof is grungy and
computational, but Viro and Kauffman (who were there) pointed out some
ways that it could be made more slick, so we should see a comprehensible
proof one of these days. However, it's still up in the air whether this
invariant might be ``trivial'' in some more sophisticated sense, e.g.,
maybe it's a function of well-known invariants like the signature and
Euler number. Unfortunately, Ocneanu decided at the last minute not to
attend. Nor did Broda (inventor of another 4-manifold invariant that
Ruberman seems to have shown ``trivial'' in previous This Week's Finds)
show up, though he had been going to.

On a slightly more technical note, Crane and Yetter's TQFT depends on
chopping up the 4-manifold into simplices (roughly speaking,
4-dimensional versions of tetrahedra). Their calculation involves
drawing projections of these beasts into the plane and applying various
rules; it was quite fun to watch Yetter do it on the blackboard. Turaev
and Viro had constructed such a ``simplicial'' TQFT in 3 dimensions, and
Ooguri had been working on simplicial quantum gravity. As I note below,
Lee Smolin has a new scheme for doing \(4\)-dimensional quantum gravity
using simplices. During the conference he was busy trying to figure out
the relation of his ideas to Crane and Yetter's.

Also while at the conference, I found a terrible error in
\protect\hyperlink{week10}{``Week 10''} in my description of

\begin{quote}
{\rm Sergey Piunikhin,``Vassiliev invariants contain more information than all knot
polynomials'', preprint.}
\end{quote}

I had said that Piunikhin had discovered a Vassiliev invariant that
could distinguish knots from their orientation-reversed versions. No!
The problem was a very hasty reading on my part, together with the
following typo in the paper, that tricked my eyes:

\begin{quote}
Above constructed Vassiliev knot invariant \(w\) of order six does knot
detect orientation of knots.
\end{quote}
\noindent
Ugh! Also, people at the conference said that Piunikhin's claim in this
paper to have found a Vassiliev invariant not coming from quantum group
knot polynomials is misleading. I don't understand that yet.

Here are some papers that have recently shown up\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Karel Kuchar, ``Canonical quantum gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/9304012}{\texttt{gr-qc/9304012}}.
\end{enumerate}
\noindent
Kuchar (pronounced Koo-kahsh, by the way) is one of the grand old men of
quantum gravity, one of the people who stuck with the subject for the
many years when it seemed absolutely hopeless, who now deserves some of
the credit for the field's current resurgence. He has always been very
interested in the problem of time, and for anyone who knows a little
general relativity and quantum field theory, this is a very readable
introduction to some of the key problems in canonical quantum gravity. I
should warn the naive reader, however, that Kuchar's views about the
problem of time expressed in this paper go strongly against those of
many other experts! It is a controversial problem.

Briefly, many people believe that physical observables in quantum
gravity should commute with the Hamiltonian constraint (cf.\
\protect\hyperlink{week11}{``Week 11''}); this means that they are
time-independent, or constants of motion, and this makes the dynamics of
quantum gravity hard to ferrett out. Kuchar calls such quantities
``perennials.'' But Rovelli has made a proposal for how to recover
dynamics from perennials, basically by considering 1-parameter families
\(A_t\) of perennials, ironically called ``evolving constants of
motion.'' Kuchar argues against this proposal on two grounds: first, he
does not think physical observables need to commute with the Hamiltonian
constraint, and second, he argues that there may be very few if any
perennials. The latter point is much more convincing to me than the
former, at least at the \emph{classical} level, where the presence of
enough perennials would be close to the complete integrability of
general relativity, which is most unlikely. But on the quantum level
things are likely to be quite different, and Smolin has recently been at
work attempting to construct perennials in quantum gravity (cf.\
\protect\hyperlink{week1}{``Week 1''}). As for Kuchar's former point,
that observables in quantum gravity need not be perennials, his
arguments seem rather weak. In any event, read and enjoy, but realize
that the subject is a tricky one!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Fischer, ``2-categories and 2-knots'', preprint, last
  revised Feb.~6 1993. 
\end{enumerate}
\noindent
This is the easiest way to learn about the \(2\)-category of 2-knots.
Recall (from \protect\hyperlink{week1}{``Week 1''} and
\protect\hyperlink{week4}{``Week 4''}) that a 2-knot is a surface
embedded in \(\mathbb{R}^4\), which may visualized as a ``movie'' of
knots evolving in time. Fischer shows that the algebraic structure of
2-knots is captured by a braided monoidal \(2\)-category, and he
describes this \(2\)-category.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Mark Miller and Lee Smolin,``A new discretization of classical and quantum general relativity'',
   available as
  \href{https://arxiv.org/abs/gr-qc/9304005}{\texttt{gr-qc/9304005}}.
\end{enumerate}
\noindent
Here Smolin proposes a new simplicial approach to general relativity
(there is an older one known as the Regge calculus) which uses
Ashtekar's ``new variables,'' and works in terms of the
Capovilla--Dell--Jacobson version of the Lagrangian. Let me just quote the
abstract, I'm getting tired:

\begin{quote}

We propose a new discrete approximation to the Einstein equations, based
on the Capovilla--Dell--Jacobson form of the action for the Ashtekar
variables. This formulation is analogous to the Regge calculus in that
it results from the application of the exact equations to a restricted
class of geometries. Both a Lagrangian and Hamiltonian formulation are
proposed and we report partial results about the constraint algebra of
the Hamiltonian formulation. We find that in the limit that the
\(\mathrm{SO}(3)\) gauge symmetry of frame rotations is reduced to the
abelian \(\mathrm{U}(1)^3\), the discrete versions of the diffeomorphism
constraints commute with each other and with the Hamiltonian constraint.

\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  ``Higher algebraic structures and quantization'', by Dan Freed, available as
  \href{https://arxiv.org/abs/hep-th/9212115}{\texttt{hep-th/9212115}}.
\end{enumerate}
\noindent
This is about TQFTs and the high-powered algebra needed to do justice to
the ``ladder of field theories'' that one can obtain starting with a
\(d\)-dimensional TQFT --- gerbs, torsors, \(n\)-categories and other such
scary things. I am too beat to do this justice.



\hypertarget{week13}{%
\section{April 20, 1993}\label{week13}}

Well, folks, this'll be the last ``This Week's Finds'' for a while,
since I'm getting rather busy preparing for my conference on knots and
quantum gravity, and I have a paper that seems to be taking forever to
finish.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Anthony W. Knapp, \emph{Elliptic Curves}, Mathematical Notes,
  Princeton University Press, 1992.
\end{enumerate}

This is a shockingly user-friendly introduction to a subject that can
all too easily seem intimidating. I'm certainly no expert but maybe just
for that reason I should sketch a brief ``introduction to the
introduction'' that may lure some of you into studying this beautiful
subject.

What I will say will perhaps appeal to people who like complex analysis
or mathematical physics, but Knapp concentrates on the aspects related
to number theory. For other approaches one might try

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Serge Lang, \emph{Elliptic Functions}, 2nd edition, Springer, Berlin
  1987.
\item
  Dale Husemoeller, \emph{Elliptic Curves}, Springer, Berlin, 1987.
\end{enumerate}

Okay, where to start? Well, how about this: the sine function is an
analytic function on the complex plane with the property that
\[\sin(z + 2\pi) = \sin z.\] It also satisfies a nice differential
equation \[(\sin' z)^2 = 1 -(\sin z)^2\] and for this reason, we could,
if we hadn't noticed the sine function otherwise, have run into it when
we tried to integrate
 \[\frac{1}{\sqrt{1 -u^2}}\] 
The differential equation above implies that the integral is nice to do by the
substitution \(u = \sin z\), and we get the answer \(\arcsin u\). If the
sine function --- or more generally, trig functions --- didn't exist
yet, we would have invented them when we tried to do integrals involving
square roots of quadratic polynomials.

Elliptic functions are a beautiful generalization of all of this stuff.
Say we wanted, just for the heck of it, an analytic function that was
periodic not just in one direction on the complex plane, like the sine
function, but in \emph{two} directions. For example, we might want some
function \(P(z)\) with \[P(z + 2\pi) = P(z)\] and also
\[P(z + 2\pi i) = P(z).\] This function would look just the same on each
\(2\pi\)-by-\(2\pi\) square: \[
  \begin{tikzpicture}
    \draw[->] (-0.4,0) to (4,0) node [label=below:{$\Re(z)$}]{};
    \draw[->] (0,-0.4) to (0,4) node[label=left:{$\Im(z)$}]{};
    \foreach \x in {1,2,3} {
      \draw[thick,dotted] (\x,-0.4) to (\x,-0.1);
      \draw[thick] (\x,-0.1) to (\x,3.5);
      \draw[thick,dotted] (\x,3.5) to (\x,4);
    }
    \foreach \y in {1,2,3} {
      \draw[thick,dotted] (-0.4,\y) to (-0.1,\y);
      \draw[thick] (-0.1,\y) to (3.5,\y);
      \draw[thick,dotted] (3.5,\y) to (4,\y);
    }
    \draw[<->] (0.1,-0.2) to node[label=below:{$2\pi$}]{} (0.9,-0.2);
    \draw[<->] (-0.2,0.1) to node[label=left:{$2\pi$}]{} (-0.2,0.9);
  \end{tikzpicture}
\] so if we wanted, we could think of it as being a function on the
torus formed by taking one of these squares and identifying its top side
with its bottom side, and its left side with its right side.

More generally --- while we're fantasizing about this wonderful
doubly-periodic function --- we could ask for one that was periodic in
any old two directions. That is, fixing two numbers \(\omega_1\) and
\(\omega_2\) that aren't just real-valued multiples of each other, we
could hope to find an analytic function on the complex plane with
\(\omega_1\) and \(\omega_2\) as periods:
\[\begin{aligned}P(z + \omega_1) &= P(z) \\ P(z + \omega_2) &= P(z).\end{aligned}\]
Then \(P(z)\) would be the same at all points on the ``lattice'' of
points \(n\omega_1 + m \omega_2\), which might look like the squares
above or might be like \[
  \begin{tikzpicture}
    \draw[->] (-0.4,0) to (4,0) node [label=below:{$\Re(z)$}]{};
    \draw[->] (0,-0.4) to (0,4) node[label=left:{$\Im(z)$}]{};
    \foreach \x in {-0.3,0.7,1.7,2.7} {
      \draw[thick,dotted] (\x,-0.5) to ({\x+0.1},-0.2);
      \draw[thick] ({\x+0.1},-0.2) to ({\x+1.4},3.7);
      \draw[thick,dotted] ({\x+1.4},3.7) to ({\x+1.5},4);
    }
    \foreach \y in {0.6} {
      \draw[thick,dotted] (-0.6,\y) to (-0.3,{\y-0.05});
      \draw[thick] (-0.3,{\y-0.05}) to (3.6,{\y-0.7});
      \draw[thick,dotted] (3.6,{\y-0.7}) to (3.9,{\y-0.75});
    }
    \foreach \y in {1.6} {
      \draw[thick,dotted] (-0.4,\y) to (-0.1,{\y-0.05});
      \draw[thick] (-0.1,{\y-0.05}) to (3.8,{\y-0.7});
      \draw[thick,dotted] (3.8,{\y-0.7}) to (4.1,{\y-0.75});
    }
    \foreach \y in {2.6} {
      \draw[thick,dotted] (-0.2,\y) to (0.1,{\y-0.05});
      \draw[thick] (0.1,{\y-0.05}) to (4,{\y-0.7});
      \draw[thick,dotted] (4,{\y-0.7}) to (4.3,{\y-0.75});
    }
    \foreach \y in {3.6} {
      \draw[thick,dotted] (0,\y) to (0.3,{\y-0.05});
      \draw[thick] (0.3,{\y-0.05}) to (4.2,{\y-0.7});
      \draw[thick,dotted] (4.2,{\y-0.7}) to (4.5,{\y-0.75});
    }
  \end{tikzpicture}
\] or some such thing.

Let's think about this nice function \(P(z)\) we are fantasizing about.
Alas, if it were analytic on the whole plane (no poles), it would be
bounded on each little parallelogram, and since it's doubly periodic, it
would be a bounded analytic function on the complex plane, hence
\textbf{constant} by Liouville's theorem. Well, so a constant function
has all the wonderful properties we want --- but that's too boring!

So let's allow it to have poles! But let's keep it as nice as possible,
so let's have the only poles occur at the lattice points
\[L = \{n \omega_1 + m \omega_2\}.\] And let's make the poles as nice as
possible. Can we have each pole be of order one? That is, can we make
\(P(z)\) blow up like \(1/(z -\omega)\) at each lattice point \(\omega\)
in \(L\)? No, because if it did, the integral of \(P\) around a nicely
chosen parallelogram around the pole would be zero, because the
contributions from opposite sides of the parallelogram would cancel by
symmetry. (A fun exercise.) But by the Cauchy residue formula this means
that the residue of the pole vanishes, so it can't be of order one.

Okay, try again. Let's try to make the pole at each lattice point be of
order two. How can we cook up such a function? We might try something
obvious: just sum up, for all \(\omega\) in the lattice \(L\), the
functions \[\frac{1}{(z -\omega)^2}\] We get something periodic with
poles like \(1/(z -\omega)^2\) at each lattice point \(\omega\). But
there's a big problem --- the sum doesn't converge! (Another fun
exercise.)

Oh well, try again. Let's act like physicists and \textbf{renormalize}
the sum by subtracting off an infinite constant! Just subtract the sum
over all \(\omega\) in \(L\) of \(1/\omega^2\). Well, all \(\omega\)
except zero, anyway. This turns out to work, but we really should be
careful about the order of summation here: really, we should let
\(P(z)\) be \(1/z^2\) plus the sum for all nonzero \(\omega\) in the
lattice \(L\) of \(1/(z -\omega)^2 -1/\omega^2\). This sum does converge
and the limit is a function \(P(z)\) that's analytic except for poles of
order two at the lattice points. This is none other than the Weierstrass
elliptic function, usually written with a fancy Gothic \(\mathfrak{P}\)
to intimidate people. Note that it really depends on the two periods
\(\omega_1\) and \(\omega_2\), not just \(z\).

Now, it turns out that \(P(z)\) really \emph{is} a cool generalization
of the sine function. Namely, it satisfies a differential equation like
the one the sine does, but fancier:
\[P'(z)^2 = 4 P(z)^3 - g_2 P(z) - g_3\] 
where \(g_2\) and \(g_3\)
are some constants that depend on the periods \(\omega_1\) and
\(\omega_2\). Just as with the sine function we can use the
\emph{inverse} of Weierstrass \(\mathfrak{P}\) function to do some
integrals, but this time we can do integrals involving square roots of
cubic polynomials! If you look in big nasty books of special functions
or tables of integrals, you will see that there's a big theory of this
kind of thing that was developed in the 1800's --- back when heavy-duty
calculus was hip.

There are, however, some other cool ways of thinking about what's going
on here. First of all, remember that we can think of \(P(z)\) as a
function on the torus. We can think of this torus as being
``coordinatized'' --- I use the word loosely --- by \(P(z)\) and its
first derivative \(P'(z)\). I.e., if we know \(x = P(z)\) and
\(y = P'(z)\) we can figure out where the point \(z\) is on the torus.
But of course \(x\) and \(y\) can't be any old thing; the differential
equation above says they have to satisfy \[y^2 = 4x^3 -g_2 x -g_3.\]
Here \(x\) and \(y\) are complex numbers of course. But look what this
means: it means that if we look at the pairs of complex numbers
\((x,y)\) satisfying the above cubic equation, we get something that
looks just like a torus! This is called an elliptic curve, since for
algebraic geometers a ``curve'' is the set of solutions \((x,y)\) of
some polynomial in two \emph{complex} variables --- not two real
variables.

So --- an ``elliptic curve'' is basically just the solutions of a cubic
equation in two variables. Actually, we want to rule out curves that
have singularities, that is, places where there's no unique tangent line
to the curve, as in \(y^2 = x^3\) or \(y^2 = x^2(x+1)\) --- draw these
in the real plane and you'll see what I mean. Anyway, all elliptic
curves can, by change of variables, be made to look like our favorite
one, \[y^2 = 4x^3 -g_2 x -g_3.\] There are lots of more fancy ways of
thinking about elliptic curves, and one is to think of the fact that
they look like a torus as the key part. In a book on algebraic geometry
you might see an elliptic curve as a curve with genus one (i.e., with
one ``handle,'' like a torus has). One nice thing about a torus is that
is a group. That is, we know how to add complex numbers, and we can add
modulo elements of the lattice \(L\), so the torus becomes a group with
addition \(\mod L\) as the group operation. This is simple enough, but
it means that when we look at the solutions of
\[y^2 = 4x^3 -g_2 x -g_3\] they must form a group somehow, and viewed
this way it's not at all obvious! Nonetheless, there is a beautiful
geometric description of the group operation in these terms --- I'll
leave this for Knapp to explain..

Let me wrap this up --- the story goes on and on, but I'm getting tired
--- with a bit about what it has to do with number theory. It has a lot
to do with Diophantine equations, where one wants integer, or rational
solutions to a polynomial equation. Suppose that \(g_2\) and \(g_3\) are
rational, and one has some solutions to the equation
\[y^2 = 4x^3 - g_2 x - g_3.\] 
Then it turns out that one can use the
group operation on the elliptic curve to get new solutions! Actually, it
seems as if Diophantus knew this way back when in some special cases.
For example, for the problem \[y(6 -y) = x^3 -x\] Diophantus could start
with the trivial solution \((x,y) = (-1,0)\), do some mysterious stuff,
and get the solution \((17/9,26/27)\). Knapp explains how this works in
the Overview section, but then more deeply later. Basically, it uses the
fact that this curve is an elliptic curve, and uses the group structure.

In fact, one can solve mighty hard-seeming Diophantine problems using
these ideas. Knapp talks a bit about a problem Fermat gave to Mersenne
in 1643 --- this increased my respect for Fermat a bit. He asked, find a
Pythagorean triple \((X,Y,Z)\), that is: 
\[X^2 + Y^2 = Z^2,\]
such that \(Z\) is a square number and \(X + Y\) is too! One can solve
this using elliptic curves. I don't know if Mersenne got it --- the
answer is at the end of this post, but heavy-duty number theorists out
there might enjoy trying this one if they don't know it already.

Some more stuff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Jim Stasheff, ``Closed string field theory, strong homotopy Lie algebras and the
  operad actions of moduli spaces'', available
  as
  \href{https://arxiv.org/abs/hep-th/9304061}{\texttt{hep-th/9304061}}.
\end{enumerate}
\noindent
One conceptually pleasing approach to string theory is closed string
field theory, where one takes as the basic object unparametrized maps
from circle into a manifold \(M\) representing ``space'', i.e., elements
of \[\mathsf{Maps}(S^1,M)/\mathsf{Diff}^+(S^1).\] A state of closed
string field theory would be roughly a function on the above set. Then
one tries to define all sorts of operations on these states, in order to
define write down ways the strings can interact. For example, there is a
``convolution product'' on these functions which almost defines a Lie
algebra structure. However, the Jacobi identity only holds ``up to
homotopy,'' so we have an algebraic structure called a homotopy Lie
algebra. Physicists would say that the Jacobi identity holds modulo a
BRST exact term. This is just the beginning of quite a big bunch of
mathematics being developed by Stasheff, Zwiebach, Getzler, Kapranov and
many others. My main complaint with the physics is that all these
structures seem to depend on choosing a Riemannian metric on \(M\) --- a
so-called ``background metric.'' Since string theory is supposed to
include a theory of quantum gravity it is annoying to have this
God-given background metric stuck in at the very start. Perhaps I just
don't understand this stuff. I am looking around for stuff on
background-independent closed string field theory, since I have lots of
reason to believe that it's related to the loop representation of
quantum gravity. Unfortunately, I scarcely know the subject --- I had
hoped Stasheff's work would help me, but it seems that this metric
always enters.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Sergey Matveev and Michael Polyak, ``A geometrical presentation of the surface mapping 
  class group and surgery'', preprint.
\end{enumerate}
\noindent
This paper shows how to express the mapping class group of a surface in
terms of tangles. This gives a nice relationship between two approaches
to 3d TQFTs (topological quantum field theories): the Heegard
decomposition approach, and the surgery on links approach.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Michael  Polyak, ``Invariants of 3-manifolds and conformal field theories'', preprint.
\end{enumerate}
\noindent
The main good thing about this paper in my opinion is that it simplifies
the definition of a modular tensor category. Recall that Moore and
Seiberg showed how any string theory (more precisely, any rational
conformal field theory) gave rise to a modular tensor category, and then
Crane showed that any modular tensor category gave rise to a 3d TQFT.
Unfortunately a modular tensor category seems initially to be a rather
baroque mathematical object. In this paper Polyak shows how to get lots
of the structure of a modular tensor category from just the ``fusion''
and ``braiding'' operators, subject to some mild conditions. I have a
conjecture that all nonnegative link invariants (in the sense of my
paper on tangles and quantum gravity) give rise to modular tensor
categories, and this simplifies things to the point where maybe I might
eventually be able to prove it. There are lots of nice pictures here,
too, by the way.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Answer to puzzle:} \[X = 1061652293520\] \[Y = 4565486027761\]
\[Z = 4687298610289\]
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Things are moving very fast in the quantum gravity/4d topology game, so
I feel I should break my vow not to continue this series until after
next weekend's conference on Knots and Quantum Gravity.

Maybe I should recall where things were when I left off. The physics
problem motivating a lot of work in theoretical physics today is
reconciling general relativity and quantum theory. The key feature of
general relativity is that time and space do not appear as a
``background structure,'' but rather are dynamical variables. In
mathematical terms, this just means that there is not a fixed metric;
instead gravity \emph{is} the metric, and the metric evolves with time
like any other physical field, satisfying some field equations called
the Einstein equations.

But it is worth stepping back from the mathematics and trying to put
into simple words why this makes general relativity so special. Of
course, it's very hard to put this sort of thing into words. But
roughly, we can say this: in Newtonian mechanics, there is a universal
notion of time, the ``\(t\)'' coordinate that appears in all the
equations of physics, and we assume that anyone with a decent watch will
be able to keep in synch with everyone else, so there is no confusion
about what this ``\(t\)'' is (apart from choosing when to call
\(t = 0\), which is a small sort of arbitrariness one has to live with).
In special relativity this is no longer true; watches moving relative to
each other will no longer stay in synch, so we need to pick an
``inertial frame,'' a notion of rest, in order to have a ``\(t\)''
coordinate to play with. Once we pick this inertial frame, we can write
the laws of physics as equations involving ``\(t\)''. This is not too
bad, because there is only a finite-parameter family of inertial frames,
and simple recipes to translate between them, and also because nothing
going on will screw up the functioning of our (idealized) clocks: that
is, the ``\(t\)'' coordinate doesn't give a damn about the \emph{state}
of the universe. That's what is meant by saying a ``background
structure'' --- it's some aspect of the universe that is unaffected by
everything else that's going on.

In general relativity, things get much more interesting: there is no
such thing as an inertial frame that defines coordinates on spacetime,
because there is no way you can get a lot of things at different places
to remain at rest with each other --- this is what is meant by saying
that spacetime is curved. You can measure time with your watch,
so-called ``proper time,'' but this applies only near you. More
interestingly still, to compare what your watch is doing to what someone
else's is doing, you actually need to know a lot about the state of the
universe, e.g., whether there are any heavy masses around that are
curving spacetime. The ``metric,'' whereby one measures distances and
proper time, depends on the state of the universe --- or more properly,
it is part of the state of the universe.

Trying to do \emph{quantum} theory in this context has always been too
hard for people. Part of the reason why is that built into the heart of
traditional quantum theory is the ``Hamiltonian,'' which describes the
evolution of the state of the system relative to a God-given
``background'' notion of ``\(t\)''. Anyone who has taken quantum
mechanics will know that the star of the show is the Schr\"odinger
equation: \[i\frac{d\psi}{dt} = H\psi\] saying how the wavefunction
\(\psi\) changes with time in a way depending on the Hamiltonian \(H\).
No ``\(t\),'' no ``\(H\)'' --- this is one basic problem with trying to
reconcile quantum theory with general relativity.

Actually, it turns out that the analog to Schr\"odinger's equation for
quantum gravity is the Wheeler--DeWitt equation. The Hamiltonian is
replaced by an operator called the ``Hamiltonian constraint'' and we
have \[H\psi = 0.\] Note how this cleverly avoids mentioning ``\(t\)''!
The problem is, people still aren't quite sure what to do with the
solutions to this equation --- we're so used to working with
Schr\"odinger's equation.

Now in 1988 Witten wrote a paper in which he coined the term
``topological quantum field theory,'' or TQFT, for short. This was meant
to capture in a rigorous way what field theories like quantum gravity
should be like. Actually, Witten was working on a different theory
called Donaldson theory, which also has the property of having no
background structures. Shortly thereafter the mathematician Atiyah came
up with a formal definition of a TQFT. To get an idea of this
definition, try my notes on
\href{http://math.ucr.edu/home/baez/symmetries.html}{``symmetries''} and
(if you don't know what categories are)
\href{http://math.ucr.edu/home/baez/categories.html}{``categories''}.
For a serious tour of TQFTs and the like, try his book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
Michael Atiyah, \emph{The Geometry and Physics of Knots}, Cambridge
U. Press, Cambridge, 1990.
\end{enumerate}
\noindent
One can think of a TQFT as a framework in which a Wheeler--DeWitt-like
equation governs the dynamics of a quantum field theory. Experts may
snicker here, but it is true, if not as enlightening as other things one
can say.

I won't bother to define TQFTs here, but I think Smolin put it very well
when he said the idea of TQFTs really helped us break out of our
traditional idea of fields as being something defined at every point of
spacetime, wiggling around, and allowed us to see field theory from many
new angles. For example, TQFTs let us wiggle out of the old conundrum of
whether spacetime is continuous or discrete, because many TQFTs can be
\emph{equivalently} described in either of two ways: via a continuum
model of spacetime, or via a discrete one in which spacetime is given a
``simplicial structure,'' like a big tetrahedral tinkertoy lattice kind
of thing. The latter idea appears to be due to Turaev and Viro, although
certainly physicists have had similar ideas for years, going back to
Ponzano and Regge, who worked on simplicial quantum gravity.

Now the odd thing is that while interesting 3d TQFTs have been found,
the most notable being Chern--Simons theory, nobody has quite been able
to make 4d TQFTs rigorous. Witten's original work on Donaldson theory
has led to many interesting things, but not yet a full-fledged TQFT in
the rigorous sense of Atiyah. And quantum gravity still resists being
formulated as a TQFT.

A while back I noted that Crane and Yetter had invented a 4d TQFT using
the simplicial approach. There has been a lot of argument over whether
this TQFT is interesting or ``trivial.'' Of course, trivial is not a
precise concept. For a while Ocneanu claimed that the partition function
of every compact 4-manifold equalled 1 in this TQFT, which counts as
very trivial. But this appears not to be the case. Broda invented
another 4d TQFT and here on ``This Week's Finds'' Ruberman showed it was
trivial in the sense that the partition function of any compact
4-manifold was a function of the ``signature'' of the 4-manifold. This
is trivial because the signature is a well-understood invariant and if
we are trying to do something new and interesting that just isn't good
enough.

In the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
Justin Roberts, ``Skein theory and Turaev--Viro invariants'',
\emph{Topology}, \textbf{34}, 771--787.  Available as
\href{https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.8587}{https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.8587}.
\end{enumerate}
\noindent
Roberts \emph{almost} claims to show that the Crane--Yetter invariant is
trivial in the same sense, namely that the partition function of any
compact 4-manifold is an exponential of the signature. Now if Crane and
Yetter's own computations are correct, this cannot be the case, but it
\emph{could} be an exponential of a linear combination of the signature
and the Euler characteristic, as far as I know. The catch is that
Roberts does not normalize his version of the Crane--Yetter invariant in
the same way that Crane and Yetter do, so it is hard to compare results.
But Roberts says: ``The normalisations here do not agree with those in
Crane and Yetter, and I have not checked the relationship. However, when
dealing with the {[}3d TQFT{]} invariants, different normalisations of
the initial data change the invariants by factors depending on standard
topological invariants (for example Betti numbers), so there is every
reason to belive that these {[}4d TQFT{]} invariants are trivial (that
is, they differ from 1 only by standard invariant factors) in all
normalisations.''

This is a bit of a disappointment, because Crane at least had hoped that
their TQFT might actually turn out to \emph{be} quantum gravity. This
was not idle dreaming; it was because the Crane--Yetter construction was
a rigorous analog of some work by Ooguri on simplicial quantum gravity.

Then, about a week ago, Rovelli put a paper onto the net:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Carlo Rovelli, ``The basis of the Ponzano--Regge--Turaev--Viro--Ooguri model is the loop
  representation basis'',  available as
  \href{https://arxiv.org/abs/hep-th/9304164}{\texttt{hep-th/9304164}}.
\end{enumerate}

This is a remarkable paper that I have not been able to absorb yet.
First it goes over 3d quantum gravity --- which \emph{has} been made
into a rigorous TQFT. It works with the simplicial formulation of the
theory. That is, we consider our (3-dimensional) spacetime as being
chopped up into tetrahedra, and assign to each edge a length, which is
required to be \(0,\frac{1}{2},1,\frac{3}{2},\ldots\). This idea of quantized
edge-lengths goes back to 4d work of Ponzano and Regge, but recently
Ooguri showed that in 3d this assumption gives the same answers as
Witten's continuum approach to 3d quantum gravity. The ``half-integers''
\(0,\frac{1}{2},1,\frac{3}{2},\ldots\) should remind physicists of spin, which is
quantized in the same way, and mathematically this is exactly what is
going on: we are really labelling edges with representations of the
group \(\mathrm{SU}(2)\), that is, spins. What Rovelli shows is that if
one starts with the loop representation of 3d quantum gravity (yet
another approach), one can prove it equivalent to Ooguri's approach, and
what's more, using the loop representation one can \emph{calculate} the
lengths of edges of triangles in a given state of space (space here is a
\(2\)-dimensional triangulated surface) and \emph{show} that lengths are
quantized in units of the Planck length over 2. (Here the Planck length
\(L\) is the fundamental length scale in quantum gravity, about
\(1.6 \times 10^{-33}\) meters.)

And, most tantalizing of all, he sketches a generalization of the above
to 4d. In 4d it is known that in the loop representation of quantum
gravity it is areas of surfaces that are quantized in units of
\(L^2/2\), rather than lengths. Rovelli considers an approach where one
chops 4-dimensional spacetime up into simplices and assigns to each
2-dimensional face a half-integer area. He uses this to write down a
formula for the inner product in the Hilbert space of quantum gravity
--- thus, at least formally, answering the long-standing ``inner product
problem'' in quantum gravity. The problem is that, unlike in 3d quantum
gravity, here one must sum over ways of dividing spacetime into
simplices, so the formula for the inner product involves a sum that does
not obviously converge. This is however sort of what one might expect,
since in 4d quantum gravity, unlike 3d, there are ``local excitations''
--- local wigglings of the metric, if you will --- and this makes the
Hilbert space be infinite-dimensional, whereas the 3d TQFTs have
finite-dimensional Hilbert spaces.

I think I'll quote him here. It's a bit technical in patches, but worth
it\ldots{}

\begin{quote}
We conclude with a consideration on the formal structure of 4-d quantum
gravity, which is important to understand the above construction.
Standard quantum field theories, as QED and QCD, as well as their
generalizations like quantum field theories on curved spaces and
perturbative string theory, are defined on metric spaces. Witten's
introduction of the topological quantum field theories has shown that
one can construct quantum field theories defined on a manifold which has
only its differential structure, and no fixed metric structure. The
theories introduced by Witten and axiomatized by Atiyah have the
following peculiar feature: they have a finite number of degrees of
freedom, or, equivalently, their quantum mechanical Hilbert spaces are
finite dimensional; classically this follows from the fact that the
number of fields is equal to the number of gauge transformations.
However, not any diff-invariant field theory on a manifold has a finite
number of degrees of freedom. Witten's gravity in 3-d is given by the
action
\[S[A,E] = \int F\wedge E \]
which has finite number of degrees of freedom. Consider the action
\[S[A,E] = \int F\wedge e\wedge e \]
in 3+1 dimensions, for a (self dual) \(\mathrm{SO}(3,1)\) connection
\(A\) and a (real) one form \(e\) with values in the vector
representation of \(\mathrm{SO}(3,1)\). This theory has a strong
resemblance with its 2+1 dimensional analog: it is still defined on a
differential manifold without any fixed metric structure, and is
diffeomorphism invariant. We expect that a consistent quantization of
such a theory should be found along lines which are more similar to the
quantization of the \(\int(F\wedge E)\), theory than to the quantization
of theories on flat space, based on the Wightman axioms namely on
\(n\)-points functions and related objects. Still, the theory
\(\int(F\wedge e\wedge e)\) has genuine field degrees of freedom: its
physical phase space is infinite dimensional, and we expect that its
Hilbert state space will also be infinite dimensional. There is a
popular belief that a theory defined on a differential manifold without
metric and diffeomorphism invariant has necessarily a finite number of
degrees of freedom (``because thanks to general covariance we can gauge
away any local excitation''). This belief is of course wrong. A theory
as the one defined by the action \(\int(F\wedge e\wedge e)\) is a theory
that shares many features with the topological theories, in particular,
no quantity defined ``in a specific point'' is gauge invariant; but at
the same time it has genuinely infinite degrees of freedom. Indeed, this
theory is of course nothing but (Ashtekar's form of) standard general
relativity.

The fact that ``local'' quantities like the \(n\)-point functions are
not appropriate to describe quantum gravity non-perturbatively has been
repeatedly noted in the literature. As a consequence, the issue of what
are the quantities in terms of which a quantum theory of gravity can be
constructed is a much debated issue. The above discussion indicates a
way to face the problem: The topological quantum field theories studied
by Witten and Atiyah provide a framework in terms of which quantum
gravity itself may be framed, in spite of the infinite degrees of
freedom. In particular, Atiyah's axiomatization of the topological field
theories provides us with a clean way of formulating the problem. Of
course, we have to relax the requirement that the theory has a finite
number of degrees of freedom. These considerations leads us to propose
that the correct general axiomatic scheme for a physical quantum theory
of gravity is simply Atiyah's set of axioms up to finite dimensionality
of the Hilbert state space. We denote a structure that satisfies all
Atiyah's axioms, except the finite dimensionality of the state space, as
a \textbf{generalized topological theory}.

The theory we have sketched is an example of such a generalized
topological theory. We associate to the connected components of the
boundary of \(M\) the infinite dimensional state space of the Loop
Representation of quantum gravity. Eq. 5 {[}the magic formula I alluded
to --- jb{]}, then, provides a map, in Atiyah's sense, between the state
spaces constructed on two of these boundary components. Equivalently, it
provides the definition of the Hilbert product in the state space.

One could argue that the framework we have described cannot be
consistent, because it cannot allow us to recover the ``broken phase of
gravity'' in which we have a nondegenerate background metric: in the
proposed framework one has only non-local observables on the boundaries,
while in the broken phase a \emph{local} field in \(M\) has
non-vanishing vacuum expectation value. We think that this argument is
weak because it disregards the diffeomorphism invariance of the theory:
in classical general relativity no experiment can distinguish a
Minkowskian spacetime metric from a non-Minkowkian flat metric. The two
are physically equivalent, as two gauge-related Maxwell potentials. For
the same reason, no experiment could detect the absolute \emph{position}
of, say, a gravitational wave, (while of course the position of an e.m.
wave is observable in Maxwell theory). Physical locality in general
relativity is only defined as coincidence of some physical variable with
some other physical variable, while in non general relativistic physics
locality is defined with respect to a fixed metric structure. In
classical general relativity, there is no gauge-invariant obervable
which is local in the coordinates. Thus, any observation can be
described by means of the value of the fields on arbitrary boundaries of
spacetime. This is the correct consequence of the fact that ``thanks to
general covariance we can gauge away any local excitation'', and this is
the reason for which one can have the ADM ``frozen time'' formalism. The
spacetime manifold of general relativity is, in a sense, a much weaker
physical object than the spacetime metric manifold of ordinary theories.
All the general relativistic physics can be read from the boundaries of
this manifold. At the same time, however, these boundaries still carry
an infinite dimensional number of degrees of freedom.
\end{quote}

Next, let me take the liberty of describing some work of my own:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John Baez, ``Diffeomorphism-invariant generalized measures on the space of
  connections modulo gauge transformations'', \emph{Proceedings of the Conference 
  on Quantum Topology}, ed.\ David N.\ Yetter, World Scientific Press, Singapore, 
  1994, pp.\ 21--43.  Also available as \href{https://arxiv.org/abs/hep-th/9305045}
  {\texttt{hep-th/9305045}}.
\end{enumerate}
\noindent
This is an extremely interesting paper by a very good mathematician.
Whoops! Let's be objective here. In the loop representation of quantum
gravity, states of quantum gravity are given naively by certain
``measures'' on a space \(A/G\) of connections modulo gauge
transformations. The Chern--Simons path integral is also such a
``measure''. In both cases, the ``measure'' in question is invariant
under diffeomorphisms of space. And in both cases, the loop transform
allows one to think of these measures as instead being functions of
multiloops (collections of loops in space). This is the origin of the
relationship to knot theory.

The problem, as always in quantum field theory, is that the notion of
``measure'' must be taken with a big grain of salt --- it's not the sort
of measure they taught you about in real analysis. Instead, these
measures are a kind of ``generalized measure'' that allows you to
integrate not all continuous functions on \(A/G\) but only those lying
in an algebra called the ``holonomy algebra,'' defined by Ashtekar,
Isham and Lewandowski. To be precise and technical, this is the closure
in the \(L^\infty\) norm of the algebra of functions on \(A/G\)
generated by ``Wilson loops,'' or traced holonomies around loops. So
what we are really interested in is not diffeomorphism-invariant
measures on \(A/G\), but diffeomorphism invariant elements of the dual
of the holonomy algebra. I begin with a review of generalized measures,
introduce the holonomy algebra, and then do a bunch of new work in which
I show how to rigorously construct lots of diffeomorphism-invariant
elements of the dual of the holonomy algebra by doing lattice gauge
theory on graphs embedded in space. Again, as with the work discussed
above, we see that the discrete and continuum approaches to space go
hand-in-hand! And we see that there are some interesting connections
between singularity theory and group representation theory showing up
when we try to understand ``measures'' on the space \(A/G\).

The following is a part of a paper discussed in
\protect\hyperlink{week5}{``Week 5''}, now available from gr-qc:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Abhay Ashtekar and Jerzy Lewandowski,``Completeness of Wilson loop functionals 
  on the moduli space of
  \(\mathrm{SL}(2,\mathbb{C})\) and \(\mathrm{SU}(1,1)\)-connections'',
   available as
  \href{https://arxiv.org/abs/gr-qc/9304044}{\texttt{gr-qc/9304044}}.
\end{enumerate}
\noindent
I didn't discuss this aspect of the paper, so let me quote the abstract:

\begin{quote}
The structure of the moduli spaces \(M := A/G\) of (all, not just flat)
\(\mathrm{SL}(2,\mathbb{C})\) and \(\mathrm{SU}(1,1)\) connections on a
\(n\)-manifold is analysed. For any topology on the corresponding spaces
\(A\) of all connections which satisfies the weak requirement of
compatibility with the affine structure of \(A\), the moduli space \(M\)
is shown to be non-Hausdorff. It is then shown that the Wilson loop
functionals --- i.e., the traces of holonomies of connections around
closed loops --- are complete in the sense that they suffice to separate
all separable points of \(M\). The methods are general enough to allow
the underlying \(n\)-manifold to be topologically non-trivial and for
connections to be defined on non-trivial bundles. The results have
implications for canonical quantum general relativity in 4 and 3
dimensions.
\end{quote}

By the way, someone should extend this result to more general noncompact
semisimple Lie groups, and also show that for all compact semisimple Lie
groups the Wilson loop functionals in any faithful representation
\emph{do} separate points (this is known for the fundamental
representation of \(\mathrm{SU}(n)\)). If I had a bunch of grad students
I would get one to do so.

The following was discussed in an earlier edition of this series,
\protect\hyperlink{week11}{``Week 11''}, but is now available from
gr-qc:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
   Ranjeet S.\ Tate, \emph{An Algebraic Approach to the Quantization of 
   Constrained Systems: Finite Dimensional Examples}, 
  Ph.D.~Thesis, Department of Physics, Syracuse University, 124 pages, 
  available as
  \href{https://arxiv.org/abs/gr-qc/9304043}{\texttt{gr-qc/9304043}}.
\end{enumerate}
\noindent
I haven't read the following one but it seems like an interesting
application of loop variables to more down-to-earth physics; Gambini was
one of the originators of the loop representation, and intended it for
use in QCD:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
   Rodolfo  Gambini and Leonardo Setaro, ``\(\mathrm{SU}(2)\) QCD in the 
   path representation'', available as
  \href{https://arxiv.org/abs/hep-lat/9305001}{\texttt{hep-lat/9305001}}.
  (``\texttt{hep-lat}'' is the computational and lattice physics
  preprint list.)
\end{enumerate}
\noindent
Let me quote the abstract:

\begin{quote}
We introduce a path-dependent hamiltonian representation (the path
representation) for \(\mathrm{SU}(2)\) with fermions in 3 + 1
dimensions. The gauge-invariant operators and hamiltonian are realized
in a Hilbert space of open path and loop functionals. We obtain a new
type of relation, analogous to the Mandelstam identity of second kind,
that connects open path operators with loop operators. Also, we describe
the cluster approximation that permits to accomplish explicit
calculations of the vacuum energy density and the mass gap.
\end{quote}
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Last weekend we had a conference on Knots and Quantum Gravity here at
Riverside. I will briefly describe the talks, many of which will
eventually appear in a conference proceedings volume. I think that to be
nice I will list these talks in order of how technical my descriptions
will be, rather than chronologically.

Oleg Viro spoke on ``simplicial topological quantum field theories''.
There has been a lot of interest recently in constructing topological
quantum field theories using triangulations of manifolds. The most
famous of these is due to Turaev and Viro. Witten showed that this one
is the same as quantum gravity in 2+1 dimensions. The nice thing is that
this gives an alternate description of the Turaev--Viro theory in terms
of more traditional ideas from field theory, so the same theory has a
``discrete'' and a ``continuum'' formulation --- some evidence for my
notion that quantum gravity will resolve the old ``is space continuous
or discrete'' argument by saying ``both, and neither,'' just as quantum
mechanics resolved the old ``is light a wave or a particle'' dispute!
(Hegel would've loved it.)

When constructing simplicial topological quantum field theories, one has
to prove that the answer you get is independent of the triangulation.
Viro reviewed a couple sets of ``moves'' whereby one can get between any
two triangulations of the same manifold --- the Alexander moves, and the
Pachner moves. He also discussed an alternate, and more convenient, way
of describing manifolds by ``special spines''. Here the idea is as
follows. Pick a bunch of points in the manifold. From each one, start
blowing a little bubble, which grows bigger and bigger until it bumps
into the other bubbles. The result is something very much like a foam of
soap bubbles, which generically have polyhedral faces, with edges and
vertices of a special sort. Look at a mess of foam sometime if you don't
know what I mean: in 3 dimensions, three bubbles meet at an edge, and
four at a vertex. One can describe this situation purely
combinatorially, and it contains all the information about the manifold.
There are a certain set of moves, the Matveev moves, relating any two
such ``special spines'' for the same manifold. One can figure out what
these moves might be by staring some foam and watching how the bubbles
move.

Louis Kaufmann changed his talk from the announced subject and instead
talked about Vassiliev invariants of knots and their relation to
perturbative Chern--Simons theory. Let me just recall what all this is
about. Chern--Simons theory is a TQFT (topological quantum field theory)
in 3 dimensions in which the field is a connection. In physical terms, a
connection is just a generalization of the vector potential in
electromagnetism. Recall that in 3 dimensional space, the vector
potential is a vector field \(A\) whose curl is the magnetic field. In
quantum theory, the significance of the vector potential is as follows.
If we take a particle and carry it around a loop, its wavefunction gets
multiplied by a phase, that is, a complex number of absolute value 1.
These ``phases'' form a group, since the product of two phases is a
phase. This group is called \(\mathrm{U}(1)\), since we can think of
phases as \(1\times1\) unitary matrices. A key idea in modern physics is
to generalize the heck out of electromagnetism by allowing other groups
to play the role of phases. The group we choose is called the ``gauge
group.'' The second simplest choice after \(\mathrm{U}(1)\) is
\(\mathrm{SU}(2)\), the \(2\times2\) unitary matrices with determinant =
1.

You can do Chern--Simons theory with any gauge group but it's especially
simple with gauge group \(\mathrm{SU}(2)\). An \(\mathrm{SU}(2)\)
connection is just a kind of field that lets one do ``parallel
translation'' around a loop in space and get an element of
\(\mathrm{SU}(2)\). Mathematicians call this the holonomy of the
connection around the loop. Physicists typically take the trace of the
group element (in this case, just the sum of the diagonal entries of the
\(2\times2\) matrix), and call that the ``Wilson loop observable,'' a
function of the connection that depends on the loop.

Now the great thing about Chern--Simons theory is that the theory is
independent of any choice of coordinates or background metric on
spacetime. This is part of what we mean by saying the theory is a TQFT.
Another aspect of a TQFT is that there is a ``vacuum state'' and we can
calculate the expectation value of a Wilson loop in the vacuum state.
The idea one should have is that the connection is undergoing all sorts
of ``quantum fluctuations'' in the vacuum state, but that we can ask for
the \emph{average} value for the trace of the connection of the holonomy
around a loop in the vacuum state. Given a knot \(K\), we write this
expectation value as \(\langle K \rangle\). Now the great thing about
Chern--Simons theory is that the vacuum state does not care what
coordinates you use to describe it. Thus \(\langle K \rangle\) does not
depend on the \emph{geometry} of the knot \(K\) (which would take
coordinates or a metric to describe), but only on its topology. In other
words, \(\langle K \rangle\) is a knot invariant. In fact we can define
\(\langle K \rangle\) not just for knots, but also for links (bunches of
knots, possibly intertangled), by taking the expectation value of the
product of the Wilson loops, one for each knot. So Chern--Simons theory
really gives a link invariant. Witten showed that this link invariant is
just the Kauffman bracket, which is an invariant easily calculated using
the rules:

\textbf{Rule 1:} If \(K\) is the ``empty link,'' the link with NO
components whatsoever --- i.e., just the empty set --- we have
\[\langle K \rangle = 1.\] This is sort of a normalization rule.

\textbf{Rule 2:} If \(K'\) is obtained from \(K\) by adding an unlinked
copy of the unknot (an unknotted circle) to \(K\),
\[\langle K' \rangle = -(a^2 + a^{-2})\langle K \rangle.\] Here \(a\) is
an adjustable parameter that appears in Chern--Simons theory --- a
function of the coupling constant.

\textbf{Rule 3:} Suppose \(K\), \(L\), and \(L'\) are 3 knots or links
differing at just one crossing (we're supposing them to be drawn as
pictures in 2 dimensions). And suppose at this crossing they look as
follows: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7pt]
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-1);
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-1);
      \flipcrossings{1}
    \end{knot}
    \node at (0.5,-1.5) {$K$};
  \end{tikzpicture}
  \qquad\qquad
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to (0,-1);
      \strand[thick] (1,0)
        to (1,-1);
    \end{knot}
    \node at (0.5,-1.5) {$L$};
  \end{tikzpicture}
  \qquad\qquad
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=1.3] (1,0);
      \strand[thick] (1,-1)
        to [out=up,in=up,looseness=1.3] (0,-1);
      \flipcrossings{1}
    \end{knot}
    \node at (0.5,-1.5) {$L'$};
  \end{tikzpicture}
\] Any rotated version of this picture is fine too.

Then
\[\langle K \rangle = a\langle L\rangle + a^{-1}\langle L'\rangle.\]
That's it! I leave as an exercise for the reader to calculate
\(\langle K \rangle\) for the trefoil knot, \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7pt]
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-1)
        to [out=down,in=up] (0,-2)
        to [out=down,in=up] (1,-3);
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-1)
        to [out=down,in=up] (1,-2)
        to [out=down,in=up] (0,-3);
      \flipcrossings{1,3}
      \strand[thick] (1,-3)
        to [out=down,in=down] (2,-3)
        to (2,0)
        to [out=up,in=up] (1,0);
      \strand[thick] (0,-3)
        to [out=down,in=down] (3,-3)
        to (3,0)
        to [out=up,in=up] (0,0);
    \end{knot}
  \end{tikzpicture}
\] and get \(-A^5 -A^{-3} -A^{-7}\). Then try the mirror-image trefoil,
or ``left-handed trefoil,'' and see what you get.

Now in quantum field theory people like doing perturbative calculations,
and that's interesting here even though we know the exact answer.
Namely, there is a coupling constant \(c\) in Chern--Simons theory such
that \(A = \exp(c)\), and if one uses Feynman diagrams and the rest of
the usual machinery for quantum field theory and does a perturbative
calculation of the vacuum expectation value of Wilson loops, one gets
the same answer, but as a power series in \(c\). The coefficient of the
\(c^n\) is a special sort of link invariant called a ``Vassiliev
invariant'' of degree \(n\). I discussed these a lot in
\protect\hyperlink{week3}{``Week 3''} (see below for how to get that
article), so I won't repeat myself here. In any event, Kauffman gave a
nice discussion of this sort of thing.

Viktor Ginzburg talked about his work with Milgram on Vassiliev
invariants. He had hoped to show that these were an almost complete set
of knot invariants, able to distinguish between any two knots that
weren't just orientation-reversed versions of each other (here we equip
the knots with an orientation, or field of arrows running along the
knot). He came to the conference, as he said, sadder and wiser. He
presented a nice result on Vassiliev invariants that might be a step
towards proving completeness.

Dana Fine spoke on ``Chern--Simons theory and the Wess--Zumino--Witten
model''. There is a very interesting ``ladder of field theories'' that
contains ``topological quantum gravity'' in 4 dimensions, Chern--Simons
theory in 3 dimensions, and the Wess-Zumino-witten model in 2
dimensions. Dana Fine spoke on the bottom 2 rungs of this ladder. he
described a very explicit, although still formal, reduction of the
Chern--Simons path integral (the integral one does to compute the
expectation values I mentioned above) to the path integral in the
Wess--Zumino--Witten model. The relation between CS theory and the WZW
model is what witten used in his original argument that CS theory gives
interesting link invariants, so this is of interest in knot theory as
well as physics.

On Saturday morning we had a nice trio of talks from the Syracuse gang,
Syracuse University being a hotbed of new work on quantum gravity.
Ashtekar and Smolin are there, as are a bunch of good grad students
(Bernd Bruegmann was there until very recently) and postdocs, including
Jerzy Lewandowski and Renate Loll. The whole gang is moving down to Penn
State this summer, and they will be hiring Jorge Pullin, now at Utah
State. There are not many people working on quantum gravity --- and not
many jobs in the field --- so Penn State will become arguably \emph{the}
center, at least in the US (let us not forget Penrose, Hawking, Isham,
et al!), for work on this subject.

Renate Loll spoke on the ``Loop representation of gauge theory and
gravity.'' This was an introduction to the ideas of Gambini, Trias,
Rovelli, Smolin, et al on doing quantum field theory solely in terms of
Wilson loops. It is this approach that makes the connection between
quantum gravity and knot theory.

Abhay Ashtekar spoke on ``Loop transforms.'' The process of encoding a
connection in terms of all its Wilson loops is called the loop
transform, and it can be regarded as a nonlinear generalization of the
Fourier transform. Ashtekar has led an effort to make this transform
thoroughly rigorous and mathematically respectable, and he discussed
this work.

Jorge Pullin spoke on ``The quantum Einstein equations and the Jones
polynomial''. He outlined his work with Gambini and Bruegmann in which
they show perturbatively that the Kaufmann bracket (or, alternatively,
Chern--Simons theory) gives a state of 4-d quantum gravity. This is
perhaps the most exciting aspect of the ``ladder of field theories''
mentioned above, since it touches upon the real world --- or at least
comes darn close.

On Sunday, Gerald Johnson started things off with an introduction to his
work on making the Feynman path integral rigorous. This is relevant
because a main problem with Witten's otherwise marvelous work is that
the path integral in Chern--Simons theory has not been made rigorous.
Dana Fine's talk offered one approach, and my own talk offered another
(based on my recent paper).

Perhaps the most novel talk was by Paolo Cotta-Ramusino (``4d quantum
gravity and knot theory'') describing his work with Maurizio Martellini
on \(4\)-dimensional TQFTs and invariants of 2-knots, that is, embedded
surfaces in \(\mathbb{R}^4\) (or more general 4-manifolds). This is an
attempt to push the Wilson loop story up one dimension, in an effort to
make it applicable to theories similar to quantum gravity. These
theories are the so-called ``BF theories,'' whose Lagrangian is of the
form \(\operatorname{tr}(B \wedge F)\), where \(B\) is a Lie algebra
valued \(2\)-form and \(F\) is the curvature of a connection. Martellini
and Cotta-Ramusino's work on this is still in a preliminary stage but it
seems rather promising.

Perhaps the most controversial talk was by Louis Crane, entitle
``Quantum gravity, spin geometry and categorical physics.'' This was
about his ideas on using category theory to construct \(4\)-dimensional
TQFTs. He also emphasized the importance of TQFTs that use
triangulations but wind up being independent of the triangulation, thus
slipping through the discrete/continuous distinction. Many of his
assertions provoked violent reactions from the physicists present.

Finally, I spoke on ``Strings, tangles and gauge fields,'' beginning by
pointing out some relationships between closed string field theory and
the loop representation of quantum gravity, and then retreating to safer
ground and describing my work on trying to make the Chern--Simons path
integral and the loop representation more mathematically rigorous. I
will write a paper on this subject this summer and try to further build
up my case for the conjecture that string theory and gauge field theory
are in a sense dual descriptions of certain TQFTs.

A rather technical introduction to currently interesting topics in
closed string field theory has just appeared:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Barton
  Zwiebach,``Closed string field theory --- an introduction'', available as
  \href{https://arxiv.org/abs/hep-th/9305026}{\texttt{hep-th/9305026}}.
\end{enumerate}

Unfortunately for me, he mainly treats theories of strings moving around
on a manifold with a background metric, while it seems that the loop
representation of quantum gravity is very like a ``background-free''
string field theory. A paper that recently came out and appears to
support my notions is the following:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  S.\ G.\
  Naculich, H.\ A.\ Riggs, and H.\ J.\ Schnitzer, ``Two-dimensional Yang--Mills 
  theories are string theories'', available as
  \href{https://arxiv.org/abs/hep-th/9305097}{\texttt{hep-th/9305097}}.
\end{enumerate}

Apparently this builds on work by Gross, Taylor, and Minahan which
treated \(\mathrm{SU}(n)\) Yang--Mills theories in 2 dimensions as string
theories, and does something similar for the gauge groups
\(\mathrm{SO}(n)\) and \(\mathrm{Sp}(n)\).

I have a pack of interesting papers to describe but I am already worn
out, so I will put that off until next week, except for the following
paper by Smolin that I seem to have neglected:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Lee Smolin, ``What can we learn from the study of non-perturbative quantum general
  relativity?',' available as
  \href{https://arxiv.org/abs/gr-qc/9211019}{\texttt{gr-qc/9211019}}.
\end{enumerate}

This is a nice introduction to current issues associated to the loop
representation of quantum gravity and nonperturbative quantum gravity in
general. As should be evident from my weekly reviews, the subject seems
to be moving faster and faster, and it is best to read some of the
review papers like this one by Smolin if one wants to figure out where
things are now and where they might be heading.
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A nice crop of papers has built up while I've been taking a
break\ldots{} In \protect\hyperlink{week15}{``Week 15''} I talked a bit
about constructing topological quantum field theories starting with a
triangulation of spacetime, and how this seems to sneak around the old
``is spacetime continuous or discrete'' argument. Let me describe a bit
about one of the more mathematically elegant physics papers I've run
across in a while, which treats exactly this issue. Then I'll describe
two review articles, one on gravity in 2+1 dimensions (which is closely
related to the lattice business), and one on Lagrangians for quantum
gravity.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Stephen-wei Chung, Masafumi Fukuma and Alfred
  Shapere, ``Structure of topological lattice field theories in three
  dimensions'', available as
  \href{https://arxiv.org/abs/hep-th/9305080}{\texttt{hep-th/9305080}}.
\end{enumerate}

What's a \(2\)-dimensional ``topological lattice field theory''?
According to the definition used in this paper, it goes like this. First
take a compact oriented 2-manifold without boundary \(M\), that is, an
\(n\)-holed torus. (One could also discuss the case when there is a
boundary, but to keep life simple we won't here.) We want to calculate a
number \(Z(M)\), the partition function of \(M\), since the partition
function is a basic ingredient in Feynman's approach to quantum field
theory. We first triangulate \(M\)\ldots{} so a patch might look like:
\[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (1,1.6) to (2,0) to cycle;
    \draw[thick] (2,0) to (1,1.6) to (3,1.6) to cycle;
    \draw[thick] (0,0) to (2,0) to (1,-1.6) to cycle;
  \end{tikzpicture}
\] Then ``disassemble'' \(M\) into separate triangles, like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (1,1.6) to (2,0) to cycle;
    \draw[thick] (2.5,0) to (1.5,1.6) to (3.5,1.6) to cycle;
    \draw[thick] (0,-0.5) to (2,-0.5) to (1,-2.1) to cycle;
  \end{tikzpicture}
\] Now assign to each edge of the disassembled version of \(M\) a
``color'' taken from a fixed finite set \(S\). Note that there are twice
as many edges in the disassembled version of \(M\) as in the original
triangulation of \(M\). Any way of assigning a color to each edge of the
disassembled \(M\) will be called a ``coloring''. We think of a coloring
as a ``history of the world'' and we will compute \(Z(M)\) by summing a
certain quantity over all colorings.

To compute this quantity, we need two pieces of data that determine our
theory. First, for each \(i,j\) in \(S\), we fix a complex number
\(g^{ij}\). We require that the matrix \(g^{ij}\) be invertible. We
define \(g_{ij}\) to be the matrix inverse of \(g^{ij}\). We can raise
and lower indices with \(g\) as if it were a metric. The matrix \(g\)
will be used when we glue two edges of the disassembled \(M\) together
in the process of rebuilding \(M\). Second, for each \(i,j,k\) in \(S\),
we fix a number \(c_{ijk}\). This number comes in because each triangle
has three edges.

Here's how we calculate \(Z(M)\). Write down one index next to each edge
of the disassembled \(M\) --- by ``index'' I mean something like
\(i,j,k\) running over \(S\). Then write down the obvious factor of
\(g\) for each pair of edges that get glued together when we form \(M\),
and write down the obvious factor of \(c\) for each triangle in \(M\).
Finally, sum over all colorings to get \(Z(M)\).

For example, if \(M\) were a torus that we triangulated with two
triangles like this \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (1,1.6) to (2,0) to cycle;
    \draw[thick] (0,0) to (2,0) to (1,-1.6) to cycle;
  \end{tikzpicture}
\] --- with opposite edges of the parallelogram identified --- we would
dissasemble \(M\) and label the edges like this, say: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to node[fill=white]{$l$} (1,1.6) to node[fill=white]{$m$} (2,0) to node[fill=white]{$j$} cycle;
    \draw[thick] (0,-0.5) to node[fill=white]{$i$} (2,-0.5) to node[fill=white]{$k$} (1,-2.1) to node[fill=white]{$n$} cycle;
  \end{tikzpicture}
\] To form \(M\) we glue \(i\) to \(j\), \(k\) to \(l\), and \(m\) to
\(n\). So we write down \[g^{ij}g^{kl}g^{mn}c_{jml}c_{ink}\] and then
sum over \(i,j,k,l,m,n\) to get \(Z(M)\). Notice that for this procedure
to be well defined it had better not matter whether we write \(g^{ij}\)
or \(g^{ji}\), since we have no way of knowing which to use. So \(g\)
had better be symmetric. Similarly, we had better have
\(c_{ijk} = c_{jki}\) --- invariance under cyclic permutations. Note
that since \(M\) is oriented we can (and will) require that we go around
each triangle counterclockwise when writing down things like
\(c_{ink}\), as we have done above.

Okay, this is a pretty scheme, but the real point is that it should be
independent of the triangulation of \(M\) we chose, for us to have
something that deserves to be called ``topological.'' This imposes extra
conditions on \(g\) and \(c\). Here it is handy to know that we can get
between any two triangulations of \(M\) using a sequence of two moves
and their inverses. The first move is called the ``(2,2) move.'' It
looks like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,1.5) node{$\bullet$} to (2,0) node{$\bullet$} to (1,-1.5) node{$\bullet$} to cycle;
    \draw[thick] (1,1.5) to (1,-1.5);
  \end{tikzpicture}
  \raisebox{4.5em}{$\qquad\longleftrightarrow\qquad$}
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,1.5) node{$\bullet$} to (2,0) node{$\bullet$} to (1,-1.5) node{$\bullet$} to cycle;
    \draw[thick] (0,0) to (2,0);
  \end{tikzpicture}
\] It is called the (2,2) move since it really amounts to taking 2 faces
of a tetrahedron and replacing them with the other 2 faces! There is a
similar (3,1) move that takes 3 faces of a tetrahedron and replaces them
with the other 1, as follows: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1.8,3) node{$\bullet$} to (3.6,0) node{$\bullet$} to cycle;
    \node at (1.8,1.1) {$\bullet$};
    \draw[thick] (0,0) to (1.8,1.1);
    \draw[thick] (1.8,3) to (1.8,1.1);
    \draw[thick] (3.6,0) to (1.8,1.1);
  \end{tikzpicture}
  \raisebox{4.5em}{$\qquad\longleftrightarrow\qquad$}
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1.8,3) node{$\bullet$} to (3.6,0) node{$\bullet$} to cycle;
  \end{tikzpicture}
\] (This drawing done by my friend Bruce Smith in a fit of insomnia!)
These are examples of the ``Pachner moves,'' and the same idea works in
any dimension. But in 2 dimensions we can use a move called the ``bubble
move'' instead of the (3,1) move. Here is where drawing vertices as
\(\bullet\)'s is crucial: \[
  \begin{tikzpicture}
    \draw[thick] (1,1.5) to [bend left=70] (1,-1.5) to [bend left=70] cycle;
    \draw[thick] (1,1.5) node{$\bullet$} to node{$\bullet$} (1,-1.5) node{$\bullet$};
  \end{tikzpicture}
  \raisebox{4.5em}{$\qquad\longleftrightarrow\qquad$}
  \begin{tikzpicture}
    \draw[thick] (1,1.5) node{$\bullet$} to (1,-1.5) node{$\bullet$};
  \end{tikzpicture}
\] On the left, we have two hideously deformed triangles (remember, this
is topology!) that are attached along TWO edges, leaving two edges
exposed, and in the right we have collapsed them down to a single edge.
We leave it as a fun exercise to show that you can do anything with the
(2,2) move and the bubble move that you can do with the (2,2) move and
the (3,1) move.

Requiring that \(Z(M)\) be invariant under the (2,2) moves amounts to
the following equation --- if you check it, you will make sure you
understand what's going on: \[c_{xy}^u c_{uz}^w = c_{xu}^w c_{yz}^u.\]
Here I have raised indices using the ``metric'' \(g\). This equation
looks sort of hairy, but it's actually something very nice in disguise.
We need to tease out its inner essence! Suppose we take a vector space
\(A\) having the colors in \(S\) as a basis, and use the tensor
\(c_{ij}^k\) to define a bilinear map from \(A \times A\) to \(A\). Then
the equation above says this map is an associative product! If you
ponder the picture of the (2,2) move for a while, this should become
obvious to you. Think of each triangle as being a gadget that you can
feed vectors into from two sides and have the ``product'' pop out on the
third side. Then the equation \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,1.5) node{$\bullet$} to (2,0) node{$\bullet$} to (1,-1.5) node{$\bullet$} to cycle;
    \draw[thick] (1,1.5) to (1,-1.5);
  \end{tikzpicture}
  \raisebox{4.5em}{$\qquad=\qquad$}
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,1.5) node{$\bullet$} to (2,0) node{$\bullet$} to (1,-1.5) node{$\bullet$} to cycle;
    \draw[thick] (0,0) to (2,0);
  \end{tikzpicture}
\] really is just associativity! To understand this in a deeper way,
read Kapranov and Voevodsky's paper (reviewed in
\protect\hyperlink{week4}{``Week 4''}), especially the section on the
``associahedron''.

Requiring that \(Z(M)\) be invariant under the bubble move amounts to
the following: \[c_{xu}^v c_{yv}^u = g_{xy}\] Here \(g_{xy}\) is the
matrix inverse of \(g^{xy}\). Again, I leave it as an exercise to show
this is the right equation. It is a formula expressing the ``metric''
\(g\) on \(A\) in terms of the product on \(A\)! In fact, it has a
beautiful algebraic interpretation: it says that the algebra \(A\) is
``semisimple.'' A semisimple algebra is just a direct sum of matrix
algebras, and in such algebras the inner product \(g(a,b)\) of any two
elements is just equal to \(\operatorname{tr}(a^T b)\), where \(a^T\) is
the transpose of \(a\).

So we discover a charming fact: there is a one-to-one correspondence
between topological lattice field theories in 2 dimensions and
finite-dimensional semsimple algebras over the complex numbers!

Actually this was apparently already shown by

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  C.\ Bachas and P.\ M.\ S.\ Petropoulos, ``Topological models on the lattice 
  and a remark on string theory cloning'', \emph{Commun.\ Math.\ Phys.}
  \textbf{152} (1993) 191.
\end{enumerate}

and

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
   M.\ Fukuma, S.\ Hosono and H.\ Kawai, ``Lattice topological field theory in
    two-dimensions'', available as
  \href{https://arxiv.org/abs/hep-th/921254}{\texttt{hep-th/921254}}.
\end{enumerate}

The big result of the present paper is to generalize this to 3
dimensions. The authors consider a specific definition of 3d topological
lattice field theories in which one chops a 3d manifold up into
tetrahedra and assigns colors to edges. They claim to get a one-to-one
correspondence between these and finite-dimensional Hopf algebras for
which the antipode squared is the identity! If you don't know what a
Hopf algebra is, let me simply say it is a very beautiful sort of thing
that has both a product and a ``coproduct,'' and they come up all the
time in group theory, knot theory, and the study of quantum groups. So
we are seeing that there is a profound correspondence between topology
and algebra, with higher-dimensional topology giving more subtle
algebra.

(In fact, I am a little worried that the authors haven't stated the
theorem quite precisely enough to have it be quite true, but it's
basically right --- I am afraid only only gets a particular class of
Hopf algebras, those which are semisimple and cosemisimple. I may be
missing something.)

Let me conclude with a few very exciting open problems.

A. One could instead consider theories in which colors are only assigned
to faces. This turns out not to broaden the class of examples: any Hopf
algebra has a dual Hopf algebra, and one just gets the theory associated
to the dual Hopf algebra this way! But if one considers theories in
which colors are assigned BOTH to edges AND faces one apparently gets a
larger class of 3d examples. What algebraic structure do these
correspond to? B. The Turaev--Viro theory of quantum gravity ---
described below --- is a 3d topological lattice field theory of some
sort. Where does it fit into this picture? The authors ask this question
but don't answer it. Also, a more difficult problem --- where does
Chern--Simons gauge theory fit into this picture? C. The 64,000 dollar
question: how does all this generalize to 4 dimensions? What sort of
algebraic structure corresponds to a 4d topological lattice field
theory? It is becoming increasingly clear that 4d field theories will
involve some kind of ``higher algebra'' that we are only beginning to
understand.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
   Steven Carlip, ``Six ways to quantize (2+1)-dimensional gravity'', 
  available as \href{https://arxiv.org/abs/gr-qc/9305020}{\texttt{gr-qc/9305020}}.
\end{enumerate}

While we have no real way to quantize gravity in 3+1 dimensions ---
although lots of good ideas --- we have six, count 'em, six, ways to do
it in 2+1 dimensions! Sometimes this sort of thing makes one yearn to be
a physicist in some other, lower-dimensional universe. However, lest one
make such wish prematurely to a genie passing by, one should note that
life in 2+1 dimensions is boring compared to our 3+1-dimensional world.
The reason can be seen from the following count of the number of
independent components of the Riemann tensor \(R_{ijkl}\) which vanishes
when spacetime is flat, and the Einstein tensor, which vanishes when the
vacuum Einstein equations hold:

\begin{longtable}[]{@{}cll@{}}
\toprule
dimension & Riemann & Einstein\tabularnewline
\midrule
\endhead
1 & 0 & 0\tabularnewline
2 & 1 & 1\tabularnewline
3 & 6 & 6\tabularnewline
4 & 20 & 10\tabularnewline
\bottomrule
\end{longtable}

What this means is that, until one gets up to dimension 4, the vacuum
Einstein equations imply that spacetime is flat. That means that there
are no gravitational waves in empty space; there are only global,
topological effects. Typically this means that if space is compact there
are only finitely many degrees of freedom. This means that 2+1 quantum
gravity is really quantum mechanics, not full-fledged quantum field
theory (which deals with \emph{local} excitations --- wiggles in the
metric and such --- and infinitely many degrees of freedom). The good
news is, this means that 2+1 gravity is somewhat understandable --- no
nasty infinities or ill-defined integrals needed, etc.. The bad news is,
it means 2+1 gravity is not too much like 3+1 gravity. But still, many
of the most puzzling qualitative features of quantum gravity are present
in the 2+1 case. In particular, one has a testing ground in which to
look at the interlocking triad of problems that stump us in the 3+1
case: the problem of time, the problem of observables, and the inner
product problem. In brief these are: what is time evolution in quantum
gravity, what are the observables in quantum gravity, and what is the
inner product on the space of states of quantum gravity? As you can see,
we are overwhelmingly ignorant about quantum gravity! I think that work
on 2+1 gravity has given us some interesting clues about these problems.

Carlip describes 6 approaches to 2+1 gravity. I'll list them and comment
on them briefly below. But one point to make is that these approaches
have \emph{not} all been shown to be equivalent; on the contrary, they
seem to give different answers. Part of the problem in my opinion is
that we do not have enough criteria for a ``good'' theory of 2+1 quantum
gravity. Certainly one would like to see that in the \(\hbar\to 0\)
limit the theory reduces to classical gravity in some sense or other
(but this is a bit vague). Perhaps another thing one could hope for is
that the theory be a 2+1-dimensional TQFT. I am not sure which of the
approaches below give a TQFT (although \#6 definitely does and probably
so does \#2):

\hypertarget{reduced-adm-phase-space-quantization}{%
\subparagraph{\#1 Reduced ADM phase space
quantization}\label{reduced-adm-phase-space-quantization}}

The ``ADM'' or Arnowitt--Deser--Misner formalism amounts to what people
would typically call canonical quantization: one writes down a
description of the phase space of quantum gravity in terms of initial
data, figures out the Poisson brackets of functions on this phase space,
and then tries to quantize by turning them into commutators. In gravity
the roles of ``position'' and ``momentum'' variables are played by the
metric on space at a given time, and the extrinsic curvature (or more
precisely, something cooked up from it).

\hypertarget{chern-simons-theoryconnection-representation}{%
\subparagraph{\#2 Chern--Simons theory/Connection
representation}\label{chern-simons-theoryconnection-representation}}

This is essentially the 2+1 analog of Ashtekar's approach in 3+1
dimensions, in that a connection and triad field play the main role,
rather than the metric. However, in 2+1 dimensions we can lump the triad
field and the connection together to get an ``\(I\mathrm{SO}(2,1)\)
connection'' --- where \(I\mathrm{SO}(2,1)\) is mildly terrifying
notation for the Poinar\'e group in 2+1 dimensions (or ``inhomogeneous
Lorentz group,'' hence the ``I''). The action for the theory then
becomes the Chern--Simons action, as noted by Witten.

\hypertarget{covariant-canonical-quantization}{%
\subparagraph{\#3 Covariant canonical
quantization}\label{covariant-canonical-quantization}}

This might sound oxymoronic to some, but what it means is that the phase
space of solutions is describe in a manifestly covariant way, rather
than in terms of initial data, and then one tries to turn Poisson
brackets into commutators.

\hypertarget{loop-representation}{%
\subparagraph{\#4 Loop representation}\label{loop-representation}}

The loop representation of quantum gravity starts with the connection
representation and then takes traces of holonomies around loops ---
so-called Wilson loops --- as the basic variables to quantize. This
suffers irritating technical problems in 2+1 dimensions, as noted in the
following recent paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Donald Marolf, An illustration of 2+1 gravity loop transform troubles, 
  available as \href{https://arxiv.org/abs/gr-qc/9305015}{\texttt{gr-qc/9305015}}.
\end{enumerate}
\noindent
I know that Ashtekar and Loll are attacking these problems this right
now; Loll discussed this a bit in a lecture she gave in my seminar.

\hypertarget{the-wheeler-dewitt-equation}{%
\subparagraph{\#5 The Wheeler--DeWitt
equation}\label{the-wheeler-dewitt-equation}}

Here we proceed as in approach \#1 but attempt to impose the Hamiltonian
and diffeomorphism constraints after quantizing. That is, we start with
an overly large phase space of initial data for general relativity ---
overly large because a given solution of Einstein's equations will have
many different initial data on different spacelike slices --- quantize
by turning Poisson brackets into commutators, and \emph{then} try to take care
of the mistake we made by defining the ``physical'' states to be those
annihilated by certain operators, the Hamiltonian and diffeomorphism
constraints. I gave a brief intro to this in
\protect\hyperlink{week11}{``Week 11''}. This is the most traditional
approach in 3+1 gravity.

\hypertarget{lattice-approaches}{%
\subparagraph{\#6 Lattice approaches}\label{lattice-approaches}}

These are closely related to the topological lattice field theories
described above. Here we treat spacetime as discrete, that is, as a kind
of lattice. One approach here is due to Regge and Ponzano, and recently
worked out rigorously by Turaev and Viro. To get going in this theory,
you ``triangulate'' your \(3\)-dimensional spacetime, that is, chop it
into tetrahedra. All we need to work with is this ``simplicial complex''
consisting of tetrahedra, their triangular faces, their line-segment
edges, and the vertex points. We assume for simplicity that spacetime is
compact, so we can use finitely many tetrahedra. Thus everything in
sight is finite and discrete. A ``history of the world'' in this theory
amounts to labelling each edge with a length, or ``spin'', that must be
\(0,\frac{1}{2},1,\frac{3}{2},\ldots\) or \(j/2\). There are thus finitely many possible
histories. To do calculations in this theory, we follow Feynman's
procedure and ``sum over histories'' --- write down a formula for the
quantity we are interested in, and add up its value for all histories,
weighted by a quantity depending on the history, the exponential of the
action of that history, to obtain the vacuum expectation value of the
quantity. The formula for the action is very familiar to folks
knowledgeable about quantum theory. Each tetrahedron has 6 edges
labelled by spins, and we calculate a quantity called the ``\(6j\)
symbol'' from these spins and then add it up for all tetrahedra. In the
Turaev--Viro version, we have replaced the gauge group \(\mathrm{SU}(2)\)
by the corresponding quantum group, with the quantum parameter \(q\) a
root of unity, so there are only finitely many irreducible
representations, or spins, to sum over. (See
\protect\hyperlink{week5}{``Week 5''} for the vaguest of introductions
to quantum groups and their representations!) The beauty of this theory
is that the answer one gets is independent of the triangulation one has
chosen.

While I'm at it, let me list some key references to the subject of
lattice 2+1 gravity, a subject I'm fascinated by these days.

The grandaddy of them all, the Ponzano--Regge paper, is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  G.\ Ponzano and T.\ Regge, ``Semiclassical limits of Racach coefficients'', 
  in F.\ Bloch (ed.), \emph{Spectroscopic and
  Group Theoretical Methods in Physics}, Amsterdam: North-Holland 1968.
\end{enumerate}

Then there are:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Edward Witten, ``(2+1)-dimensional gravity as an exactly soluble system'', 
  \emph{Nucl.\ Phys.} \textbf{B311} (1988), 46--78.
\item
  V.\ G.\ Turaev and O.\ Y.\ Viro,  ``State sum invariants of 3-manifolds and 
  quantum 6j-symbols'', \emph{Topology} \textbf{31} (1992), 865--902.
\end{enumerate}

Also Ooguri wrote a paper on 3+1 lattice gravity that has been quite
influential:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Hirosi Ooguri, ``Topological lattice models in four dimensions'', 
  \emph{Mod.\ Phys.\ Lett.} \textbf{A7} (1992), 2799--2810.
  Available as
  \href{https://arxiv.org/abs/hep-th/9205090}{\texttt{hep-th/9205090}}.  
\end{enumerate}
\noindent
And there is also the recent paper by Rovelli, which I discussed in
\protect\hyperlink{week14}{``Week 14''}. This is very readable (once you
know what's going on!) and conceptual.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Peter Peldan, ``Actions for gravity, with generalizations: a review'', 61 pages, 
  available as \href{https://arxiv.org/abs/gr-qc/9305011}{\texttt{gr-qc/9305011}}.
\end{enumerate}

The classic action principle for general relativity is the
Einstein--Hilbert action: the Ricci scalar times the volume form
associated to the metric. An important modification, often called the
Palatini action, takes a connection and tetrad (aka vierbein or frame
field) as basic. More recently, Plebanski invented an action using the
self-dual part of the connection and a tetrad field; this turns out to
be closely related to an action naturally associated with the Ashtekar
``new variables'' (a self-dual connection and tetrad field), although
this was realized only subsequently by Capovilla, Dell, and Jacobson.
More recently still, there is the Capovilla-Dell-Jacobson action. These
new action principles shed a very interesting new light on gravity,
particularly when it comes to quantizing it. Of course it must be
remembered that actions that give the \emph{same} classical dynamics can
(and typically DO) give \emph{different} quantum theories. So a
traditionalist might question whether these new actions give the
``right'' quantum theory of gravity. Of course, the correct response to
such a traditionalist is ``well, you come up with the `right' quantum
theory of gravity and then we can compare!'' The point is that the good
old Einstein--Hilbert action is extremely intractable when it comes to
quantization --- so perhaps it is not the ``right'' one, and \emph{any}
quantization is more enlightening than none at this stage.

Peldan presents a grand tour of the various Lagrangian formulations of
gravity, and on page 3 of this large manuscript there is a large diagram
of the main Lagrangian and Hamiltonian approaches to gravity in 3+1
dimensions, while on page 35 there is a somewhat smaller chart for 2+1
gravity. (A very brief preliminary warmup on some of these formulations
appears in my earlier article, \protect\hyperlink{week7}{``Week 7''}.) I
plan on going through this carefully in order to be able to make up for
years of neglect on my part of this sort of thing.



\hypertarget{week17}{%
\section{June 13, 1993}\label{week17}}

This'll be the last ``This Week's Finds'' for a few weeks, as I am going
up to disappear until July. I've gotten some requests for introductory
material on gauge theory, knot theory, general relativity, TQFTs and
such recently, so I just made a list of
\href{http://math.ucr.edu/home/baez/books.html}{some of my favorite
books} on this kind of thing --- with an emphasis on the readable ones.

Also, just as a little plug here, a graduate student here at UCR (Javier
Muniain) and I are turning my course notes from this year into a book
called ``Gauge Fields, Knots and Gravity,'' meant to be an elementary
introduction to these subjects. This will eventually be published by
World Scientific if all goes well. It will gently remind the reader
about manifolds, differential forms, Lagrangians, etc., develop a little
gauge theory, knot theory, and general relativity, and at the very end
it'll get to the relationship between knot theory and quantum gravity
--- at which point one could read more serious stuff on the subject.

A while back Lee Rudolph asked my opinion of the following article:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
   Arthur Jaffe and Frank Quinn, ``Theoretical mathematics: toward a cultural synthesis 
   of mathematics and theoretical physics", \emph{Bull.\ Amer.\ Math.\ Soc.} \textbf{29} (1993),     
   1--13.  Available as \href{https://arxiv.org/abs/math/9307227}{\texttt{arXiv:math/9307227}}.
\end{enumerate}

People who are seriously into mathematical physics will know that with
string theory the interaction between mathematicians and physicists,
especially mathematicians who haven't traditionally been close to
physics (e.g.~algebraic geometers), has strengthened steadily for the
last 10 years or so. Physicists are coming up with lots of exciting
mathematical ``results'' --- often \emph{not} rigorously proved! --- and
mathematicians are getting very interested. Let me quote the abstract:

\begin{quote}
Is speculative mathematics dangerous? Recent interactions between
physics and mathematics pose the question with some force: traditional
mathematical norms discourage speculation; but it is the fabric of
theoretical physics. In practice there can be benefits, but there can
also be unpleasant and destructive consequences. Serious caution is
required, and the issue should be considered before, rather than after
obvious damage occurs. With the hazards carefully in mind, we propose a
framework that should allow a healthy and a positive role for
speculation.
\end{quote}

Replies have been solicited, so there may be a debate on this timely
subject in the AMS Bulletin. This subject has a great potential for
flame wars --- or, as Greeks and academics refer to them, ``polemics.''
Luckily Jaffe and Quinn take a rather careful and balanced tone. I think
anyone interested in the culture of mathematics and physics should take
a look at this.

Now for two books:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  DeWitt L.\ Sumner, \emph{New Scientific Applications of Geometry and Topology},
   \emph{Proc.\ Symp.\ Appl.\ Math.} \textbf{45}, AMS.
\end{enumerate}

This volume has a variety of introductory papers on applications of knot
theory; the titles are roughly ``Evolution of DNA topology,'' ``Geometry
and topology of DNA and DNA-protein interactions,'' ``Knot theory and
DNA,'' ``Topology of polymers,'' ``Knots and Chemistry,'' and ``Knots
and physics.''

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Louis Kauffman and Sostenes Lins, \emph{Temperley--Lieb Recoupling Theory and 
  Invariants of 3-Manifolds}, Princeton: Princeton U.\ Press, 1994.
\end{enumerate}

This is an elegant exposition of the 3-manifold invariants obtained from
the quantum group \(SU_q(2)\) --- or in other words, from Chern--Simons
theory. In part this is a polishing of existing work, but it also
contains some interesting new ideas.

And now for some papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
   M.\  Carfora, M.\ Martellini and A.\
  Marzuoli, ``\(12j\)-symbols and four-dimensional quantum gravity'', 
  Dipartimento di Fisica, Universita di Roma ``La Sapienza'' preprint.
\end{enumerate}
\noindent
This is an attempt to do for 4d quantum gravity what Regge, Ponzano and
company so nicely did for 3d quantum gravity (see
\protect\hyperlink{week16}{``Week 16''}) --- describe it using
triangulated manifolds and angular momentum theory.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
   Y.\ S.\ Soibelman, ``Selected topics in quantum groups'', 
   Lectures for the European School of Group Theory, Harvard University preprint.
\end{enumerate}
\noindent
This is a nice review of Soibelman's work on quantum groups, quantum
spheres, and other aspects of ``quantum geometry.''

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
 J.\ Scott Carter and Masahico Saito , ``Braids and movies", 
 \emph{Journal of Knot Theory and Its Ramifications} \textbf{5} (1996), 589--608.
\end{enumerate}
\noindent
Just as every knot or link is given as the closure of a braid --- for
example, the trefoil knot \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7pt]
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-1)
        to [out=down,in=up] (0,-2)
        to [out=down,in=up] (1,-3);
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-1)
        to [out=down,in=up] (1,-2)
        to [out=down,in=up] (0,-3);
      \flipcrossings{1,3}
      \strand[thick] (1,-3)
        to [out=down,in=down] (2,-3)
        to (2,0)
        to [out=up,in=up] (1,0);
      \strand[thick] (0,-3)
        to [out=down,in=down] (3,-3)
        to (3,0)
        to [out=up,in=up] (0,0);
    \end{knot}
  \end{tikzpicture}
\] is the closure of \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7pt]
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-1)
        to [out=down,in=up] (0,-2)
        to [out=down,in=up] (1,-3);
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-1)
        to [out=down,in=up] (1,-2)
        to [out=down,in=up] (0,-3);
      \flipcrossings{1,3}
    \end{knot}
  \end{tikzpicture}
\] --- every ``2-knot'' or ``2-link'' --- that is, a surface embedded in
\(\mathbb{R}^4\), is the closure of a ``2-braid''. Just as there are
``Markov moves'' that say when two links come from the same braid, there
are moves for 2-braids --- as discussed here.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Danny Birmingham and Mark Rakowski, ``Combinatorial invariants from four 
  dimensional lattice  models: II'', available as
  \href{https://arxiv.org/abs/hep-th/9305022}{\texttt{hep-th/9305022}}.
\end{enumerate}
\noindent
The previous paper obtains some invariants of 4-manifolds by
triangulating them and doing a kind of ``state sum'' much like those I
described in \protect\hyperlink{week16}{``Week 16''}. This paper shows
those invariants are trivial --- at least for compact manifolds, where
one just gets the answer ``1''. This seems to be happening a lot lately.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Boguslaw Broda, ``A note on the four-dimensional Kirby calculus'', 
  available as
  \href{https://arxiv.org/abs/hep-th/9305101}{\texttt{hep-th/9305101}}.
\end{enumerate}
\noindent
An earlier attempt by Broda to construct 4-manifold invariants along
similar lines was discussed here in \protect\hyperlink{week9}{``Week
9''} and \protect\hyperlink{week10}{``Week 10''} --- the upshot being
that the invariant was trivial. This is a new attempt and Broda has told
me that the arguments for the earlier invariant being trivial do not
apply. Here's hoping!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  H.-J.\ Matschull, ``Solutions to the Wheeler DeWitt constraint of canonical gravity
  coupled to scalar matter fields'', available as
  \href{https://arxiv.org/abs/gr-qc/9305025}{\texttt{gr-qc/9305025}}.
\end{enumerate}
\noindent
One very important technical issue in the loop representation of quantum
gravity is how to introduce matter fields into the picture. Let me quote:

\begin{quote}
It is shown that the Wheeler DeWitt constraint of canonical gravity
coupled to Klein Gordon scalar fields and expressed in terms of
Ashtekar's variables admits formal solutions which are parametrized by
loops in the three dimensional hypersurface and which are extensions of
the well known Wilson loop solutions found by Jacobson, Rovelli and
Smolin.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
   Luis J.\ Garay, ``Hilbert space of wormholes'', available as
  \href{https://arxiv.org/abs/gr-qc/9306002}{\texttt{gr-qc/9306002}}.
\end{enumerate}
\noindent
I think I'll just quote the abstract on this one:

\begin{quote}
Wormhole boundary conditions for the Wheeler--DeWitt equation can be
derived from the path integral formulation. It is proposed that the
wormhole wave function must be square integrable in the maximal analytic
extension of minisuperspace. Quantum wormholes can be invested with a
Hilbert space structure, the inner product being naturally induced by
the minisuperspace metric, in which the Wheeler--DeWitt operator is
essentially self--adjoint. This provides us with a kind of probabilistic
interpretation. In particular, giant wormholes will give extremely small
contributions to any wormhole state. We also study the whole spectrum of
the Wheeler--DeWitt operator and its role in the calculation of Green's
functions and effective low energy interactions.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
   Vipul Periwal, ``Chern--Simons theory as topological closed string'',
   available as
  \href{https://arxiv.org/abs/hep-th/9305115}{\texttt{hep-th/9305115}}.
\end{enumerate}
\noindent
Lately people have been getting interested in gauge theories that can be
interpreted as closed string field theories. I mentioned one recent
paper along these lines in \protect\hyperlink{week15}{``Week 15''},
which considers Yang--Mills in 2 dimensions. (This was not the first
paper to do so, I should emphasize.) A while back Witten wrote a paper
on Chern--Simons gauge theory in 3 dimensions as a background-free open
string field theory, but I was unable to understand it. This paper seems
conceptually simpler, although it uses some serious mathematics. I think
I might be able to understand it. It starts:

\begin{quote}
The perturbative expansion of any quantum field theory (qft) with fields
transforming in the adjoint representation of \(\mathrm{SU}(N)\) is a
topological expansion in surfaces, with \(N^{-2}\) playing the role of a
handle-counting parameter. For \(N\) large, one hopes that the dynamics
of the qft is approximated by the sum (albeit largely intractable) of
all planar diagrams. The topological classification of diagrams has
nothing a priori to do with approximating the dynamics with a theory of
strings evolving in spacetime.

Gross (see also refs\ldots) has shown recently that the large \(N\)
expansion does actually provide a way of associating a theory of strings
in QCD. Maps of two-dimensional string worldsheets into two-dimensional
spacetimes are necessarily somewhat constricted. What one would like is
a qft with fields transforming in the adjoint representation in
\(d > 2\), which is at the same time exactly solvable. One could then,
in principle, attempt to associate a theory of strings with such a qft
by exhibiting a `sum over connected surfaces' interpretation for the
free energy of the qft. There is no guaranty that such an association
will exist.
\end{quote}

The author argues that Chern--Simons theory is a ``rara avis among QFTs''
for which such an association exists. He takes the free energy for
\(\mathrm{SU}(N)\) Chern--Simons theory on \(S^3\), does a large-\(N\)
expansion on it, and shows that the coefficient of the \(N^{2-2g}\) term
is the (virtual) Euler characteristics of the moduli space of surfaces
with g handles. I wish I understood this better at a very pedestrian
level! E.g., is there some string-theoretic reason why one might expect
the free energy to be of this form? Anyway, then he considers \(T^3\),
and gets something related to surfaces with a single puncture in them.



\hypertarget{week18}{%
\section{September 11, 1993}\label{week18}}

I will be resuming this series of articles this fall, though perhaps not
at a rate of one \protect\hyperlink{week}{``Week''} per week, as I'll be
pretty busy. For those of you who haven't seen this series before, let
me explain. It's meant to be a guide to some papers, mostly in preprint
form, that I have found interesting. I should emphasize that it's an
utterly personal and biased selection --- if more people did this sort
of thing, we might get a fairer sample, but I'll be unashamed in
focussing on my own obsessions, which these days lean towards quantum
gravity, topological quantum field theories, knot theory, and the like.

Quite a pile of papers has built up over the summer, but I will start by
describing what I did over my summer vacation:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Baez, ``Strings, loops, knots, and gauge fields'', 
  available as
	  \href{https://arxiv.org/abs/hep-th/9309067}{\texttt{hep-th/9309067}}.
\end{enumerate}
\noindent
When I tell layfolk that I'm working on the loop representation of
quantum gravity, and try to describe its relation to knot theory, I
usually say that in this approach one thinks of space, not as a smoothly
curved manifold (well, I try not to say ``manifold''), but as a bunch of
knots linked up with each other. If thy have been exposed to physics
popularizations they will usually ask me at this point if I'm talking
about superstring theory. To which I used to respond, somewhat annoyed,
that no, it was quite different. Superstring theory, I explained, is a
grandiose ``theory of everything'' that tries to describe all known
forces and particles, and lots more, too, as being vibrating loops of
string hurling around in 349-dimensional space. (Well, maybe just 10, or
26.) It is a complicated mishmash of all previous failed approaches to
unifying gravity with the other forces: Yang--Mills theory, Kaluza-Klein
models, strings, and supersymmetry. (The last is a symmetry principle
that postulates for every particle another one, a mysterious
``superpartner,'' despite the fact that no such superpartners have been
seen.) And it has made no testable predictions as of yet. The loop
representation of quantum gravity, on the other hand, is a much more
conservative project. It simply attempts to use some new mathematics to
reconcile two theories which both seem true, but up to now have been as
immiscible as oil and water: quantum field theory, and general
relativity. If it works, it will still be only the first step towards
unifying gravity with the other forces. If the questioner has the gall
to ask if \emph{it} has made any testable predictions, I say that so far
it is essentially a mathematics project. On the one hand, here are
Einstein's equations; on the other hand, here are the rules of thumb for
``quantizing'' some equations. Is there a consistent and elegant way of
applying those rules to those equations? People have tried for 40 years
or so without real success, but quite possibly they just weren't being
clever enough, since the rules of thumb leave a lot of scope for
creativity. Then a physicist named Ashtekar came along and reformulated
Einstein's equations using some new variables (usually known by experts
as the ``new variables''). This made the equations look much more like
those that describe the other forces in physics. This led to renewed
hope that Einstein's equations might be consistently quantized after
all. Then physicists named Rovelli and Smolin , working with Ashtekar,
made yet \emph{another} change of variables, based on the new variables.
Rovelli and Smolin's variables were labelled by loops in space, so they
are called the loop variables. These loops are quite unlike strings,
since they are merely mathematical artifacts for playing with Einstein's
equations, not actual little \emph{objects} whizzing about. But using
them, Rovelli and Smolin were able to quantize Einstein's equations and
actually find a lot of solutions! However, they were making up a lot of
new mathematics as they went along, and, as usual in theoretical
physics, it wasn't 100\% rigorous (which, as we know, is like the the
woman who could trace her descent from William the Conqueror with only
two gaps). So I, as a mathematician, got interested in this and am
trying to help out and see how much of this apparently wonderful
development is for real\ldots.

The odd thing is that there are a lot of mathematical connections
between string theory and the loop representation. Gradually, as time
went on, I became more and more convinced that maybe the layfolk were
right --- maybe the loop representation of quantum gravity really WAS
string theory in disguise, or vice versa. This made a little embarrassed
by how much I had been making fun of string theory. Still, it could be a
very good thing. On the one hand, the loop representation of quantum
gravity is much more well-motivated from basic physical principles than
string theory --- it's not as baroque --- a point I still adhere to. So
maybe one could use it to understand string theory a lot more clearly.
On the other hand, string theory really attempts to explain, not just
gravity, but a whole lot more --- so maybe it might help people see what
the loop representation of quantum gravity has to do with the other
forces and particles (if in fact it actually works).

I decided to write a paper about this, and as I did some research I was
intrigued to find more and more connections between the two approaches,
to the point where it is clear that while they are presently very
distinct, they come from the same root, historically speaking.

Here's what I wound up saying:

\begin{quote}
The notion of a deep relationship between string theories and gauge
theories is far from new. String theory first arose as a model of hadron
interactions. Unfortunately this theory had a number of undesirable
features; in particular, it predicted massless spin-2 particles. It was
soon supplanted by quantum chromodynamics (QCD), which models the strong
force by an \(\mathrm{SU}(3)\) Yang--Mills field. However, string models
continued to be popular as an approximation of the confining phase of
QCD. Two quarks in a meson, for example, can be thought of as connected
by a string-like flux tube in which the gauge field is concentrated,
while an excitation of the gauge field alone can be thought of as a
looped flux tube. This is essentially a modern reincarnation of
Faraday's notion of ``field lines,'' but it can be formalized using the
notion of Wilson loops. If A denotes a classical gauge field, or
connection, a Wilson loop is simply the trace of the holonomy of A
around a loop in space. If instead A denotes a quantized gauge field,
the Wilson loop may be reinterpreted as an operator on the Hilbert space
of states, and applying this operator to the vacuum state one obtains a
state in which the Yang--Mills analog of the electric field flows around
the loop.

In the late 1970's, Makeenko and Migdal, Nambu, Polyakov, and others
attempted to derive equations of string dynamics as an approximation to
the Yang--Mills equation, using Wilson loops. More recently, D. Gross and
others have been able to \emph{exactly} reformulate Yang--Mills theory in
\(2\)-dimensional spacetime as a string theory by writing an asymptotic
series for the vacuum expectation values of Wilson loops as a sum over
maps from surfaces (the string worldsheet) to spacetime. This
development raises the hope that other gauge theories might also be
isomorphic to string theories. For example, recent work by Witten and
Periwal suggests that Chern--Simons theory in 3 dimensions is also
equivalent to a string theory.

String theory eventually became popular as a theory of everything
because the massless spin-2 particles it predicted could be interpreted
as the gravitons one obtains by quantizing the spacetime metric
perturbatively about a fixed ``background'' metric. Since string theory
appears to avoid the renormalization problems in perturbative quantum
gravity, it is a strong candidate for a theory unifying gravity with the
other forces. However, while classical general relativity is an elegant
geometrical theory relying on no background structure for its
formulation, it has proved difficult to describe string theory along
these lines. Typically one begins with a fixed background structure and
writes down a string field theory in terms of this; only afterwards can
one investigate its background independence. The clarity of a manifestly
background-free approach to string theory would be highly desirable.

On the other hand, attempts to formulate Yang--Mills theory in terms of
Wilson loops eventually led to a full-fledged ``loop representation'' of
gauge theories, thanks to the work of Gambini, Trias, and others. After
Ashtekar formulated quantum gravity as a sort of gauge theory using the
``new variables,'' Rovelli and Smolin were able to use the loop
representation to study quantum gravity nonperturbatively in a
manifestly background-free formalism. While superficially quite
different from modern string theory, this approach to quantum gravity
has many points of similarity, thanks to its common origin. In
particular, it uses the device of Wilson loops to construct a space of
states consisting of ``multiloop invariants,'' which assign an amplitude
to any collection of loops in space. The resemblance of these states to
wavefunctions of a string field theory is striking. It is natural,
therefore, to ask whether the loop representation of quantum gravity
might be a string theory in disguise --- or vice versa.

The present paper does not attempt a definitive answer to this question.
Rather, we begin by describing a general framework relating gauge
theories and string theories, and then consider a variety of examples.
Our treatment of examples is also meant to serve as a review of
Yang--Mills theory in 2 dimensions and quantum gravity in 3 and 4
dimensions.
\end{quote}

I should add that the sort of string theory I talk about in this paper
is fairly crude compared to that which afficionados of the subject
usually concern themselves with. It treats strings only as maps from a
surface (the string worldsheet) into spacetime, and only cares about
such maps up to diffeomorphism, i.e., smooth change of coordinates. In
most modern string theory the string worldsheet is equipped with more
geometrical structure (a conformal structure) --- it looks locally like
the complex plane, so one can talk about holomorphic functions on it and
the like. This is why string theorists are always muttering about
conformal field theory. But the sort of string theory that Gross and
others (Taylor, Minahan, and Polychronakos, particularly) have been
using to describe 2d Yang--Mills theory does not require a conformal
structure on the string worldsheet, so it's at least \emph{possible}
that more interesting theories like 4d quantum gravity can be formulated
as string theories without reference to conformal structures. (Of
course, if one integrates over all conformal structures, that's a way of
referring to conformal structures without actually picking one.) I guess
I'm rambling on here a bit, but this is really the most mysterious point
as far as I'm concerned.

One hint of what might be going on is as follows. And here, I'm afraid,
I will be quite technical. As noted by Witten and formalized by Moore,
Seiberg, and Crane, a rational conformal field theory gives rise to a
particularly beautiful sort of category called a modular tensor
category. This contains, as it were, the barest essence of the theory.
Any modular tensor category gives rise in turn to a 3d topological
quantum field theory --- examples of which are Chern--Simons theory and
quantum gravity in 3 dimensions. And Crane and Frenkel have shown (or
perhaps it's fairer to say that if they ever finish their paper they
\emph{will} have shown) that the nicest modular tensor categories give
rise to braided tensor \(2\)-categories, which should, if there be
justice, give 4d topological quantum field theories. (For more
information on all these wonderful things --- which no doubt seem
utterly intimidating to the uninitiated --- check out previous ``This
Week's Finds.'') Quantum gravity in 4 dimensions is presumably something
roughly of this sort, if it exists. So what I'm hinting at, in brief, is
that a bunch of category theory may provide the links between
\emph{modern} string theory with its conformal fields and the loop
representation of quantum gravity. This is not as outre as it may
appear. The categories being discussed here are really just ways of
talking about \emph{symmetries} (see my stuff on
\href{http://math.ucr.edu/home/baez/categories.html}{categories} and
\href{http://math.ucr.edu/home/baez/symmetries.html}{symmetries} for
more on this). As usual in physics, the clearest way to grasp the
connection between two seemingly disparate problems is often by
recognizing that they have the same symmetries.



\hypertarget{week19}{%
\section{September 27, 1993}\label{week19}}

I will now start catching up on some of the papers that have accumulated
over the summer. This time I'll say a bit about recent developments in
quantum field theory and \(4\)-dimensional topology.

The quantum field theories that describe three of the forces of nature
(electromagnetic, strong and weak) depend for their formulation on a
fixed metric on spacetime --- that is, a way of measuring distance and
time. Indeed, it seems pretty close to being true that spacetime is
\(\mathbb{R}^4\), and that the ``interval'' between any two points in
\(4\)-dimensional space is given by the Minkowski metric
\[dt^2 -dx^2 -dy^2 -dz^2\] where \(dt\) is the change in the time, or
\(t\), coordinate, \(dx\) is the change in the spatial \(x\) coordinate,
and so on. However, it's apparently not quite true. In fact, the
presence of matter or energy distorts this metric a little, and the
effect of the resulting ``curvature of spacetime'' is perceived as
gravity. This is the basic idea of general relativity, which is nicely
illustrated by the way in which the presence of the sun bends starlight
that passes nearby.

Gravity is thus quite different from the other forces, at least to our
limited understanding. The other forces we have quantum theories of, and
these theories depend on a \emph{fixed} (that is, pre-given) metric. We
have no quantum theory of gravity yet, only a classical theory, and this
theory is precisely a set of equations describing a \emph{variable}
metric, that is, one dependent upon the state of the universe. These
are, of course, Einstein's equations.

In fact it is no coincidence that we have no quantum theory of gravity.
For most of the last 50 years or so physicists have been working very
hard at inventing and understanding quantum field theories that rely for
their formulation on a fixed metric. Indeed, physicists spent huge
amounts of effort trying to make a theory of quantum gravity along
essentially these lines! This is what one calls ``perturbative'' quantum
gravity. Here one says, ``Well, we know the metric isn't quite the
Minkowski metric, but it's awfully close, so we'll write it as the
Minksowski metric plus a small perturbation, derive equations for this
perturbation from Einstein's equations, and make a quantum field theory
based on \emph{those} equations.'' That way we could use the good old
Minkowski metric as a ``background metric'' and thus use all the methods
that work for other quantum field theories. This was awfully fishy from
the standpoint of \emph{elegance}, but if it had worked it might have
been a very good thing, and indeed we learned a lot from its failure to
work. Mainly, though, we learned that we need to bite the bullet and
figure out how to do quantum field theory without any background metric.

A recent big step was made when people (in particular Witten and Atiyah)
formulated the notion of a ``topological quantum field theory.'' This is
a precise list of properties one would like a quantum field theory
independent of any background metric to satisfy. A wish list, as it
were. One of the best-understood examples of such a ``TQFT'' is
Chern--Simons theory. This is a quantum field theory that makes sense in
3-dimensional spacetime, not 4d spacetime, so in a sense it has no shot
at being ``true.'' However, it connects up to honest 4d physics in some
very interesting ways, it serves as warmup for more serious physics yet
to come, AND it has done wonders for the study of topology.

It is also worth noting that one particular case of Chern--Simons theory
is equivalent to quantum gravity in 3d spacetime. Here I am being a bit
sloppy; there are various ways of doing quantum gravity in 3 dimensions
and they are not all equivalent, but the approach that relates to
Chern--Simons theory is, in my opinion, the nicest. This approach to 3d
quantum gravity was the advantage that it can also be described using a
``triangulation'' of spacetime. In other words, if we prefer the
discrete to the continuum, we can ``triangulate'' it, or cut it up into
tetrahedra, and formulate the theory solely in terms of this
triangulation. Of course, it's pretty common in numerical simulations to
approximate spacetime by a lattice or grid like this. What's amazing
here is that one gets \emph{exact} answers that are \emph{independent}
of the triangulation one picks. The idea for doing this goes back to
Ponzano and Regge, but it was all done quite rigorously for 3d quantum
gravity by Turaev and Viro just a few years ago. In particular, they
were able to show the 3d quantum gravity is a TQFT using only
triangulations, no ``continuum'' stuff.

It is tempting to try to do something like this for 4 dimensions. But it
is unlikely to be so simple. A number of people have recently tried to
construct 4d TQFTs copying tricks that worked in 3d. Some papers along
these lines that I have mentioned before are:

\begin{quote}
{\rm
Louis Crane and David Yetter,
``A categorical construction of 4d topological quantum field theories'', available as
\href{https://arxiv.org/abs/hep-th/9301062}{\texttt{hep-th/9301062}}. 
(\protect\hyperlink{week2}{Week 2})}
\end{quote}

\begin{quote}
{\rm   Boguslaw Broda, ``Surgical invariants of four-manifolds'',
available as
\href{https://arxiv.org/abs/hep-th/9302092}{\texttt{hep-th/9302092}}.
(\protect\hyperlink{week9}{Week 9} and \protect\hyperlink{week10}{Week 10})}
\end{quote}
\noindent
(I have listed which ``Week'' I discussed
these in case anyone wants to go back and check out some of the details.)

These papers ran into stiff opposition as soon as they came out! First
Ocneanu claimed that the Crane--Yetter construction was trivial, in the
sense that the number it associated to any compact \(4\)-dimensional
spacetime manifold was 1. (This number is called the partition function
of the quantum field theory, and having it be 1 for all spacetimes means
the theory is deadly dull.)

\begin{quote}
{\rm
Adrian Ocneanu, ``A note on simplicial dimension shifting'',
available as
\href{https://arxiv.org/abs/hep-th/9302028}{\texttt{hep-th/9302028}}.
(\protect\hyperlink{week5}{``Week 5''}) }
\end{quote}
\noindent
Crane and Yetter wrote a rebuttal noting that Ocneanu was not dealing
with quite the same theory:

\begin{quote}
{\rm David Yetter and Louis Crane, ``We are not stuck with gluing'', 
available as
\href{https://arxiv.org/abs/hep-th/9302118}{\texttt{hep-th/9302118}}. 
(\protect\hyperlink{week7}{Week 7})}
\end{quote}
\noindent
They also presented, at their conference this spring, calculations
showing that their partition function was not equal to 1 for certain
examples.

In my discussions of Broda's work I extensively quoted some
correspondence with Dan Ruberman, who showed that in Broda's original
construction, the partition function of a \(4\)-dimensional manifold was
just a function of its signature and possibly some Betti numbers ---
these being well-known invariants, it's not especially exciting from the
point of view of topology. This was also shown by Justin Roberts:

\begin{quote}
{\rm 
Justin Roberts, ``Skein theory and Turaev--Viro invariants'',
\emph{Topology}, \textbf{34}, 771--787.   Available as
\href{https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.8587}{https://citeseerx.ist.psu.edu/viewdoc/summary?doi=} \break
\href{https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.8587}{10.1.1.138.8587}.
 (\protect\hyperlink{week14}{Week 14})}
\end{quote}
\noindent
He suggested that the Crane--Yetter partition function was also a
function of the signature and Betti numbers, but did not check their
precise normalization conventions, and so did not quite \emph{prove}
this. However, more recently Crane and Yetter, together with Kauffman,
have shown this themselves:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Louis Crane, Louis H.\  Kauffman and David N.\ Yetter,  
  ``Evaluating the Crane--Yetter Invariant'', available as
  \href{https://arxiv.org/abs/hep-th/9309063}{\texttt{hep-th/9309063}}.
\end{enumerate}

\begin{quote}
Abstract: We provide an explicit formula for the invariant of
4-manifolds introduced by Crane and Yetter (in 
\href{https://arxiv.org/abs/hep-th/9301062}{\texttt{hep-th/9301062}}).
A consequence of our result is the existence of a combinatorial formula
for the signature of a 4-manifold in terms of local data from a
triangulation. Potential physical applications of our result exist in
light of the fact that the Crane--Yetter invariant is a rigorous version
of ideas of Ooguri on \(B \wedge F\) theory.
\end{quote}
\noindent
They also have shown that Broda's original construction, and also a
souped-up construction of his, give a partition function that depends
only on the signature:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
Louis Crane, Louis H. Kauffman and David N. Yetter, 
  ``On the Classicality of Broda's \(\mathrm{SU}(2)\) Invariants of
  4-Manifolds'', available as
  \href{https://arxiv.org/abs/hep-th/9309102}{\texttt{hep-th/9309102}}.
\end{enumerate}

\begin{quote}
Abstract: Recent work of Roberts has shown that the first surgical
4-manifold invariant of Broda and (up to an unspecified normalization
factor) the state-sum invariant arising from the TQFT of Crane--Yetter
are equivalent to the signature of the 4-manifold. Subsequently Broda
defined another surgical invariant in which the 1- and 2- handles are
treated differently. We use a refinement of Roberts' techniques
developed by the authors in \texttt{hep-th/9309063} to show that the
``improved'' surgical invariant of Broda also depends only on the
signature and Euler character.
\end{quote}

Now let me say just a little bit about what this episode might mean for
physics as well as mathematics. The key is the ``\(B \wedge F\)'' theory
alluded to above. This is a quantum field theory that makes sense in 4
dimensions. I have found that the nicest place to read about it is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
 Gary Horowitz,  ``Exactly soluble diffeomorphism-invariant theories'', 
  \emph{Commun. Math. Phys.} \textbf{125} (1989), 417--437.
\end{enumerate}
\noindent
This theory is a kind of simplified version of 4d quantum gravity that
is a lot closer in \emph{character} to Chern--Simons theory. Like
Chern--Simons theory, there are no ``local degrees of freedom'' --- every
solution looks pretty much like every other one as long as we don't take
a big tour of space and notice that funny things happen when we go
around a noncontractible loop, which is the sort of thing that can only
exist if space has a nontrivial topology. 4d quantum gravity, on the
other hand, should have loads of local degrees of freedom --- the local
curving of spacetime!

What Crane and Yetter were dreaming of doing was constructing 4d quantum
gravity as a TQFT using triangulations of spacetime. What they really
did, it turns out, was to construct \(B\wedge F\) theory as a TQFT using
triangulations. (Broda constructed it another way.) On the one hand, the
simplicity of \(B\wedge F\) theory compared to honest-to-goodness 4d
quantum gravity makes it possible to understand it a lot better, and
calculate it out explicitly. On the other hand, \(B\wedge F\) theory is
so simple that it doesn't tell us much new about topology, at least not
the topology of \(4\)-dimensional manifolds per se. Via Donaldson theory
and the work of Kronheimer and Mrowka it's probably telling us a lot
about the topology of \(2\)-dimensional surfaces embedded in
\(4\)-dimensional manifolds --- but alas, I don't understand this stuff
very well yet!

Getting our hands on 4d quantum gravity as a TQFT along these lines is
still, therefore, an unfinished business. But we are, at last, able to
study some examples of 4d TQFTs and ponder more deeply what it means to
do quantum field theory without any background metric. The real thing
missing is local degrees of freedom. Without them, any model is really
just a ``toy model'' not much like physics as we know it. The loop
representation of quantum gravity has these local degrees of freedom (to
the extent that we understand the loop representation!), and so the
challenge (well, one challenge!) is to better relate it to what we know
about TQFTs.



\hypertarget{week20}{%
\section{October 2, 1993}\label{week20}}

I think I'll depart from my usual concerns this week and talk about a
book I'd been meaning to get my hands on for ages:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John H. Conway and Neil J. A. Sloane, \emph{Sphere Packings, Lattices
  and Groups}, second edition, Grundlehren der mathematischen
  Wissenschaften \textbf{290}, Springer, Berlin, 1993.
\end{enumerate}

This is a mind-boggling book. I have always regarded research in
combinatorics as a pleasure I must deny myself, for the study of the
\emph{discrete} presents endless beautiful tapestries in which one could
easily lose oneself for life, and I regard this as a kind of
self-indulgence when there is, after all, the physical universe out
there waiting to be understood. Of course, it's good that \emph{someone}
does combinatorics, since even the most obscure corners have a strong
tendency to become useful eventually --- and if they write books about
it, I can have my cake and eat it too, by \emph{reading} about it.
Conway and Sloane are two masters of combinatorics, and this book is
like a dessert tray piled so high with delicacies that it's hard to know
where to begin. Rather than attempt to describe it, let me simply show
you a few things I found in it. The book is 679 pages long, so what I'll
say is only the most minute sample!

Let's begin with sphere packings. Say one is stacking cannonballs on
one's lawn, which is a quaint custom now that cannons have been replaced
by far more horrible weapons. A nice way to do it is to lay out a
triangle of cannonballs thus:
\[\includegraphics[max width=0.65\linewidth]{../images/wk20_fig1.pdf}\]
and then set down another triangle of cannonballs on top of the first
layer, one in every other hole, thus:
\[\includegraphics[max width=0.65\linewidth]{../images/wk20_fig2.pdf}\]
and another:
\[\includegraphics[max width=0.65\linewidth]{../images/wk20_fig3.pdf}\]
and finally one on top --- which I won't attempt to draw.  
(Actually all the figures here were made by Simon Burton.)  Very nice
stack! There are many mathematical reflections it could lead one to, one
of which is: is this the \emph{densest} possible way one can pack
spheres of equal radius? The density is \(\pi/\sqrt{18} = .7405\ldots\);
can one do better? Apparently it was Kepler who first conjectured that
the answer is ``no.'' This is a famous hard problem. In 1991 W.-Y.
Hsiang announced that he had a proof, but I am not sure how many experts
have read it and been convinced.

This packing is a very regular sort of packing, what people call a
lattice packing. A lattice is a discrete subset of \(n\)-dimensional
Euclidean space closed under addition, and the packing above corresponds
to a lattice called the ``face-centered cubic'' or fcc lattice, which is
the set of all points \((x,y,z)\) where \(x\), \(y\), and \(z\) are
integers adding up to an \emph{even} number. (One might have a bit of
fun drawing some of those points and seeing why they do the job.)
Naturally, because of their regularity lattice packings are easier to
study than non-lattice ones. In fact, Gauss showed in 1831 that the fcc
lattice is the densest of all \emph{lattice} packings of spheres in 3
dimensions. This justifies the practice of stacking grapefruit this way
in the supermarket.

Let's take a bit closer look at what's going on here. Imagine an fcc
lattice going off infinitely in all directions\ldots{} each sphere is
touching 12 others: 6 in its own layer, as it were, 3 in the layer above
and 3 in the layer below. If we only pay attention to a given sphere and
those touching it we see something like:
\[\includegraphics[max width=0.65\linewidth]{../images/wk20_fig4.pdf}\]
If we remove the central sphere to clean up the picture a bit, the
centers of the remaining are the vertices of a shape called the
cuboctahedron:
\[\includegraphics[max width=0.65\linewidth]{../images/wk20_fig5.pdf}\]
It has 12 vertices, 8 triangular faces, and 6 square faces. One can get
it either by cutting off the corners of a cube just right, or by cutting
off the corners of an octahedron!

Let's return to thinking about the 12 spheres touching the central one.
This raises another question: is 12 the largest number of equal-radius
spheres able to touch a given one? This is the ``kissing spheres''
problem --- not quite the same as the packing problem! In 1694, Newton
conjectured that 12 was the largest number one could achieve. His
correspondent, David Gregory, thought 13 might be possible. It turns out
that Newton was right (some proofs appeared in the late 1800's), but it
is important to realize that Gregory's guess was not as dumb as it might
sound!

Why? Well, there's another way to get 12 spheres to touch a central one.
Namely, locate them at the vertices of a (regular) icosahedron. If one
wants to get to know the icosahedron a bit better one might read my
article \href{http://math.ucr.edu/home/baez/six.html}{Some Thoughts on
the Number Six}. But I hope you have an icosahedron available, or at
least a good mental image of one. It's easy to describe the vertices of
the icosahedron mathematically in terms of the golden ratio,
\[\frac{\sqrt{5} + 1}{2} = 1.61803398874989484820458683437\ldots\] This
usually goes by the name of ``\(\Phi\)'', or sometimes ``\(\tau\)''. The magic properties
of \(\Phi\) are too numerous to list here, but what counts is that one gets
the 12 vertices of a (regular) icosahedron by taking the points \[
  \begin{gathered}
    (\pm \Phi, \pm1, 0),
  \\(\pm1, 0, \pm \Phi),
  \\(0, \pm \Phi, \pm1).
  \end{gathered}
\] This is easy to check.

Now the \emph{interesting} thing is that when one gets 12 spheres to
touch a central one using the icosahedron, the 12 sphere don't touch
each other! There's room to move 'em around a bit, and perhaps (thought
Gregory) even enough room to stick in another one! Well, Gregory was
wrong, but one can do something pretty cool with this wiggle room.
First, though, let's check that there really \emph{is} a little space
between those outer spheres. First, compute the distance between
neighboring vertices of the icosahedron by taking two and working it
out: 
\[\|(\Phi,1,0) -(\Phi,-1,0)\| = 2\] 
Then, compute the distance from any
of the vertices to the origin, which is the center of the central
sphere: 
\[\|(\Phi,1,0)\| = \sqrt{\Phi^2 + 1}\] 
Using the charming fact that
\(\Phi^2 = \Phi + 1\) this simplifies to \(\sqrt{\Phi + 2}\), but then I guess we
just need to grind it out: 
\[\sqrt{\Phi + 2} =  1.902\ldots\] 
The point is
that this is less than 2, so two neighboring spheres surrounding the
central one are farther from each other than from the central one, i.e.,
they don't touch.

Now here's an interesting question: say we labelled the 12 spheres
touching the central one with numbers 1-12. Is there enough room to roll
these spheres around, always touching the central one, and permute the
spheres 1-12 in an interesting way? Notice that it's trivially easy to
roll them around in a way that amounts to rotating the icosahedron, but
are there more interesting permutations one can get?

Recall that the group of permutations of 12 things is called \(S_{12}\),
and it has \[12! = 479001600\] elements. The rotational symmetry group
of the icosahedron is much smaller. One can count its elements as
follows: pick a vertex and say which new vertex it gets rotated to ---
there are 12 possibilities --- and then note that there are 5 ways that
could have happened, for a total of 60. In fact (as I show in the
article \href{http://math.ucr.edu/home/baez/six.html}{``Six''}) the
rotational symmetry group of the icosahedron is \(A_5\), the group of
\emph{even} permutations of 5 things. So we have a nice embedding of the
group \(A_5\) into \(S_{12}\), but we are hoping that by some clever
wiggling we can get a bigger subgroup of \(S_{12}\) as the group of
permutations we can achieve by rolling spheres around.

In fact, one can achieve all EVEN permutations of the 12 spheres this
way! In other words, we get the group \(A_{12}\), with
\[\frac{12!}{2} = 239500800\] elements. How? Well, I wish I could draw
an icosahedron for you, but I can't really do so well on this medium.
The best way is to draw a top view:
\[\includegraphics[max width=0.65\linewidth]{../images/wk20_fig6.pdf}\]
and a bottom view:
\[\includegraphics[max width=0.65\linewidth]{../images/wk20_fig7.pdf}\]
Now, if we take the top 6 spheres and bunch them up so they are all
touching, and the bottom 6 spheres and bunch them up so \emph{they} all
touch, we can, in fact, twist the top 6 counterclockwise around \(1/5\)
of a turn. That is, we can map
\[\includegraphics[max width=0.65\linewidth]{../images/wk20_fig8.pdf}\]
to
\[\includegraphics[max width=0.65\linewidth]{../images/wk20_fig9.pdf}\]
I haven't actually \emph{done} this, or even proved I can, but Conway
and Sloane say so. And then the point is that all of \(A_{12}\) is
generated by ``twists'' of this form. Conway and Sloane give a
sophisticated and quick proof of this fact, which I can't resist
mentioning. Readers who don't know much group theory can skip the next
paragraph!

First, let \(t(i)\) be the element of \(S_{12}\) corresponding to the
clockwise twist about the \(i\)th vertex of the icosahedron (so that
what's drawn above is \(t(1)\)). This is a 5-cycle, and we need to show
these 12 5-cycles generate \(A_{12}\). Consider the subgroup generated
by elements of the form \(t(i)t(j)^{-1}\) --- a clockwise twist followed
by a counterclockwise twist. This is the Mathieu group \(M_{12}\), a
most remarkable group! In particular, its action on the vertices of the
icosahedron is able to map any 5 vertices to any 5 others (we say it's
quintuply transitive), so by conjugating \(t(i)\) with elements of the
Mathieu group we can get \emph{any} 5-cycle in \(S_{12}\). Then we use
the fact that \(A_{12}\) is generated by the 5-cycles.

Anyway, what this indicates is that there is an interesting relation
between the icosahedron and a certain finite group, the Mathieu group
\(M_{12}\). This group has \[12!/7! = 95040\] elements and it is a
``simple'' group, in the technical sense. The simple groups are to
finite groups roughly as the prime numbers are to the counting numbers;
that is, they are the elementary building blocks from which other finite
groups are made (although one has to specify \emph{how} one gloms them
together to get other groups). One of the remarkable achievements of
this century is the classification of these simple groups. In addition
to various infinite families of simple groups, like the alternating
groups \(\mathrm{A}_n\) (consisting of even permutations) there are a
finite number of ``sporadic'' simple groups such as the Mathieu groups,
the Fischer groups, the Suzuki groups, and, biggest of all, the Monster
group, which has
\[\begin{gathered}246\cdot320\cdot59\cdot76\cdot112\cdot133\cdot17\cdot19\cdot23\cdot29\cdot31\cdot41\cdot47\cdot59\cdot71 \\= 808017424794512875886459904961710757005754368000000000\end{gathered}\]
elements!

Here's a fun story about this number.

In the 1970s, the mathematicians Fricke, Ogg and Thompson were studying
the quotient of the hyperbolic plane by various subgroups of
\(\mathrm{SL}(2,\mathbb{R})\) --- the group of \(2\times2\) real
matrices with determinant one --- which acts as isometries of the
hyperbolic plane. Sitting inside \(\mathrm{SL}(2,\mathbb{R})\) is the
group of \(2\times2\) integer matrices with determinant one, called
\(\mathrm{SL}(2,\mathbb{Z})\). Sitting inside that is the group
\(\Gamma_0(p)\) consisting of matrices whose lower left corner is
congruent to zero \(\mod p\) for the prime \(p\). But Fricke, Ogg and
Thompson were actually considering a somewhat larger group
\(\Gamma_0(p)+\), which is the normalizer of \(\Gamma_0(p)\) inside
\(\mathrm{SL}(2,\mathbb{R})\).

If you don't know what this stuff means, don't worry! The point is that
they asked this question: if we take the quotient of the hyperbolic
plane by this group \(\Gamma_0(p)\)+, when does the resulting Riemann
surface have genus zero? And the \emph{real} point is that they found
the answer was: precisely when \(p\) is 2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 41, 47, 59 or 71.

Later, Ogg went to a talk on the Monster and noticed that these primes
were precisely the prime factors of the size of the Monster! He wrote a
paper offering a bottle of Jack Daniels whiskey to anyone who could
explain this fact. This was the beginning of a subject which Conway
dubbed ``Monstrous Moonshine'': the mysterious relation between the
Monster group, the group \(\mathrm{SL}(2,\mathbb{R})\), and Riemann
surfaces.

It turns out that lying behind Monstrous Moonshine is a certain string
theory having the Monster as symmetries, and this was the key to
understanding many strange ``coincidences''.

So, the sporadic groups are telling us something very deep and
mysterious about the universe, since they are very complicated and yet
somehow a basic, intrinsic part of the weave of mathematics. Conway and
Sloane have a lot to say about them and their relations to lattices and
error-correcting codes. For more about Monstrous Moonshine and string
theory, the reader should try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Igor Frenkel, James Lepowsky, and Arne Meurman, \emph{Vertex Operator
  Algebras and the Monster}, Academic Press, New York, 1988.
\end{enumerate}

Rather than attempt to describe this work, which I am not really
qualified to do (not that that usually stops me!), I think I will finish
up by describing a charming connection between the beloved icosahedron
and a lattice in 8 dimensions that goes by the name of \(\mathrm{E}_8\).
I'll be a bit more technical here.

The group of rotational symmetries of the icosahedron is, as we have
said, \(A_5\). This is a subgroup of the 3d rotation group
\(\mathrm{SO}(3)\). As all physicists know, whether they know it or not,
the group \(\mathrm{SO}(3)\) has the group \(\mathrm{SU}(2)\) of
\(2\times2\) unitary matrices with determinant \(1\) as its double
cover. So we can find a corresponding double cover of \(A_5\) as a
subgroup of \(\mathrm{SU}(2)\); this has twice as many elements as
\(A_5\), for a total of 120.

Now the group \(\mathrm{SU}(2)\) has a nice description as the group of
\emph{unit quaternions}, that is, things of the form
\[a + bI + cJ + dK\] where \(a,b,c,d\) are real numbers with
\(a^2 + b^2 + c^2 + d^2 = 1\), and \(I\),\(J\), and \(K\) satisfy
\[IJ = -JI = K, \quad JK = -KJ = I, \quad KI = -IK = J, \quad I^2 = J^2 = K^2 = -1\]
(Physicists in the 20th century usually use the Pauli matrices instead,
which are basically the same thing; for the relationship, read
\protect\hyperlink{week5}{``Week 5''}.)

It's natural to ask what the double cover of \(A_5\) looks like
explicitly in terms of the unit quaternions. Conway and Sloane give a
nice description. Let's write \((a,b,c,d)\) for \(a + bI + cJ + dK\),
write \(\Phi\) for the golden ratio as before, and \(\phi\) for the inverse of
the golden ratio:
\[\phi = \Phi^{-1} = \Phi -1 = 0.61803398874989484820458683437\ldots\] Then the
elements of the double cover of \(A_5\) are of the form \[
  \begin{gathered}
    (\pm 1, 0, 0, 0),
  \\(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}),
  \\(0, \pm\frac{1}{2}, \pm \phi/2, \pm \Phi/2).
  \end{gathered}
\] and everything else that can be gotten by \emph{even} permutations of
the coordinates. (Check that there are 120 and that they are closed
under multiplication!)

Charming, but what does it have to do with \(\mathrm{E}_8\)? Well, note
that if we take all finite sums of elements of the double cover of
\(A_5\) we get a subring of the quaternions that Conway and Sloane calls
the ``icosians.'' Any icosian is of the form \[a + bI + cJ + dK\] where
\(a\),\(b\),\(c\), and \(d\) live in the ``golden field''
\(\mathbb{Q}(\Phi)\) --- this is the field of numbers of the form
\[x + \sqrt{5} y\] where \(x\) and \(y\) are rational. Thus we can think
of an icosian as an 8-tuple of rational numbers. We don't get all
8-tuples, however, but only those lying in a given lattice.

In fact, we can put a norm on the icosians as follows. First of all,
there is usual quaternionic norm
\[\|a + bI + cJ + dK\|^2 = a^2 + b^2 + c^2 + d^2\] But for an icosian
this is always of the form \(x + \sqrt{5} y\) for some rational \(x\)
and \(y\). It turns out we can define a new norm on the icosians by
setting 
\[|a + bI + cJ + dK|^2 = x + y.\] 
With respect to this norm, the
icosians form a lattice that fits isometrically in \(8\)-dimensional
Euclidean space and is the famous one called \(\mathrm{E}_8\)!
\(\mathrm{E}_8\) is known to yield the densest lattice packing of
spheres in 8 dimensions, a fact that is not only useful for
8-dimensional greengrocers, but also is apparently used in
error-correcting codes in a number of commercially available modems! (If
anyone knows \emph{which} modems use \(\mathrm{E}_8\), let me know --- I
might just buy one!) The density with which one can pack spheres in 8
dimensions using \(\mathrm{E}_8\), by the way, is \(\pi^4/384\), or
about \(.2537\).

Group theorists and some physicists, of course, will know that
\(\mathrm{E}_8\) is also the root lattice of the largest exceptional Lie
group, also known as \(\mathrm{E}_8\). This appears as the gauge group
in some string theories. While I find those string theories a bit
baroque for my taste, there is clearly a lot of marvelous mathematics
floating around here, and anyone who wants more might start with Conway
and Sloane.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} I had written:

\begin{quote}
Now here's an interesting question: say we labelled the 12 spheres
touching the central one with numbers 1-12. Is there enough room to roll
these spheres around, always touching the central one, and permute the
spheres 1-12 in an interesting way? Notice that it's trivially easy to
roll them around in a way that amounts to rotating the icosahedron, but
are there more interesting permutations one can get?

In fact, one can achieve all EVEN permutations of the 12 spheres this
way!
\end{quote}

I got some email from Conway saying that in fact one get ALL
permutations of the 12 spheres. The point is this. One can start with
the 12 spheres touching the central one arranged so their centers are at
the vertics of an icosahedron. Then one can roll them around so their
centers lie at the vertices of a cuboctahedron:
\[\includegraphics[max width=0.65\linewidth]{../images/wk20_fig5.pdf}\quad\includegraphics[max width=0.65\linewidth]{../images/wk20_fig10.pdf}\]
At this point they touch each other, but one can indeed get to this
position. There is a nice picture of \emph{how} to do this in Conway and
Sloane's book, but you might enjoy figuring it out.

Now if we rotate the cuboctahedron around the axis pointing towards the
reader, we get an odd permutation of the 12 spheres, with cycle
structure \((1 2 3)(4 5 6)(7 8 9 10 11 12)\). So one can in fact get all
of \(S_{12}\) if one lets the 12 spheres ``just touch.'' If one thinks
about it a bit, the method described in the previous post gets all of
\(A_{12}\) without the 12 spheres touching at all. Conway says he
doesn't know if one can get all of \(S_{12}\) without the 12 spheres
touching each other at all. So this might be a fun problem to work on. I
bet the answer is ``no''.

Conway says the permutation problem came up before a lecture he gave at
U. of Penn. a while ago, that he solved it during the lecture, and told
Jim Propp about it afterwards.

Someone with much better intuition about these things than I have might
want to consider similar ``rolling spheres permutation problems'' in
higher dimensions. E.g., what permutations can one can achieve in 4
dimensions, where it is possible to get 24 spheres to touch a central
one? (In 4d it is not known whether one can get 25 to touch, but 25 is
an upper bound.) Greg Kuperberg informs me that the known method for
having 24 spheres touch the central sphere is rigid, so that only the
``obvious'' permutations are possible starting from this arrangement.

The only other cases where the rolling spheres permutation problem
appears to be solved is in dimensions 1 and 2 (boring), 8, and 24. I
described the \(\mathrm{E}_8\) lattice in 8 dimensions in ``This Week's
Finds.'' In the corresponding lattice packing, each sphere touches 240
others. This is, up to rotation, the \emph{only} way to get 240 spheres
to touch a central one in 8 dimensions. (Also, one cannot get
\emph{more} than 240 to touch the central one.) So the subgroup of
\(S_{240}\) that one can get by rolling 240 spheres around a central one
is precisely the ``obvious'' subgroup, that is, the subgroup of
\(\mathrm{SO}(8)\) that preserves the \(\mathrm{E}_8\) lattice. This
turns out to be just the Weyl group of \(\mathrm{E}_8\), which has
\[2^{14}\cdot 3^5\cdot 5^2\cdot 7 = 696729600\] elements.

Dimension 24 is probably the most interesting for lattice theory, and
here the densest lattice packing is the Leech lattice. I am somewhat
sorry not to have even mentioned the Leech lattice in my article, since
this is the real star of Conway and Sloan's book. The Leech lattice is
probably related to the appearance of \(26\)-dimensional spacetime in
string theory; to get it, start with the unique even unimodular lattice
in 26-dimensional Minkowski space, and then look at \(M\), the set of
vectors in the lattice perpendicular to the vector
\(w = (70,1,2,3,...,24)\). This is a null vector since
\[1^2 + 2^2 + ... + 24^2 = 70^2,\] i.e., it is perpendicular to itself.
Taking the quotient of \(M\) by \(w\) itself, we get the Leech lattice.
In this lattice each sphere touches 196560 others, which is the most one
can attain, and again this is the \emph{only} way to get 196560 spheres
to touch a central one in 24 dimensions. This should be obvious by
visualizing it. :-) So again the answer to the rolling spheres
permutation problem is the subgroup of \(\mathrm{SO}(24)\) that
preserves the Leech lattice. The isomorphism group of the Leech lattice
is an interesting group called \(Co_0\) or \(.0\) (pronounced
``dotto''). It has
\[2^{22}\cdot 3^9\cdot 5^4\cdot 7^2\cdot 11\cdot 13\cdot 23 = 8315553613086720000\]
elements. The Monster group can also be produced using the Leech
lattice.

Please don't be fooled into thinking I understand this stuff!

Jim Buddenhagen raised another interesting point:

\begin{quote}
Since 13 unit spheres can't quite all touch a unit sphere, one may ask
how much bigger the central sphere must be to allow all 13 to touch.

In 1951 K.\ Schutte and B.\ L.\ van der Waerden found an arrangement of the
13 unit spheres that allows all of them to touch a central sphere of
radius \(r=1.04557\ldots\) This is thought to be optimal but has not
been proved optimal.

This \(r\) is an algebraic number and is a root of the polynomial
\[4096 x^{16} -18432 x^{12} +24576 x^{10} -13952 x^8 +4096 x^6 -608x^4 +32 x^2 +1\]
They computed \(r\) but did not publish the polynomial.
\end{quote}


\hypertarget{week21}{%
\section{October 10, 1993}\label{week21}}

Louis Kauffman is editing a series of volumes called ``Series on Knots
and Everything,'' published by World Scientific. The first volume was
his own book, \emph{Knots and Physics}.  Right now I'd like to talk about
the second volume, by Carter. I got to know Carter and Saito when it
started seeming that a deeper understanding of string theory and the
loop representation of quantum gravity might require understanding how
2-dimensional surfaces can be embedded in \(4\)-dimensional spacetime.
The study of this subject quickly leads into some very fascinating
algebra, such as the ``Zamolodchikov tetrahedron equations'' (which
first appeared in string theory). A nice review of this subject and
their work on it will appear in a while:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
 J.\ Scott Carter and Masahico Saito,  ``Knotted surfaces, braid movies, and beyond'', in \emph{Knots and Quantum Gravity}, ed.~John
  Baez, Oxford U.\ Press, Oxford, 1994.
\end{enumerate}
\noindent
but for the non-expert, a great way to get started is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  J.\ Scott Carter, \emph{How Surfaces Intersect in Space: An Introduction to Topology},
   World Scientific Press, Singapore, 1993.
\end{enumerate}

You can tell this isn't a run-of-the-mill introductory topology book as
soon as you read the little blurb about the author on the back
dustjacket. Occaisionally there will be tantalizing personal details in
these blurbs that indicate that the author is not just a mathematical
automaton; for example, on the back of Hartshorne's famous text on
algebraic topology it says ``He has travelled widely, speakes several
foreign languages, and is an experienced mountain climber. He is also an
accomplished amateur musician; has played the flute for many years, and
during his last visit to Kyoto, he began studying the shakuhachi.'' This
somehow fits with the austere and slightly intimidating quality of the
text itself. The tone of the blurb on the back of Scott Carter's book
could not be more different: ``When he is not drawing pictures, cooking,
or playing with Legos, he is writing songs and playing guitar for his
band The Anteaters who have recorded an eight-song cassette published by
Lobe Current Music.'' This is a book that invites the reader into
topology without taking itself too seriously.

I remember first reading about topology as the study of doughnuts,
M\"obius strips and the like, and then being in a way disappointed as an
undergrad -- although in another way quite excited -- when it seemed
that what topologists \emph{really} did was a lot of
``diagram-chasing,'' the algebraic technique widely used in homology and
homotopy theory. Once, however, as a grad student, I took a course in
``geometric topology'' by Tim Cochran, and was immensely pleased to find
that \emph{some} topologists really did draw wild pictures of
many-handled doughnuts and the like in 4 dimensions, and prove things by
sliding handles around. The nice thing about this book is that it is
readable by any undergraduate --- it doesn't assume or even mention the
definition of a topological space! --- but covers some very nontrivial
geometric topology. It is not a substitute for the usual introductory
course; instead, it concentrates on the study of surfaces embedded or
immersed in 3 and 4 dimensional space, and shows how much there is to
ponder about them. It is \emph{packed} with pictures and is lots of fun
to read.

The intrinsic topology of surfaces is very simple. The simplest one is
the sphere (by which, of course, mathematicians mean the \emph{surface}
of a ball, not the ball itself). The next is the torus, that is, the
surface of the doughnut. One can also think of the torus as what you get
by taking a square and gluing together the edges as below: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to node{$\blacktriangleright\blacktriangleright$} (2,0);
    \draw[thick] (0,-2) to node{$\blacktriangleright\blacktriangleright$} (2,-2);
    \draw[thick] (0,0) to node{$\blacktriangledown$} (0,-2);
    \draw[thick] (2,0) to node{$\blacktriangledown$} (2,-2);
  \end{tikzpicture}
\] gluing the two horizontal edges together so the double arrows match
up, and gluing the two vertical edges together so the single arrows
match up. There is also a two-handled torus, and so on. The number of
handles is called the ``genus.'' All these surfaces are orientable, that
is, one can define a consistent notion of ``right'' and ``left'' on
them, so that if one writes a little word on them and slides the word
around it'll never come back mirror-imaged. And in fact, all orientable
surfaces are just \(n\)-handled tori, so they are classified by their
genus.

A nice example of a nonorientable surface is the projective plane. One
way to visualize this is to take the surface of the sphere and
``identify'' opposite points, that is, decree them ``the same'' by fiat.
Imagine, for example, a globe in which antipodal points have been
identified. If one writes a word on the north pole and then slides it
down through the Americas to Ecuador, since the southern hemisphere has
been identified with the northern one, we can think of it popping out
over around India somewhere (sorry, my geography is a little rusty when
it comes to antipodes!), but we will see when we slide it back to the
north pole that it has been reversed, and is now written backwards! We
see from this not only that the projective plane is nonorientable, but
that it has another description: simply take a disc and identify
opposite points along the boundary. Since we're doing topology, a square
is just as good as a disc, so we can think of the projective plane as
the result of identifying the points on the boundary of a square as
follows: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to node{$\blacktriangleleft\blacktriangleleft$} (2,0);
    \draw[thick] (0,-2) to node{$\blacktriangleright\blacktriangleright$} (2,-2);
    \draw[thick] (0,0) to node{$\blacktriangledown$} (0,-2);
    \draw[thick] (2,0) to node{$\blacktriangle$} (2,-2);
  \end{tikzpicture}
\]

Another famous example of a nonorientable surface is the Klein bottle,
which is given by \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to node{$\blacktriangleleft\blacktriangleleft$} (2,0);
    \draw[thick] (0,-2) to node{$\blacktriangleright\blacktriangleright$} (2,-2);
    \draw[thick] (0,0) to node{$\blacktriangledown$} (0,-2);
    \draw[thick] (2,0) to node{$\blacktriangledown$} (2,-2);
  \end{tikzpicture}
\]

We can take either the Klein bottle or the projective plane and get more
nonorientable surfaces by adding handles. Every nonorientable surface is
of one of these forms. I've included a few more basic facts about the
classification of surfaces as puzzles at the end of this article.

Now, the intrinsic topology of surfaces considers them as abstract
spaces in their own right, but the ``extrinsic topology'' of them
considers the ways they may be mapped into other spaces --- for example,
3- or \(4\)-dimensional Euclidean space. And here things get much more
interesting and subtle. For example, while one can embed any orientable
surface in 3d space, one cannot embed any of the nonorientable ones.
Here an embedding is a 1-1 continuous map. However, one can immerse the
non-orientable ones. An immersion is a map that is locally an embedding,
but not necessarily globally; e.g., a figure 8 is an immersion of the
circle in the plane. There's a standard way of immersing the Klein
bottle in 3d space with a circle of ``double points,'' that is, places
where the immersion is 2-1. One can easily turn this immersion into an
embedding of the Klein bottle 4d space by representing the 4th
coordinate by how \emph{red} the surface is and having the Klein bottle
blush as it passes through itself. In fact, one can embed any surface
into 4d space.

While one can't embed the nonorientable surfaces in 3d space, it is
interesting to see how close one can come. The simplest way an immersion
can fail to be an embedding is by having double points. Another simple
way is to have triple points. Carter discusses a charming immersion of
the projective plane in 3d space that only has curves of double points
and a single triple point. This is known as ``Boy's surface.'' A
somewhat sneakier way immersions fail to be embeddings is by having
``branch points.'' Think, for example, of the function \(\sqrt{z}\) on
the complex plane. This is a two-valued function, so its graph consists
of two ``sheets'' which glom together in a funny way at \(z = 0\), the
branch point. Carter also talks about another neat immersion of the
projective plane in \(\mathbb{R}^3\) that just has double points and a
branch point --- the ``cross cap.'' Another immersion, the ``Roman
surface,'' has both triple points and a branch point.

The general question, then, is what sort of embeddings and immersions
different surfaces admit in 3 and 4 dimensions, and how to classify
these. If we are studying embeddings into 4 dimensions, a nice technique
is that of movies. Calling the 4th coordinate ``time,'' we can draw
slices at different times and get frames of a movie. Most of the frames
of a movie of an embedded surface will show simply a bunch of knots. At
a few times, however, a ``catastrophe'' will occur, e.g.: \[
  \begin{array}{p{8em}p{8em}p{8em}}
    \begin{tikzpicture}
      \begin{knot}
        \strand[thick] (0,0)
          to (0,-2);
        \strand[thick] (1,0)
          to (1,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 1};
    \end{tikzpicture}
    &
    \begin{tikzpicture}
      \begin{knot}
        \strand[thick] (0,0)
          to[out=right,in=right,looseness=0.4] (0,-2);
        \strand[thick] (1,0)
          to[out=left,in=left,looseness=0.4] (1,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 2};
    \end{tikzpicture}
    &
    \begin{tikzpicture}
      \begin{knot}
        \strand[thick] (0,0)
          to[out=right,in=right,looseness=0.7] (0,-2);
        \strand[thick] (1,0)
          to[out=left,in=left,looseness=0.7] (1,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 3};
    \end{tikzpicture}
    \\[1em]
    \hspace*{-1.8em}
    \raisebox{-1.6em}{
    \begin{tikzpicture}
      \begin{knot}[clip width=0]
        \strand[thick] (0,0)
          to (1,-2);
        \strand[thick] (1,0)
          to (0,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 4};
      \node at (0.5,-3) {(catastrophe!)};
    \end{tikzpicture}
    }
    &
    \begin{tikzpicture}
      \begin{knot}
        \strand[thick] (0,0)
          to[out=down,in=down,looseness=3] (1,0);
        \strand[thick] (0,-2)
          to[out=up,in=up,looseness=3] (1,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 5};
    \end{tikzpicture}
    &
    \begin{tikzpicture}
      \begin{knot}
        \strand[thick] (0,0)
          to[out=down,in=down,looseness=1.5] (1,0);
        \strand[thick] (0,-2)
          to[out=up,in=up,looseness=1.5] (1,-2);
      \end{knot}
      \node at (0.5,-2.5) {Frame 6};
    \end{tikzpicture}
  \end{array}
\] However, there are always many different movies of essentially the
same embedding. We can, however, always relate these by a sequence of
transformations called ``movie moves.'' I wish I could draw these, but
it would take too long, so look at Carter's book!

And while you're at it, check out the index. You will enjoy finding the
excuses he has for such entries as ``hipster jive,'' ``math jail,''
``basket shaped thingy,'' and ``chocolate.'' Heck, I can't resist
one\ldots{} on page 81: ``Mathematicians use the term ``word" to mean any
finite sequence of letters or numbers. This practice can freak out
(disturb) people who are not hip to the lingo (aware of the
terminology)."

I should add that the following book also has a lot of interesting
pictures of surfaces in it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  George Francis, \emph{A Topological Picturebook}, Springer, Berlin,
  1987.
\end{enumerate}

\textbf{Problems:}

\vskip 1em
A. Take a projective plane and cut out a little disc. Show that what's
left is a M\"obius strip. 

B. Take two projective planes, cut out a little
disc from each one and attach them along the resulting circles. This is
called taking the ``connected sum'' of two projective planes. Show that
the result is a Klein bottle. In symbols, \(P + P = K\), or \(2P = K\).

C. Now take the connected sum of a projective plane and a Klein bottle.
Show that this is the same as a projective plane with a handle attached.
A projective plane with a handle attached is just the connected sum of a
projective plane and a torus, so we have: \(3P = P + K = P + T\). 

D. Show: \(4P = K + K = K + T\). 

E. Show: \((2n+1)P = P + nT\). 

F. Show: \((2n+2)P = K + nT\).
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Lately I've been having fun in this series discussing some things that I
don't really know much about, like lattice packings of spheres. Next
week I'll get back to subjects that I actually know something about, but
today I want to talk about the 4-color theorem, the golden mean, the
silver root, knots and quantum field theory. I know a bit about
\emph{some} of these subjects, but I've only become interested in the
4-color theorem recently, thanks to my friend Bruce Smith, who has a
hobby of trying to prove it, and Louis Kauffman's recent work connecting
it to knot theory. The sources for what follows are:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
Thomas L. Saaty
  and Paul C. Kainen, 
  \emph{The Four-Color Problem: Assault and Conquest}, McGraw-Hill, 1977.
\end{enumerate}

and

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
   Louis Kauffman, ``Map coloring and the vector cross product'',
  \emph{J.\ Comb.\ Theory} B \textbf{48} (1990), 45.

  Louis Kauffman, ``Map coloring, 1-deformed spin networks, and Turaev--Viro invariants
  for 3-manifolds'', \emph{Int.\ Jour.\ of Mod.\ Phys.}
  B, \textbf{6} (1992), 1765--1794.

  Louis Kauffman and H. Saleur,
  ``An algebraic approach to the planar colouring problem'', Yale University preprint \texttt{YCTP-P27-91},
  November 8, 1991.
\end{enumerate}
\noindent
(I discussed this work of Kauffman already in
\protect\hyperlink{week8}{``Week 8''}, where I described a way to
reformulate the 4-color theorem as a property of the vector cross
product.)

Where to start? Well, probably back in October, 1852. When Francis
Guthrie was coloring a map of England, he wondered whether it was always
possible to color maps with only 4 colors in such a way that no two
countries (or counties!) touching with a common stretch of boundary were
given the same color. Guthrie's brother passed the question on to De
Morgan, who passed it on to students and other mathematicians, and in
1878 Cayley publicized it in the \emph{Proceedings of the London Mathematical
Society}.

In just one year, Kempe was able to prove it. Whoops! In 1890 Heawood
found an error in Kempe's proof. And then the real fun starts\ldots.

But I don't want to tell the whole story leading up to how Appel and
Haken proved it in 1976 (with the help of a computer calculation
involving \(10^{10}\) operations and taking 1200 hours). I don't even
understand the structure of the Appel--Haken proof --- for that, one
should probably try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
 Kenneth Appel and Wolfgang
  Haken,  \emph{Every Planar Map is Four Colorable}, Contemporary Mathematics
  \textbf{98}, American Mathematical Society, Providence, Rhode Island, 1989.
\end{enumerate}
\noindent
Instead, I'd like to talk about some tantalizing hints of relationships
between the 4-color theorem and physics!

First, note that to prove the 4-color theorem, it suffices to consider
the case where only three countries meet at any ``corner,'' since if
more meet, say four: 
\[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (3,0);
    \draw[thick] (1.5,1.5) to (1.5,-1.5);
  \end{tikzpicture}
\] we can stick in a little country at each corner: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (1,0);
    \draw[thick] (2,0) to (3,0);
    \draw[thick] (1.5,1.5) to (1.5,0.5);
    \draw[thick] (1.5,-0.5) to (1.5,-1.5);
    \draw[thick] (1,0) to (1.5,0.5) to (2,0) to (1.5,-0.5) to cycle;
  \end{tikzpicture}
\] so that now only three meet at each corner. If we can color the
resulting map, it's easy to check that the same coloring with the little
countries deleted gives a coloring of the original map.

Let us talk in the language of graph theory, calling the map a
``graph,'' the countries ``faces,'' their borders ``edges,'' and the
corners ``vertices.'' What we've basically shown is it suffices to
consider trivalent planar graphs without loops --- that is, graphs on
the plane that have three edges meeting at any vertex, and never have
both ends of the same edge incident to the same vertex.

Now, it's easy to see that 4-coloring the faces of such a graph is
equivalent to 3-coloring the \emph{edges} in such a way that no two
edges incident to the same vertex have the same color. For suppose we
have a 4-coloring of faces with colors \(1\), \(i\), \(j\), and \(k\).
Wait --- you say --- those don't look like colors, they look like the
quaternions. True! Now color each edge either \(i\), \(j\), or \(k\)
according to product of the the colors of the two faces it is incident
to, where we define products by:
\[\begin{gathered}1i = i1 = i, \quad 1j = j1 = j, \quad 1k = k1 = k \\ ij = ji = k, \quad jk = kj = i, \quad ki = ik = j.\end{gathered}\]
These are \emph{almost} the rules for multiplying quaternions, but with
some minus signs missing. Since today (October 16th, 1993) is the 150th
birthday of the quaternions, I suppose I should remind the reader what
the right signs are:
\[ij = -ji = k, \quad jk = -kj = i, \quad  ki = -ik = j, \quad i^2 = j^2 = k^2 = -1.\]
Anyway, I leave it to the reader to check that this trick really gives
us a 3-coloring of the edges, and conversely that a 3-coloring of the
edges gives a 4-coloring of the faces.

So, we see that the edge-coloring formulation of the 4-color problem
points to some relation with the quaternions, or, pretty much the same
thing, the group \(\mathrm{SU}(2)\)! (For what \(\mathrm{SU}(2)\) has to
do with quaternions, see \protect\hyperlink{week5}{``Week 5''}.) Those
wrong signs look distressing, but in the following paper Penrose showed
they weren't really so bad:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
   Roger Penrose, ``Applications of negative dimensional tensors'', in
  \emph{Combinatorial Mathematics and its Applications}, ed.~D. J. A.
  Welsh, Academic Press, 1971.
\end{enumerate}

Namely, he showed one could count the number of ways to 3-color the
edges of a planar graph as follows. Consider all ways of labelling the
edges with the quaternions \(i\), \(j\), and \(k\). For each vertex,
take the product of the quaternions at the three incident edges in
counterclockwise order and then multiply by \(i\), getting either \(i\)
or \(-i\). Take the product of these plus-or-minus-i's over all vertices
of the graph. And THEN sum over all labellings!

This recipe may sound complicated, but only if you haven't ever studied
statistical mechanics of lattice systems. It's exactly the same as how
one computes the ``partition function'' of such a system --- the
partition function being the philosopher's stone of statistical
mechanics, since one can squeeze out so much information from it. (If we
could compute the partition function of water we could derive its
melting point.) To compute a partition one sums over states (labellings
of edges) the product of the exponentials of interaction energies
(corresponding to vertices). The statistical mechanics of
\(2\)-dimensional systems is closely connected to all sorts of nice
subjects like knot theory and quantum groups, so we should suspect
already that something interesting is going on here. It's especially
nice that Penrose's formula makes sense for arbitrary trivalent graphs
(although it does not count their 3-colorings unless they're planar),
and satisfies some juicy ``skein relations'' reminiscent of those
satisfied by the quantum group knot invariants. Namely, we can
recursively calculate Penrose's number for any trivalent graph using the
following three rules:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Wherever you see \[
    \begin{tikzpicture}
   \draw[thick] (0,0) to (1,-0.5) to (2,0);
   \draw[thick] (1,-0.5) to (1,-1.5);
   \draw[thick] (0,-2) to (1,-1.5) to (2,-2);
    \end{tikzpicture}
  \] you can replace it with \[
    \begin{tikzpicture}
   \draw[thick] (0,0) to (0,-2);
   \draw[thick] (1.5,0) to (1.5,-2);
    \end{tikzpicture}
    \raisebox{2.5em}{$\qquad-\qquad$}
    \begin{tikzpicture}
   \draw[thick] (1.5,0) to node[fill=white]{} (0,-2);
   \draw[thick] (0,0) to (1.5,-2);
    \end{tikzpicture}
  \] In other words, replace the problem of computing Penrose's number
  for the original graph by the problem computing the difference of the
  Penrose numbers for the two graphs with the above changes made. For
  knot theory fans I should emphasize that we are talking about abstract
  graphs here, not graphs in 3d space, so there's no real difference
  between an ``overcrossing'' and an ``undercrossing'' --- i.e., we
  could have said \[
    \begin{tikzpicture}
   \draw[thick] (0,0) to node[fill=white]{} (1.5,-2);
   \draw[thick] (1.5,0) to (0,-2);
    \end{tikzpicture}
  \] instead of \[
    \begin{tikzpicture}
   \draw[thick] (1.5,0) to node[fill=white]{} (0,-2);
   \draw[thick] (0,0) to (1.5,-2);
    \end{tikzpicture}
  \] above, and it wouldn't matter.
\item
  If you do this you will start getting weird loops that have NO
  vertices on them. You are allowed to dispose of such a loop if you
  correct for that by multiplying by 3. (This is not magic, this is just
  because there were 3 ways to color that loop!)
\item
  Finally, when you are down to the empty graph, use the rule that the
  empty graph equals 1.
\end{enumerate}

Greg Kuperberg pointed out to me that this is a case of the quantum
group knot invariant called the Yamada polynomal. This is associated to
the spin-\(1\) representation of the quantum group \(\mathrm{SU}(2)\),
and it is a polynomial in a variable \(q\) that represents \(e^\hbar\),
where \(\hbar\) is Planck's constant. But the ``Penrose number'' is just
the value at \(q = 1\) of the Yamada polynomial --- the ``classical
case'' when \(\hbar = 0\). This makes perfect sense if one knows about
quantum group knot invariants: the factor of 3 in rule B above comes
from the fact that the spin-\(1\) representation of \(\mathrm{SU}(2)\)
is \(3\)-dimensional; this representation is really just another way of
talking about the vector space spanned by the quaternions \(i\), \(j\),
and \(k\). Also, quantum group knot invariants fail to distinguish
between overcrossings and undercrossings when \(\hbar = 0\).

Now let me turn to a different but related issue. Consider the problem
of trying to color the \emph{vertices} of a graph with \(n\) colors in
such a way that no two vertices at opposite ends of any given edge have
the same color. Let \(P(n)\) denote the number of such \(n\)-colorings.
This turns out to be a polynomial in \(n\) --- it's not hard to see
using recursion relations similar to the skein relations above. It also
turns out that the 4-color theorem is equivalent to saying that the
vertices of any planar graph can be 4-colored. (To see this, just use
the idea of the ``dual graph'' of a graph --- the vertices of the one
being in 1-1 correspondence with the edges of the other.) So another way
to state the 4-color theorem is that for no planar graph does the
polynomial \(P(n)\) have a root at \(n = 4\).

\(P(n)\) is called the ``chromatic polynomial'' and has been intensively
investigated. One very curious thing is this. Remember the golden mean
\[\Phi = \frac{\sqrt{5} + 1}{2} = 1.61803398874989484820458683437\ldots?\]
Well, \(\Phi + 1\) is never a root of the chromatic polynomial of a graph!
(Unless the polynomial vanishes identically, which happens just when the
graph has loops.) The proof is not all that hard, and it's in Saaty and
Kainen's book. However --- and here's where things get \emph{really}
interesting --- in 1965, Hall, Siry and Vanderslice figured out the
chromatic polynomial of a truncated icosahedron. (This looks like a
soccer ball or buckyball.) They found that of the four real roots that
weren't integers, one agreed with \(\Phi + 1\) up to 8 decimal places! Of
course, here one might think the 5-fold symmetry of the situation was
secretly playing a role. But in 1966 Barri tabulated a bunch of
chromatic polynomials in her thesis, and in 1969 Berman and Tutte
noticed that most of them had a root that agreed with \(\Phi + 1\) up to at
least 5 decimal places.

This curious situation was at least partially explained by Tutte in
1970. He showed that for a triangular planar graph (that is, one all of
whose faces are triangles) with \(n\) vertices one has
\[|P(\Phi + 1)| \leqslant \Phi^{5-n}.\] This is apparently not a
\emph{complete} explanation, though, because the truncated icosahedron
is not triangular.

This is not an isolated freak curiosity, either! In 1974 Beraha
suggested checking out the behavior of chromatic polynomials at what are
now called the ``Beraha numbers'' \[B(n) = 4 \cos^2(\pi/n).\] These are
\[\begin{aligned}B(1) &= 4 \\ B(2) &= 0 \\ B(3) &= 1 \\ B(4) &= 2 \\ B(5) &= \Phi+1 \\ B(6) &= 3 \\ B(7) &= S \\ \end{aligned}\]
etc.. Note by the way that \(B(n)\) approaches 4 as \(n\) approaches
\(\infty\). (What's \(S\), you ask? Well, folks call \(B(7)\) the
``silver root,'' a term I find most poetic and eagerly want to spread!
\[S =  3.246979603717467061050009768008479621265\ldots\] If anyone knows
charming properties of the silver root, I'd be interested.) Anyway, it
turns out that the roots of chromatic polynomials seem to cluster near
Beraha numbers. For example, the four nonintegral real roots of the
chromatic polynomial of the truncated icosahedron are awfully close to
\(B(5)\), \(B(7)\), \(B(8)\) and \(B(9)\). Beraha made the following
conjecture: let \(P_i\) be a sequence of chromatic polynomials of graphs
such whose number of vertices approaches \(\infty\) as \(i\to\infty\).
Suppose \(r_i\) is a real root of \(P_i\) and suppose the \(r_i\)
approach some number \(x\). Then \(x\) is a Beraha number.

In work in the late 60's and early 70's, Tutte proved some results
showing that there really was a deep connection between chromatic
polynomials and the Beraha numbers.

Well, to make a long story short (I'm getting tired), the Beraha numbers
\emph{also} have a lot to do with the quantum group \(\mathrm{SU}(2)\).
This actually goes back to some important work of Jones right before he
discovered the first of the quantum group knot polynomials, the Jones
polynomial. He found that -- pardon the jargon burst -- the Markov trace
on the Temperley--Lieb algebra is only nonnegative when the Markov
parameter is the reciprocal of a Beraha number or less than \(1/4\).
When the relationship of all this stuff to quantum groups became clear,
people realized that this was due to the special natural of quantum
groups when \(q\) is an \(n\)th root of unity (this winds up
corresponding to the Beraha number \(B(n)\).)

This all leads up to a paper that, unfortunately, I have not yet read,
in part because our library doesn't get this journal!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  H.\ Saleur, ``Zeroes of chromatic polynomials: a new approach to the Beraha
  conjecture using quantum groups'', \emph{Commun.\ Math.\
  Phys.} \textbf{132} (1990) 657.
\end{enumerate}

This apparently gives a ``physicist's proof'' of the Beraha conjecture,
and makes use of conformal field theory, that is, quantum field theory
in 2 dimensions that is invariant under conformal transformations.

I should say more: about what quantum groups have to do with conformal
field theory and knot polynomials, about the Kauffman/Saleur translation
of the 4-color theorem into a statement about the Temperley--Lieb
algebra, etc.. But I won't! It's time for dinner. Next week, if all goes
according to plan, I'll move on to another puzzle in \(2\)-dimensional
topology --- the Andrews--Curtis conjecture --- and Frank Quinn's ideas on
tackling \emph{that} using quantum field theory.



\hypertarget{week23}{%
\section{October 24, 1993}\label{week23}}

I will soon revert to my older style, in which I list piles of new
papers as they accumulate on my desk. This time, though, I want to
describe Frank Quinn's work on the Andrews--Curtis conjecture using
topological quantum field theories (TQFTs), as promised. Then, if you'll
pardon me, I'll list the contents of a book I've just finished editing.
It is such a relief to be done that I cannot resist.

So ---

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item Frank Quinn,
  ``Topological quantum invariants and the Andrews--Curtis conjecture
  (Progress report)'', preprint, Sept.~1993.
\item
  Frank Quinn, ``Lectures on axiomatic topological quantum field theory'', to appear in the proceedings of the Park City Geometry
  Institute.
\item
  Wolfgang
  Metzler, ``On the Andrews--Curtis conjecture and related problems'', in \emph{Combinatorial Methods in Topology and Algebraic
  Geometry}, Contemporary Mathematics \textbf{44}, AMS, 1985.
\end{enumerate}

Last week I described --- in a pretty sketchy way --- how the 4-color
theorem and the Beraha conjecture are related to TQFTs. These can be
regarded as two very hard problems in \(2\)-dimensional topology --- one
solved by a mixture of cleverness and extreme brute force, the other
still open. There is another hard problem in \(2\)-dimensional topology
called the Andrews--Curtis conjecture, which Quinn is working on using
TQFT methods, which I'll talk about this time. I don't know too much
about this stuff, so I hope any experts out there will correct my
inevitable mistakes.

Actually, this conjecture is easiest to describe in a purely algebraic
way, so I'll start there. Hopefully most of you know the concept of a
``presentation'' of a group in terms of generators and relations. For
example, the group \(\mathbb{Z}_n\) (integers \(\mod n\)) has the
presentation \(\langle x \mid x^n\rangle\). This means, roughly, that we
form all products of the ``generator'' \(x\) and its inverse, and then
mod out by the ``relation'' \(x^n = 1\). A bit more interesting is the
dihedral group \(\mathrm{D}_n\) of symmetries of a regular \(n\)-gon,
counting rotations and reflections, with presentation
\(\langle x,y \mid x^n, y^2, (xy)^2 \rangle\). Here \(x\) corresponds to
a clockwise rotation by \((1/n)\)-th of a turn, and \(y\) corresponds to
a reflection.

A group always has lots of different presentations, so a natural problem
is to decide whether two different presentations give the same group
(or, strictly speaking, isomorphic groups). It'd be nice to have an
algorithm for deciding this question. But it's a famous result of
mathematical logic that there is no such algorithm!

If two presentations give the same group, one can get from one to the
other by a sequence of the following easy steps, called Tietze moves:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Throw in an extra new generator \(x\) together with the extra new
  relation \(xg^{-1}\) where \(g\) is a product of the previous
  generators and their inverses.
\item
  The inverse of 1) --- remove a generator \(x\) together with the
  relation \(xg^{-1}\), if possible (the relation \(xg^{-1}\) needs to
  be there!).
\item
  Throw in a new relation that's a consequence of existing relations.
\item
  The inverse of 2) --- remove a relation that's a consequence of other
  relations.
\end{enumerate}

So if one has two presentations and wants to see if they give same
group, you could always set up a program that blindly tries using these
Tietze moves in all possible ways to transform one presentation into the
other. If they are the same it'll eventually catch on! But if they're
not it'll chug on forever. There's no algorithmic way to tell
\emph{when} it should give up and admit the two presentations give
different groups! --- which is why we say there is no ``decision
procedure'' for this problem.

In one form, the Andrews--Curtis conjecture goes as follows. Remember
that the trivial group is the group with just the identity element; it
has a presentation \(\langle x \mid x \rangle\). Suppose we have some
other ``balanced'' presentation of the trivial group, that is a
presentation with just as many generators as relations:
\(\langle x_1,...,x_n \mid r_1,...,r_n \rangle\). Then the conjecture is
that it can be reduced to the presentation \(\langle x \mid x \rangle\)
by a sequence of the following moves that keep the presentation
balanced:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Throw in an extra new generator \(x\) together with the extra new
  relation x.
\item
  The inverse of 1).
\item
  Permute the relations
\item
  Change \(r_1\) to \(r_1^{-1}\)
\item
  Change \(r_1\) to \(r_1r_2\)
\item
  Change \(r_1\) to \(gr_1g^{-1}\) for any \(g\).
\end{enumerate}

The experts seem to think this conjecture is probably false --- but
nobody has disproved it. Metzler lists a few presentations of the
trivial group that might be counterexamples: nobody has ever found a way
to use moves 1)-6) to boil them down to the presentation
\(\langle x \mid x \rangle\). For example,
\[\langle a, b \mid b^5a^{-4}, aba(bab)^{-1}\rangle.\] Try it!

The Andrews--Curtis conjecture is interesting mainly for its implications
in topology. When they first stated their conjecture they noted a number
of topological consequences, and the referee of the paper noted one
more. For example, it would shed some light on the Poinar\'e conjecture
(although not settle it) as follows. Recall that the Poinar\'e conjecture
says every \(3\)-dimensional manifold homotopic to a 3-sphere is
homeomorphic to a 3-sphere. The Andrews--Curtis conjecture implies that
if the Poinar\'e conjecture is false, any counterexample can in fact be
embedded (topologically) in \(\mathbb{R}^4\)!

It was the referee (does anyone know who that was?) who noted that the
Andrews--Curtis conjecture can be formulated in terms of ``CW
complexes.'' This is how Quinn thinks about it, so I suppose I should
say what those are.

A 0-complex is simply a set of points given the discrete topology. We
call the points ``0-cells.'' To get a 1-complex, we take a set of
``1-cells,'' that is, closed unit intervals, and glue their ends on to
the 0-cells in any way we want. In other words, we get a graph, possibly
with some edges having both ends at the same vertex. To get a 2-complex,
we take a set of ``2-cells,'' that is, \(2\)-dimensional closed disks,
and glue their boundaries onto our 1-complex by any continuous map. And
so on, with the ``\(n\)-cells'' being just copies of the closed unit
ball in \(\mathbb{R}^n\).

CW complexes were invented by J. H. C. Whitehead in 1949 and are a key
tool in algebraic topology. (The word ``CW,'' by the way, seems to come
from ``closure-finite'' and ``weak'' -- as in ``weak topology.'') They
are a nice class of topological spaces since on the one hand, being
built up by gluing simple pieces together, one can really understand
them, and on the other hand, they are actually quite general. In fact,
if one is interested in the usual invariants studied in algebraic
topology (homology and cohomology groups, homotopy groups and the like),
CW complexes are pretty much good enough. More precisely, Whitehead
proved a ``CW approximation theorem'' saying that any halfway decent
topological space (i.e., any ``compactly generated'' space) is ``weakly
homotopy equivalent'' to a CW complex. I won't burden you with the
definitions here; I learned this stuff once upon a time from

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
   George W.\ Whitehead,  \emph{Elements of Homotopy Theory},
  Springer, Berlin, 1978. 
\end{enumerate}

Anyway, the Andrews--Curtis conjecture can be thought of as being about
2-complexes. In fact, a group presentation can be regarded as
instructions for building up a 2-complex --- start with a point, glue on
1-cells, one for each generator (obtaining a ``bouquet of circles'') and
then glue on 2-cells, one for each relation, attaching their boundaries
to the 1-cells in the manner presecribed by the relation. This 2-complex
will have fundamental group equal to the group given by the
presentation. The moves 1)-6) above can be thought of as operations on
these 2-complexes. So one can translate the Andrews--Curtis conjecture
into a statement about 2-complexes. And at this point I guess I'm going
to start getting more technical\ldots{}

One topological statement of the Andrews--Curtis conjecture is that ``if
two 2-complexes are simply equivalent then one can be 2-deformed to the
other.'' I don't understand this as well as I want, so I won't explain
it; instead, I'll briefly explain the (weaker?) version corresponding
more closely to the algebraic statement above, namely ``if \(X\) is a
contractible 2-complex, it can be 2-deformed to a point.'' Being
``contractible'' means that as far as homotopy theory goes \(X\) is just
like a point. (E.g., the unit disk is contractible, while the circle is
not.) And a ``2-deformation'' roughly means a sequence of moves
consisting of adding or deleting 1-cells or 2-cells in a way that
doesn't affect things as far as homotopy goes, or doing homotopies of
attaching maps of 2-cells. The interesting thing about these
formulations of the Andrews--Curtis conjecture is that their analogs for
\(n > 2\) are true and in fact were shown by J.\ H.\ C.\ Whitehead in 1939!

Quinn's goal is to cook up invariants of 2-complexes that might detect
counterexamples to the Andrews--Curtis conjecture, i.e., invariants under
2-deformation. He wants to do it using 1+1-dimensional TQFTs of a sort
that assign vector spaces to 1-complexes and linear maps to 2-complexes.
Traditionally, TQFTs assign vector spaces to \(n\)-manifolds and linear
maps to \((n+1)\)-manifolds. Quinn calls his TQFTs ``modular'' because
they have a lot of formal similarities to the kind of TQFTs that come up
in string theory (where the modular group reigns supreme). He gives a
thorough axiomatic description of modular TQFTs in his lecture notes,
and this is actually the most fascinating aspect for me, more so than
the Andrews--Curtis conjecture per se, since it bears on physics.

The problem with coming up with an TQFT invariant that can catch
counterexamples to the Andrews--Curtis conjecture is an interesting
``stabilization'' property that 2-complexes have. Namely, if two
2-complexes are simply equivalent, one can can wedge them both with some
large number \(k\) of 2-spheres and get complexes which are 2-deformable
to each other. It turns out that this means we want to find a TQFT such
that \(Z(S^2)^k = 0\). And so Quinn considers TQFTs based, not on the
complex numbers, but on integers \(\mod p\).

A TQFT of his sort amounts to finding a symmetric tensor category of
vector spaces and an object A in this category with some special
properties corresponding to the fact that it is the vector space
corresponding to the unit interval \([0,1]\), which is the basic
1-complex from which one can build up more fancy ones. The kind of
category he uses has been described by:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Sergei Gelfand and David Kazhdan, ``Examples of tensor categories'',
  \emph{Invent.\ Math.} \textbf{109} (1992), 595--617.
\end{enumerate}

It is formed by starting with the category of representations of an
algebraic group in characteristic \(p\), and then making a semisimple
category out of this in a manner strongly reminiscent of what they do in
the theory of quantum groups at roots of unity. (See
\protect\hyperlink{week5}{``Week 5''} for a bit more about this.) The
object \(A\) is taken to be the sum of one copy of each irreducible
representation. (Again, this is strikingly reminiscent, and no doubt
based on, what occurs in the physics of the Wess--Zumino--Witten model,
where quantum groups at roots of unity play the role a finite group is
playing here.)

So, to round off a long story, Quinn and Ivelini Bobtcheva are currently
engaged in some rather massive computer calculations in order to
actually explicitly obtain the data necessary to calculate in the TQFTs
of this form. They have been looking at the groups \(\mathrm{SL}(2)\),
\(\mathrm{SL}(3)\), \(\mathrm{Sp}(4)\) and \(\mathrm{G}_2\) over
\(\mathbb{Z}_p\), where \(p\) is small (up to 19 for the
\(\mathrm{SL}(2)\) case). They are finding some interesting stuff just
by calculating the TQFT invariants of the 2-complexes corresponding to
the presentations \(\langle x \mid x^n \rangle\). (Note that \(n = 0\)
gives a space that's a wedge of a circle and \(S^2\), while \(n = 1\)
gives a disk.) Namely, they are finding periodicity in \(n\).

But they haven't found any counterexamples to the Andrews--Curtis
conjecture yet!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  \emph{Knots and Quantum Gravity}, ed.~John Baez, Oxford University
  Press (to appear).
\end{enumerate}

This is the proceedings of a workshop held at U.C. Riverside; a large
percentage of the papers contain new results. Let me simply list them:

\begin{itemize}
\tightlist
\item
   Renate Loll, ``The loop formulation of gauge theory and gravity''.
\item
    Abhay Ashtekar and Jerzy Lewandowski, 
  ``Representation theory of Analytic Holonomy \(C^*\) Algebras''.

\item
  Rodolfo Gambini
  and Jorge Pullin , ``The Gauss linking number in quantum gravity'', 
  available as \href{https://www.arxiv.org/abs/gr-qc/9310025}{\texttt{gr-qc/9310025}}.
\item
  Louis Kauffman,``Vassiliev invariants and the loop states in quantum gravity'', 
  available as \href{https://arxiv.org/abs/gr-qc/9310035}{\texttt{gr-qc/9310035}}.
\item
  Steven Carlip, ``Geometric structures and loop variables in (2+1)-dimensional
  gravity'', available as \href{https://arxiv.org/abs/gr-qc/9309020}{\texttt{gr-qc/9309020}}. 
\item
  Dana S.\ Fine, ``From Chern--Simons to WZW via path integrals''.
\item
  Louis  Crane, ``Topological field theory as the key to quantum gravity'', 
  available as \href{https://arxiv.org/abs/hep-th/9308126}{\texttt{hep-th/9308126}}.
\item
  John Baez, ``Strings, loops, knots and gauge fields'', available as \href{https://arxiv.org/abs/hep-th/9309067}{\texttt{hep-th/9309067}}.
\item
  Paolo Cotta-Ramusino and Maurizio Martellini, ``BF theories and 2-knots''.
\item
   J. Scott Carter and
  Masahico Saito, ``Knotted surfaces, braid movies, and beyond''.
\end{itemize}



\hypertarget{week24}{%
\section{October 31, 1993}\label{week24}}

I will now revert to topics more directly connected to physics and start
catching up on the papers that have been accumulating. First, two very nice
review papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Chris Isham, ``Prima facie questions in quantum gravity'', lecture
  at Bad Honeff, September 1993, available as
  \href{https://arxiv.org/abs/gr-qc/9310031}{\texttt{gr-qc/9310031}}.
\end{enumerate}

If one wants to know why people make such a fuss about quantum gravity,
one could not do better than to start here. There are many approaches to
the project of reconciling quantum mechanics with gravity, all of them
rather technical, but here Isham focuses on the ``prima facie''
questions that present themselves no matter \emph{what} approach one
uses. He even explains why we should study quantum gravity --- a
nontrivial question, given how difficult it has been and how little
practical payoff there has been so far! Let me quote his answers and
urge you to read the rest of this paper:

\begin{quote}

\textbf{We must say something.} The value of the Planck length suggests
that quantum gravity should be quite irrelevant to, for example, atomic
physics. However, the non-renormalisability of the perturbative theory
means it is impossible to actually compute these corrections, even if
physical intuition suggests they will be minute. Furthermore, no
consistent theory is known in which the gravitational field is left
completely classical. Hence we are obliged to say \emph{something} about
quantum gravity, even if the final results will be negligible in all
normal physical domains.

\textbf{Gravitational singularities.} The classical theory of general
relativity is notorious for the existence of unavoidable spacetime
singularities. It has long been suggested that a quantum theory of
gravity might cure this disease by some sort of `quantum smearing'.

\textbf{Quantum cosmology.} A particularly interesting singularity is
that at the beginning of a cosmological model described by, say, a
Robertson--Walker metric. Classical physics breaks down here, but one of
the aims of quantum gravity has always been to describe the `origin' of
the universe as some type of quantum event.

\textbf{The end state of the Hawking radiation process.} One of the most
striking results involving general relativity and quantum theory is
undoubtedly Hawking's famous discovery of the quantum thermal radiation
produced by a black hole. Very little is known of the final fate of such
a system, and this is often taken to be another task for a quantum
theory of gravity.

\textbf{The unification of fundamental forces.} The weak and
electromagnetic forces are neatly unified in the Salam--Weinberg model,
and there has also been a partial unification with the strong force. It
is an attractive idea that a consistent quantum theory of gravity
\emph{must} include a unification of all the fundamental forces.

\textbf{The possibility of a radical change in basic physics.} The deep
incompatibilities between the basic structures of general relativity and
of quantum theory have lead many people to feel that the construction of
a consistent theory of quantum gravity requires a profound revision of
the most fundamental ideas of modern physics. The hope of securing such
a paradigm shift has always been a major reason for studying the
subject.

\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Matthias Blau and George Thompson, ``Lectures on 2d gauge theories: topological aspects and     
  path integral techniques'', available as
  \href{https://arxiv.org/abs/hep-th/9310144}{\texttt{hep-th/9310144}}.
\end{enumerate}

Most of the basic laws of physics appear to be gauge theories. Gauge
theories are tricky to deal with because they are inherently nonlinear.
(At least the ``nonabelian'' ones are --- the main example of an abelian
gauge theory is Maxwell's equations.) People have been working hard for
quite some time trying to develop tools to study gauge theories on their
own terms, and \emph{one} reason for the interest in gauge theories in
2-dimensional spacetime is that life is simple enough in this case to
exactly solve the theories and see precisely what's going on. Another
reason is that in string theory one becomes interested in gauge fields
living on the 2-dimesional ``string worldsheet.''

This paper is a thorough review of two kinds of gauge theories in 2
dimensions: topological Yang--Mills theory (also called \(BF\) theory)
and the \(G/G\) gauged Wess--Zumino--Witten model. Both of these are of
great mathematical interest in addition to their physical relevance.
Studying the \(BF\) theory gives a way to do integrals on the moduli
space of flat connections on a bundle over a Riemann surface, while
studying the \(G/G\) model amounts to a geometric construction of the
categories of representations of quantum groups at roots of unity. (Take
my word for it, mathematicians find these important!)

I have found this review a bit rough going so far because the authors
like to use supersymmetry to study these models. But I will continue
digging in, since the authors consider the following topics (and I
quote): solution of Yang--Mills theory on arbitrary surfaces; calculation
of intersection numbers of moduli spaces of flat connections; coupling
of Yang--Mills theory to coadjoint orbits and intersection numbers of
moduli spaces of parabolic bundles; derivation of the Verlinde formula
from the \(G/G\) model; derivation of the shift \(k\) to \(k+h\) in the
\(G/G\) model via the index of the twisted Dolbeault complex.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
 J.\ W.\ Barrett and T.\ J.\ Foxon, ``Semi-classical limits of simplicial quantum gravity'', 
  available as
  \href{https://arxiv.org/abs/gr-qc/9310016}{\texttt{gr-qc/9310016}}.
\end{enumerate}

This paper looks at quantum gravity in 3 spacetime dimesions formulated
along the lines of Ponzano and Regge, that is, with the spacetime
manifold replaced by a bunch of tetrahedra (a ``simplicial complex''). I
describe some work along these lines in
\protect\hyperlink{week16}{``Week 16''}. Here the Feynman path integral
is replaced by a discrete sum over states, in which the edges of the
tetrahedra are assigned integer or half-integer lengths, which really
correspond to ``spins,'' and the formula for the action is given in
terms of \(6j\)-symbols. The authors look for stationary points of this
action and find that some correspond to Riemannian metrics and some
correspond to Lorentzian metrics. This is strongly reminiscent of Hartle
and Hawking's work on quantum cosmology,

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
     J.\ B.\ Hartle and S.\ W.\ Hawking,
  ``Wave function of the universe'',
  \emph{Phys. Rev.} \textbf{D28} (1983), 2960.
\end{enumerate}

\noindent
in which there is both a Euclidean and a Lorentzian regime (providing a
most fascinating answer to the old question, ``what came before the Big
Bang?''). Here, however, the path integral is oscillatory in the Euclidean
regime and exponential in the Lorentzian one --- the opposite of what
Hartle and Hawking had. This puzzles me.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  John Baez, ``Generalized measures in gauge theory'', available as
  \href{https://arxiv.org/abs/hep-th/9310201}{\texttt{hep-th/9310201}}.
\end{enumerate}

Path integrals in gauge theory typically invoke the concept of Lebesgue
measure on the space of connections. This is roughly an
infinite-dimensional vector space, and there \emph{is} no ``Lebesgue
measure'' on an infinite-dimensional vector space. So what is going on?
Physicists are able to do calculations using this concept and get useful
answers --- mixed in with infinities that have to be carefully
``renormalized.'' Some of the infinities here are supposedly due to the
fact that one should really be working no on the space of connections,
but on a quotient space, the connections modulo gauge transformations.
But not all the infinities are removed this way, and mathematically the
whole situation is enormously mysterious.

Recently Ashtekar, Isham, Lewandowski and myself have been looking at a
way to generalize the concept of measure, suggested by earlier work on
the ``loop representation'' of gauge theories. Ashtekar and Lewandowski
managed to rigorously construct a kind of ``generalized measure'' on the
space of connections modulo gauge transformations that acts formally
quite a bit like what might hope for. In this paper I show how can
define generalized measures directly on the space of connections. All of
these project down to generalized measures on the space of connections
modulo gauge transformations, but even when one is interested in
gauge-invariant quantities, it is sometimes easier to work ``upstairs.''
In particular, when the gauge group is compact, there is a ``uniform''
generalized measure on the space of connections that projects down to
the measure constructed by Ashtekar and Lewandowski. This generalized
measure is in some respects a rigorous substitute for the ill-defined
``Lebesgue measure,'' but it is actually built using Haar measure on
\(G\). I also define generalized measures on the group of gauge
transformations (which is an infinite-dimensional group), and when \(G\)
is compact I construct a natural example that is a rigorous substitute
for Haar measure on the group of gauge transformations . As an
application of this ``generalized Haar measure'' I show that any
generalized measure on the space of connections can be averaged against
generalized Haar measure to give a gauge-invariant generalized measure
on the space of connections.

This doesn't, by the way, mean the problems I mentioned at the beginning
are solved!



\hypertarget{week25}{%
\section{November 14, 1993}\label{week25}}

Lately, many things give me the feeling that we're on the brink of some
deeper understanding of the relations between geometry, topology, and
category theory. It is very tantalizing to see the array of clues
pointing towards the fact that many seemingly disparate mathematical
phenomena are aspects of some underlying patterns that we don't really
understand yet. Louis Crane expressed it well when he said that it's as
if we are a bunch of archeologists digging away at different sites, and
are all starting to find different parts of the skeleton of some
gigantic prehistoric creature, the full extent of which is still
unclear.

I want to keep studying the following book until I understand it,
because I think it makes a lot of important connections\ldots{} pardon
the pun:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
   Jean-Luc Brylinski, \emph{Loop Spaces, Characteristic Classes and Geometric Quantization},
  Birkh\"auser, Basel, 1993.
\end{enumerate}
\noindent
The title of this book, while accurate, really does not convey the
\emph{novelty} of the ideas it contains. All three subjects listed have
been intensively studied by many people for at least several decades,
but Brylinski's book is not so much a summary of what is understood
about these subjects, as a plan to raise the subjects to a whole new
level.

I can't really describe the full contents of the book, since I haven't
had time to really absorb some of the most interesting parts, but let me
start by listing the contents, and then talk about it a bit.

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  Complexes of Sheaves and Their Hypercohomology
\item
  Line Bundles and Geometric Quantization
\item
  K\"ahler Geometry of the Space of Knots
\item
  Degree 3 Cohomology --- The Dixmier-Douady Theory
\item
  Degree 3 Cohomology --- Sheaves of Groupoids
\item
  Line Bundles over Loop Spaces
\item
  The Dirac Monopole
\end{enumerate}
\noindent
It should be clear that while this is a very mathematical book, it is
informed by ideas from physics. As usual, the physical universe is
serving to goad mathematics to new heights!

The first two chapters are largely, but not entirely, ``standard''
material. I put the word in quotes because while Brylinski's treatment
of it starts with the basics --- the definition of sheaves, sheaf
cohomology, \v Cech cohomology, de Rham theory and the like --- even these
``basics'' are rather demanding, and the slope of the ascent is rather
steep. Really, the reader should already be fairly familiar with these
ideas, since Brylinski is mainly introducing them in order to describe a
remarkable generalization of them in the next chapters.

Let me quickly give a thumbnail sketch of the essential ideas behind
this ``standard'' material. In classical mechanics the main stage is the
phase space of a physical system. Points in this space represent
physical states; smooth functions on it represent observables. Time
evolution acts on this space as a one-parameter group of
diffeomorphisms. The remarkable fact is that time evolution is
determined by an observable, the Hamiltonian, or energy function, by
means of a geometric structure on phase space called a symplectic
structure. This is a nondegenerate closed \(2\)-form. The idea is that
the differential of the Hamiltonian is a \(1\)-form; since the
symplectic structure is nondegenerate it sets up an isomorphism of the
tangent and cotangent bundles of phase space, allowing us to turn the
differential of the Hamiltonian into a vector field; this vector field
generates the 1-parameter group of diffeomorphisms representing time
evolution; and by the magic of symplectic geometry, these
diffeomorphisms automatically preserve the symplectic structure.

This is the starting-point of the beautiful approach to quantum theory
known as geometric quantization, founded by Kostant in the early 1970's.
His first paper is still a good place to start:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Bertram Kostant, ``Quantization and unitary representations'', in
  \emph{Lectures in Modern Analysis and Applications III},
  Springer Lecture Notes in Mathematics \textbf{170} (1970),
  87--208.
\end{enumerate}

Here the idea is to construct a Hilbert space of states of the
\emph{quantum} system corresponding to the classical system, and turn
time evolution into a one-parameter group of unitary operators on this
Hilbert space. Extremely roughly, the idea is to first look at the space
of all \(L^2\) complex functions on phase space, and then use a
``polarization'' to cut down this ``prequantum'' Hilbert space to ``half
the size,'' by which one means something vaguely like how
\(L^2(\mathbb{R}^n)\) is ``half the size'' of \(L^2(\mathbb{R}^{2n})\)
--- this being the classic example. But in fact, it turns out one
doesn't really want to use \emph{functions} on phase space, but instead
sections of a certain complex line bundle. The point is that the
classification of line bundles fits in beautifully with symplectic
geometry. We can equip any line bundle with a hermitian connection; the
curvature of this connection is a closed \(2\)-form; this determines an
element of the 2nd cohomology of phase space called the first Chern
class. An important theorem says this class is necessarily an
\emph{integral} class, that is, it comes from an element of the 2nd
cohomology with integer coefficients; moreover, isomorphism classes of
line bundles over a manifold are in one-to-one correspondence with
elements of its 2nd cohomology with integer coefficients. The trick,
then, is to try to cook up a line bundle over phase space with a
connection whose curvature is the symplectic structure! This will be
possible precisely when the symplectic structure defines an integral
cohomology class. In fact, this integrality condition is nothing but the
old Bohr-Sommerfeld quantization condition dressed up in spiffy new
clothes (and made far more precise).

So: the moral I want to convey here is just that if the symplectic
structure on phase space defines an integral class in the 2nd cohomology
group, then we get a line bundle over phase space which helps us get
going with quantization. It then turns out that the one-parameter group
of diffeomorphisms defined by any Hamiltonian on phase space lifts to a
one-parameter group of transformations of this line bundle, which allows
us to get a unitary operator on the space of \(L^2\) sections of the
line bundle. This is not the end of the quantization story; one still
needs to chop down this ``prequantum'' space to half the size, etc.; but
let me leave off here.

What Brylinski wants to do is to find analogs of all these phenomena
involving the \textbf{third} cohomology groups of manifolds.

At first glance, this might seem to be a very artificial desire. Note
that importance of the \textbf{second} cohomology group in the above
story is twofold: 1) symplectic structures give elements of the second
cohomology, 2) the curvature of a connection gives an element of the
second cohomology, and in fact 2') line bundles are classified by
elements of second cohomology. None of these beautiful things seem to
have analogs in third cohomology! Of course, one can use the curvature
of a connection to get, not just the first Chern class, but higher Chern
classes. But the \(n\)th Chern class is an element of the \(2n\)th
cohomology group, so the odd cohomology groups don't play a major role
here. Of course, experts will immediately reply that there are also
Chern--Simons ``secondary characteristic classes'' that live in odd
cohomology, at least when one has a flat bundle around. And the same
experts will immediately guess that, because Chern--Simons theory has
been near the epicenter of the explosion of new mathematics relating
quantum groups, topological quantum field theories, conformal field
theory and all that stuff, I must be leading up to something along these
lines\ldots. Well, there \emph{must be} a relationship here, but
actually it is not emphasized in Brylinski's book! He takes a different
tack, as follows.

The basic point is that given a manifold \(M\), the space of loops in
\(M\), say \(LM\), is a space of great interest in its own right. It is
infinite- dimensional, but that should not deter us. When \(G\) is a Lie
group, \(LG\) is also a group (with pointwise operations); these are the
famous loop groups, which appear as groups of gauge transformations in
conformal field theory. When \(M\) is a \(3\)-dimensional manifold,
\(LM\) contains within it the space of all knots in \(M\); also, we may
think of \(LM\) as the configuration space for the simplest flavor of
string theory in the spacetime \(\mathbb{R} \times M\). Loops also serve to
define observables called ``Wilson loops'' in gauge theories, and these
are the basis of the loop representation of quantum gravity. So there is
a lot of interesting mathematics and physics to be found in the loop
space.

What does this have to do with the 3rd cohomology group of \(M\)? Well,
\(LM\) is a bundle over \(M\), so according to algebraic topology there
is a natural map from the 3rd cohomology of \(M\) to the 2nd cohomology
of \(LM\)! The ramifications of this are multiple.

First, every compact simple Lie group G has 3rd cohomology equal to
\(\mathbb{Z}\). (In fact, Brylinski notes that the cohomology group is
not merely isomorphic to \(\mathbb{Z}\), but canonically so --- and this
extra nuance turns out to be quite significant!) This gives rise to a
special element in the 2nd cohomology of \(LG\). This then gives a line
bundle over \(LG\). Alternatively, it gives a circle bundle over \(LG\),
in fact a central extension of \(LG\), that is, a bigger group
\(\widehat{LG}\) and an exact sequence
\[1 \to S^1 \to \widehat{LG} \to LG \to 1\] This group is called a
Kac--Moody group, and these are well-loved by string theorists since it
turns out that when one wants to quantize a gauge theory on the string
worldsheet (a kind of conformal field theory) one gets, not a
representation of the gauge group \(LG\) on the Hilbert space of quantum
states, but merely a projective representation, or in other words, a
representation of the central extension \(\widehat{LG}\). Brylinski also
notes that in some sense the canonical element in the 3rd cohomology of
\(G\) is responsible for the existence of quantum groups; this is
probably the deep reason for the association between quantum group
representations and Kac--Moody group representations, but, alas, this is
still quite murky to me.

Second, we can do better if we restrict ourself to knots (possibly with
nice self-intersections) rather than loops. Namely, given a 3-manifold
\(M\) equipped with a \(3\)-form, one gets, not just an element of the
2nd cohomology of \(LM\), but a symplectic structure on the space of
knots in \(M\), say \(KM\). It may seem odd to think of the space of
knots as a physical \emph{phase} space, but Brylinski shows that this
idea is related to the work of Marsden and Weinstein on ``vortex
filaments,'' an idealization of fluid dynamics in which all the fluid
motion is concentrated along some curves. Brylinski also notes that if
\(M\) is equipped with a Riemannian structure then \(KM\) inherits a
Riemannian structure (this is easy), and that if \(M\) has a conformal
structure \(KM\) has an almost complex structure. In fact, in the
Riemannian case all these structures on \(KM\) fit together to make it a
sort of K\"ahler manifold (although one must be careful, since the almost
complex structure is only integrable in a certain formal sense).
Brylinski hints that all this geometry may give a nice approach to the
study of knot invariants; I will have to look at the following papers
sometime:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  M.\ Rasetti and T.\ Regge,``Vortices in He II, current algebras and quantum knots'', \emph{Physica} \textbf{80A} (1975) 217--233.
\item
   V. Penna and M. Spera, ``A geometric approach to quantum vortices'',
  \emph{J.\ Math.\ Phys.} \textbf{30} (1989), 2778--2784.
\end{enumerate}

However, Brylinski's real goal is something much more radical! The
beauty of 2nd cohomology is that integer classes in the 2nd cohomology
of \(M\) correspond to line bundles on \(M\); there is, in other words,
a very nice geometrical picture of 2nd cohomology classes. What is the
natural analog for 3rd cohomology? Instead of just working with \(LM\),
it would be nice to have some sort of geometrical objects on \(M\) that
correspond to integer classes in 3rd cohomology. What should they be?

Brylinski gives two answers, one in Chapter 4 and another in Chapter 5.
The first one, due mainly to Dixmier and Douady, is very appealing for a
quantum field theorist such as myself. Just as elements of
\(\mathrm{H}^2(M,\mathbb{Z})\) correspond to line bundles over \(M\), elements of
\(\mathrm{H}^3(M,\mathbb{Z})\) correspond to projective Hilbert space bundles
over \(M\)! Recall that in physics two vectors in a Hilbert space
correspond to the same physical state if one is a scalar multiple of the
other; the space of equivalence classes (starting with a
countable-dimensional Hilbert space) is what I'm calling ``projective
Hilbert space,'' and it is bundles of such rascals that correspond to
elements of \(\mathrm{H}^3(M,\mathbb{Z})\). The reason is roughly this: the
structure group \(G\) for such bundles is the group
\(\mathrm{Aut}(H)/\mathbb{C}^*\), that is, invertible operators on the Hilbert
space \(H\), modulo invertible complex numbers. In other words, we have
an exact sequence 
\[1 \to \mathbb{C}^* \to \mathrm{Aut}(H) \to G \to 1\] 
This gives an exact sequence of sheaves on \(M\), which, combined with the
marvelous fact that \(\mathrm{Aut}(H)\) is contractible, gives an isomorphism
between \(\mathrm{H}^1(M,\mathrm{sh}(G))\) (the cohomology of the sheaf of smooth
\(G\)-valued functions on \(M\)) and \(\mathrm{H}^2(M,\mathrm{sh}(\mathbb{C}^*))\).
But the latter is isomorphic to \(\mathrm{H}^3(M,\mathbb{Z})\).

Brylinski pushes the analogy to the line bundle case further by showing
how to realize the element of \(\mathrm{H}^3(M,\mathbb{Z})\) starting from a
connection on a projective Hilbert space bundle. But in Chapter 5 he
takes a more abstract approach that I want to sketch very vaguely, since
I don't understand it very well yet. This approach is exciting because
it connects to recent work on \(2\)-categories (and higher
\(n\)-categories), which I am convinced will play a role in unifying the
wild profusion of mathematics we are seeing in this tail end of the
twentieth century.

Here the best way to see the analogy to the line bundle case is through
\v Cech cohomology. Recall that we can patch a line bundle together by
covering our manifold \(M\) with charts \(O(i)\) and assigning to each
intersection \(O(i) \cap O(j)\) a \(\mathbb{C}^*\)-valued function
\(g_{ij}\). These ``transition functions'' must satisfy the compatibility
condition 
\[g_{ij} g_{jk} g_{ki} = 1\] 
We say then that the functions
\(g_{ij}\) define a 1-cocycle in \v Cech cohomology --- think of this as
just jargon, if you like. Note that we will get an isomorphic line
bundle if we take some \(\mathbb{C}^*\)-valued functions \(f_i\), one
on each chart \(O(i)\), and multiply \(g_{ij}\) by \(f_ if_j^{-1}\).
This simply amounts to changing the trivialization of the bundle on each
chart. We say that the new \v Cech cocycle differs by a coboundary. So line
bundles are in 1-1 correspondence with the 1st \v Cech cohomology with
values in \(\mathrm{sh}(\mathbb{C}^*)\). This turns out to be the same
thing as \(\mathrm{H}^2(M,\mathbb{Z})\), as noted above.

Now, there is a marvelous thing called a gerbe, which is like a bundle,
but is pieced together using \v Cech 2-cocyles! These will be classified by
the 2nd \v Cech cohomology with values in \(\mathrm{sh}(\mathbb{C}^*)\),
which is nothing but \(\mathrm{H}^3(M,\mathbb{Z})\).

What are these gerbes? Well, I wish I really understood them. Let me
just say what I know. The basic idea is to boost everything up a notch
using category-theoretic thinking. When we were getting ready to define
bundles, we needed to have the concept of a group at our disposal (to
have a structure group.) For gerbes, we need something called a category
of torsors. What is a group? Well, it is a \textbf{set} equipped with
various \textbf{maps} satisfying various properties. What is a category
of torsors? Well, it is a \textbf{category} equipped with various
\textbf{functors} satisfying utterly analogous properties. Note how we
are ``categorifying'' here. We have more structure, since while a set is
just a bunch of naked points, a category is a bunch of points, namely
objects, which are connected by arrows, namely morphisms. Given the
group \(\mathbb{C}^*\) we can get a corresponding category of torsors as
follows: the category of all manifolds with a simply transitive
\(\mathbb{C}^*\)-action (which are called torsors). A nice account of
why this category looks so much like a group appears in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Dan Freed, ``Higher algebraic structures and quantization'',
  preprint, available as
  \href{https://arxiv.org/abs/hep-th/9212115}{\texttt{hep-th/9212115}}.
\end{enumerate}
\noindent
which I already mentioned in \protect\hyperlink{week12}{``Week 12''}.

Just as a group can act on a set, a category of torsors can act on a
category. If we ``sheafify'' this notion, we get the concept of a gerbe.
Clear? Well, part of why I am interested in these ideas is the way they
make me a bit dizzy, so don't feel bad if you are a bit dizzy too now. I
really think that overcoming this dizziness will be necessary for
certain advances in mathematics and physics, though.

Instead of actually coming clean and defining the concept of a gerbe,
let me finish by saying what Brylinski does next. He defines an analog
of connections on bundles, called ``connective structures'' on gerbes.
And he defines an analog of the curvature, the ``curving'' of a
connective structure. This turns out to give an element of
\(\mathrm{H}^3(M,\mathbb{Z})\) in a natural way. He concludes in a blaze of glory
by showing how the Dirac monopole gives a gerbe on \(S^3\) whose curving
is the volume form. The integrality condition turns out to be related to
Dirac's original argument for quantization of electric charge. Whew!

To wrap up, let me note that the following paper, mentioned in
\protect\hyperlink{week23}{``Week 23''}, has shown up on \texttt{gr-qc}:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Abhay Ashtekar and Jerzy Lewandowski, ``Representation theory of analytic holonomy \(C^*\) Algebras'', in \emph{Knots and
  Quantum Gravity}, ed.~J. Baez, available as
  \href{https://arxiv.org/abs/gr-qc/9311010}{\texttt{gr-qc/9311010}}.
\end{enumerate}
\noindent
Ashtekar and Lewandowski are my friendly competitors in the business of making the loop representation of quantum gravity more rigorous by
formalizing the idea of a generalized measure on the space of
connections modulo gauge transformations.



\hypertarget{week26}{%
\section{November 21, 1993}\label{week26}}

I have been struggling to learn the rudiments of Teichm\"uller theory,
and it's almost time for me to face up to my ignorance of it by posting
a ``This Week's Finds'' attempting to explain the stuff, but I am going
to put off the inevitable and instead describe a variety of papers on
different subjects\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Huw Price, ``Cosmology, time's arrow, and that old double standard'', in S.\ Savitt, ed., \emph{Time's Arrows Today},
  Cambridge University Press, 1994, pp.\ 66--94.  Available as
  \href{https://arxiv.org/abs/gr-qc/9310022}{\texttt{gr-qc/9310022}}.
\end{enumerate}

Why is the future different from the past? Because it hasn't happened
yet? Well, sure, but that's not especially enlightening, in fact, it's
downright circular. Unfortunately, a lot of work on the ``arrow of
time'' is just as circular, only so erudite that it is hard to spot it!
That's what this article takes some pains to clarify. I think I will be
lazy and quote the beginning of the paper:

\begin{quote}
A century or so ago, Ludwig Boltzmann and others attempted to explain
the temporal asymmetry of the second law of thermodynamics. The hard-won
lesson of that endeavour --- a lesson still commonly misunderstood ---
was that the real puzzle of thermodynamics lies not in the question why
entropy increases with time, but in that as to why it was ever so low in
the first place. To the extent that Boltzmann himself appreciated that
this was the real issue, the best suggestion he had to offer was that
the world as we know it is simply a product of a chance fluctuation into
a state of very low entropy. (His statistical treatment of
thermodynamics implied that although such states are extremely
improbable, they are bound to occur occasionally, if the universe lasts
a sufficiently long time.) This is a rather desperate solution to the
problem of temporal asymmetry, however, and one of the great
achievements of modern cosmology has been to offer us an alternative. It
now appears that temporal asymmetry is cosmological in origin, a
consequence of the fact that entropy is much lower than its theoretical
maximum in the region of the Big Bang --- i.e., in what we regard as the
\emph{early} stages of the universe.

The task of explaining temporal asymmetry thus becomes the task of
explaining this condition of the early universe. In this paper I want to
discuss some philosophical constraints on the search for such an
explanation. In particular, I want to show that cosmologists who discuss
these issues often make mistakes which are strikingly reminiscent of
those which plagued the nineteenth century discussions of the
statistical foundations of thermodynamics. The most common mistake is to
fail to recognise that certain crucial arguments are blind to temporal
direction, so that any conclusion they yield with respect to one
temporal direction must apply with equal force with respect to the
other. Thus writers on thermodynamics often failed to notice that the
statistical arguments concerned are inherently insensitive to temporal
direction, and hence unable to account for temporal asymmetry. And
writers who did notice this mistake commonly fell for another:
recognising the need to justify the double standard --- the application
of the arguments in question `towards the future' but not `towards the
past' --- they appealed to additional premisses, without noticing that
in order to do the job, these additions must effectively embody the very
temporal asymmetry which was problematic in the first place. To assume
the uncorrelated nature of initial particle motions (or incoming
`external influences'), for example, is simply to move the problem from
one place to another. (It may \emph{look} less mysterious as a result,
but this is no real indication of progress. The fundamental lesson of
these endeavours is that much of what needs to be explained about
temporal asymmetry is so commonplace as to go almost unnoticed. In this
area more than most, folk intuition is a very poor guide to explanatory
priority.)

One of the main tasks of this paper is to show that mistakes of these
kinds are widespread in modern cosmology, even in the work of some of
the contemporary physicists who have been most concerned with the
problem of the cosmological basis of temporal asymmetry --- in the
course of the paper we shall encounter illicit applications of a
temporal double standard by Paul Davies, Stephen Hawking and Roger
Penrose, among others. Interdisciplinary point- scoring is not the
primary aim, of course: by drawing attention to these mistakes I hope to
clarify the issue as to what would count as adequate cosmological
explanation of temporal asymmetry.

I want to pay particular attention to the question as to whether it is
possible to explain why entropy is low near the Big Bang without thereby
demonstrating that it must be low near a Big Crunch, in the event that
the universe recollapses. The suggestion that entropy might be low at
both ends of the universe was made by Thomas Gold in the early 1960s.
With a few notable exceptions, cosmologists do not appear to have taken
Gold's hypothesis very seriously. Most appear to believe that it leads
to absurdities or inconsistencies of some kind. However, I want to show
that cosmologists interested in time asymmetry continue to fail to
appreciate how little scope there is for an explanation of the low
entropy Big Bang which does not commit us to the Gold universe. I also
want criticise some of the objections that are raised to the Gold view,
for these too often depend on a temporal double standard. And I want to
discuss, briefly and rather speculatively, some issues that arise if we
take the view seriously. (Could we observe a time-reversing future, for
example?)
\end{quote}

And now let me jump forward to a very interesting issue, Hawking's
attempt to derive the arrow of time from his ``no-boundary boundary
conditions'' choice of the wavefunction of the universe. (See
\protect\hyperlink{week3}{``Week 3''}.) I found this rather unsatisfying
when I read it, and had a sneaking suspicion that he was falling into
the fallacy Gold describes above. Let's hear what Price has to say about
it.

\begin{quote}
Our second example is better known, having been described in Stephen
Hawking's best seller, \emph{A Brief History of Time}. It is Hawking's proposal
to account for temporal asymmetry in terms of what he calls the No
Boundary Condition (NBC) --- a proposal concerning the quantum wave
function of the universe. To see what is puzzling about Hawking's claim,
let us keep in mind the basic dilemma. It seemed that provided we avoid
double standard fallacies, any argument for the smoothness of the
universe would apply at both ends or at neither. So our choices seemed
to be to accept the globally symmetric Gold universe, or to resign
ourselves to the fact that temporal asymmetry is not explicable (without
additional assumptions or boundary conditions) by a time-symmetric
physics. The dilemma is particularly acute for Hawking, because he has a
more reason than most to avoid resorting to additional boundary
conditions. They conflict with the spirit of his NBC, namely that one
restrict possible histories for the universe to those that `are finite
in extent but have no boundaries, edges, or singularities.'

Hawking tells us how initially he thought that this proposal favoured
the former horn of the above dilemma: `I thought at first that the no
boundary condition did indeed imply that disorder would decrease in the
contracting phase.' He changed his mind, however, in response to
objections from two colleagues: `I realized that I had made a mistake:
the no boundary condition implied that disorder would in fact continue
to increase during the contraction. The thermodynamic and psychological
arrows of time would not reverse when the universe begins to contract or
inside black holes.'

This change of mind enables Hawking to avoid the apparent difficulties
associated with reversing the thermodynamic arrow of time. What is not
clear is how he avoids the alternative difficulties associated with
\emph{not} reversing the thermodynamic arrow of time. That is, Hawking
does not explain how his proposal can imply that entropy is low near the
Big Bang, without equally implying that it is low near the Big Crunch.
The problem is to get a temporally asymmetric consequence from a
symmetric physical theory. Hawking suggests that he has done it, but
doesn't explain how. Readers are entitled to feel a little dissatisfied.
As it stands, Hawking's account reads a bit like a suicide verdict on a
man who has been stabbed in the back: not an impossible feat, perhaps,
but we'd like to know how it was done!

It seems to me that there are three possible resolutions of this
mystery. The first, obviously, is that Hawking has found a way round the
difficulty. The easiest way to get an idea of what he would have to have
established is to think of three classes of possible universes: those
which are smooth and ordered at both temporal extremities, those which
are ordered at one extremity but disordered at the other, and those
which are disordered at both extremities. If Hawking is right, then he
has found a way to exclude the last class, without thereby excluding the
second class. In other words, he has found a way to exclude disorder at
one temporal extremity of the universe, without excluding disorder at
both extremities. Why is this combination the important one? Because if
we can't exclude universes with disorder at both extremities, then we
haven't explained why our universe doesn't have disorder at both
extremities --- we know that it has order at least one temporal
extremity, namely the extremity we think of as at the beginning of time.
And if we do exclude disorder at both extremities, we are back to the
answer that Hawking gave up, namely that order will increase when the
universe contracts.

Has Hawking shown that the second class of universal histories, the
order-disorder universes, are overwhelmingly probable? It is important
to appreciate that this would not be incompatible with the underlying
temporal symmetry of the physical theories concerned. A symmetric
physical theory might be such that all or most of its possible
realisations were asymmetric. Thus Hawking might have succeeded in
showing that the NBC implies that any (or almost any) possible history
for the universe is of this globally asymmetric kind. If so, however,
then he hasn't yet explained to his lay readers how he managed it. In a
moment I'll describe my attempts to find a solution in Hawking's
technical papers. What seems clear is that it can't be done by
reflecting on the consequences of the NBC for the state of one temporal
extremity of the universe, considered in isolation. For if that worked
for the `initial' state it would also work for the `final' state; unless
of course the argument had illicitly assumed an objective distinction
between initial state and final state, and hence applied some constraint
to the former that it didn't apply to the latter. What Hawking needs is
a more general argument, to the effect that disorder-disorder universes
are impossible (or at least overwhelmingly improbable). It needs to be
shown that almost all possible universes have at at least one ordered
temporal extremity --- or equivalently, at most one disordered
extremity. (As Hawking points out, it will then be quite legitimate to
invoke a weak anthropic argument to explain why we regard the ordered
extremity thus guaranteed as an \emph{initial} extremity. In virtue of
its consequences for temporal asymmetry elsewhere in the universe,
conscious observers are bound to regard this state of order as lying in
their past.)

That's the first possibility: Hawking has such an argument, but hasn't
told us what it is (probably because he doesn't see why it is so
important). As I see it, the other possibilities are that Hawking has
made one of two mistakes (neither of them the mistake he claims to have
made). Either his NBC does exclude disorder at both temporal extremities
of the universe, in which case his mistake was to change his mind about
contraction leading to decreasing entropy; or the proposal doesn't
exclude disorder at either temporal extremity of the universe, in which
case his mistake is to think that the NBC accounts for the low entropy
Big Bang.
\end{quote}

And, eventually, Price concludes that there is indeed something
lacking in Hawking's attempts to derive an arrow of time.

I have said this many times here and there, but I'll say it again. For a
good introduction to these issues, read:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
 H.\ D.\ Zeh, \emph{The Physical Basis of the Direction of Time},
  Second Edition, Springer, Berlin, 1992.
\end{enumerate}
\noindent
Zeh is one of the most clear-headed writers I know on this vexing
problem. Interestingly, Price acknowledges Zeh in his paper.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Renate Loll, ``Chromodynamics and gravity as theories on loop space'', available as
  \href{https://arxiv.org/abs/hep-th/9309056}{\texttt{hep-th/9309056}}.
\end{enumerate}

This is an especially thorough review of work on the loop representation
of gauge theories, especially the theories of the strong force and
gravity. A lot of work has been done on this subject but there are still
very many basic mathematical problems when it comes to making any of
this work rigorous, and one nice thing about Loll's work is that she is
just as eager to point out the problems as the accomplishments. It can
be dangerous when people become complacent and simply shrug off various
problems just because they are difficult and can be temporarily ignored.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
 Daniel Armand-Ugon, Rodolfo Gambini and Pablo Mora, ``Intersecting braids and intersecting knot theory'', available as
  \href{https://arxiv.org/abs/hep-th/9309136}{\texttt{hep-th/9309136}}.
\end{enumerate}
\noindent
There are a lot of hints that classical knot theory, which only
considers a circle smoothly embedded in space, is only the tip of a very
interesting iceberg. Namely, if one looks at the space of all loops,
this has the knots as an open dense subset, but then it has loops with a
single ``transverse double point'' like \[
  \begin{tikzpicture}
    \begin{knot}[clip width=0]
      \strand[thick] (0,0)
      to [out=down,in=up] (1,-1);
      \strand[thick] (1,0)
      to [out=down,in=up] (0,-1);
    \end{knot}
  \end{tikzpicture}
\] as a codimension 1 subset (like a hypersurface in the space of all
loops), and more fancy singularities appear as still smaller subsets, or
as the jargon has it, strata of higher codimension. The recent flurry of
work on Vassiliev invariants points out the importance of these other
strata --- or at least a few --- to knot theory. Namely, knot invariants
that extend nicely to knots with arbitrarily many transverse double
points include the famous quantum group knot invariants like the Jones
polynomial, and there is a close relationship between these ``Vassiliev
invariants'' and Lie algebra theory.

Meanwhile, the physicists have been forging ahead into more complicated
strata, motivated mainly by the loop representation of quantum gravity.
Gambini is one of the originators of the loop representation of gauge
theory, so it is not surprising that he is ahead of the game on this
business. Together with Pullin and Bruegmann he has been working on
extending the Jones polynomial, for example, to loops with various sorts
of self-intersections, calculating these extensions directly from the
path-integral formula for the Jones polynomial as a Wilson loop
expectation value in Chern--Simons theory. The relationship of this
extension to the theory of Vassiliev invariants was recently clarified
by Kauffman (see \protect\hyperlink{week23}{``Week 23''}), but there is
much more to do. Here Gambini and collaborators look at loops with
transverse triple points. I guess I'll just quote the abstract:

\begin{quote}
An extension of the Artin Braid Group with new operators that generate
double and triple intersections is considered. The extended Alexander
theorem, relating intersecting closed braids and intersecting knots is
proved for double and triple intersections, and a counter example is
given for the case of quadruple intersections. Intersecting knot
invariants are constructed via Markov traces defined on intersecting
braid algebra representations, and the extended Turaev representation is
discussed as an example. Possible applications of the formalism to
quantum gravity are discussed.
\end{quote}



\hypertarget{week27}{%
\section{December 16, 1993}\label{week27}}

This week I would like to describe some of the essays from the following
volume:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Conceptual Problems of Quantum Gravity}, eds. 
   Abhay Ashtekar and John Stachel, based on the proceedings of the 1988 Osgood
  Hill Conference, 15--19 May 1988, Birkh\"auser, Basel, 1991.
\end{enumerate}
\noindent
As the title indicates, this conference concentrated not on technical,
mathematical aspects of quantum gravity but on issues with a more
philosophical flavor. The proceedings make it clear how many problems we
still have in understanding how to fit quantum theory and gravity
together. Indeed, the book might be a bit depressing to those who
thought we were close to the ``theory of everything'' which some
optimists once assured us would be ready by the end of the millenium.
But to those like myself who enjoy the fact that there is so much left
to understand about the universe, this volume should be exciting (if
perhaps a bit daunting).

The talks have been divided into a number of groups:

\begin{itemize}
\tightlist
\item
  Quantum mechanics, measurement, and the universe
\item
  The issue of time in quantum gravity
\item
  Strings and gravity
\item
  Approaches to the quantization of gravity
\item
  Role of topology and black holes in quantum gravity
\end{itemize}

Let me describe a few of the talks, or at least their background, in
some detail rather than remaining general and vague.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Wojciech H.\ Zurek, ``Quantum measurements and the environment-induced transition from quantum to classical'', the volume above.

 W.\ G.\ Unruh, ``Loss of quantum coherence for a damped oscillator'', the volume above.
\end{enumerate}

These talks by Zurek and Unruh fit into what one might call the
``post-Everett school'' of research on the foundations of quantum
theory. To understand what Everett did, and what the post-Everett work
is about, you will need to be comfortable with the notions of pure
versus mixed states, and superpositions of states versus mixtures of
states (which are very different things). So, rather than discussing the
talks above, it probably makes more sense for me to talk about these
basic notions. A brief mathematical discussion appears below; one really
needs the clarity of mathematics to get anywhere with this sort of
issue. First, though, let me describe them vaguely in English.

In quantum theory, associated to any physical system there are states
and observables. An observable is a real-valued quantity we might
conceivably measure about the system. A state represents what we might
conceivably know about the system. The previous sentence is quite vague;
all it really means is this: given a state and an observable there is a
mathematical recipe that lets us calculate a probability distribution on
the real number line, which represents the probability of measuring the
observable to have a value lying in any subset of the real line. We call
this the probability distribution of the observable in the state. Using
this we can, if we want, calculate the mean of this probability
distribution (let us assume it exists!), which we call the expectation
value of the observable in the state.

Given two states \(\psi\) and \(\phi\), and a number \(c\) between \(0\)
and \(1\) there is a recipe for getting a new state, called
\(c \psi + (1-c)\phi\). This can be described roughly in words as
follows: ``with probability \(c\), the system is in state \(\psi\); with
probability \(1-c\) it is in state \(\phi\).'' This is called a
\textbf{mixture} of the states \(\psi\) and \(\phi\). If a state is a
mixture of two different states, with \(c\) not equal to \(0\) or \(1\),
we call that state a \textbf{mixed} state. If a state is not mixed it is
\textbf{pure}. Roughly speaking, a pure state is a state with as little
randomness as possible. (More precisely, it has as little entropy as
possible.)

All the remarks so far apply to classical mechanics as well as quantum
mechanics. A simple example from classical mechanics is a 6-sided die.
If we ignore everything about the die except which side is up, we can
say there are six pure states: the state in which the side of the die
showing one dot is up, the state in which the side showing two dots is
up, etc.. Call these states 1,2,3,4,5, and 6. If it's a fair die, and we
roll it and don't look at it, the best state we can use to describe what
we know about the die is a mixed state which is a mixture: \(1/6\) of
state 1 plus \(1/6\) of state 2, etc.. Note that if you peek at the die
and see that side 4 is actually up, you will be inclined to use a
different state to describe your knowledge: a pure state, state 4. Your
honest friend, who didn't peek, will still want to use a mixed state.
There is no contradiction here; the state simply is a way of keeping
track of what you know about the system, or more precisely, a device for
calculating expectation values of observables; which state you use
reflects your knowledge, and some people may know more than others.

Things get trickier in quantum mechanics. They also get trickier when
the system being described includes the person doing the describing.
They get even trickier when the system being described is the whole
universe -- for example, some people rebel at the thought that the
universe has ``many different states'' -- after all, it is how it is,
isn't it? (Gell-Mann gave a talk at this conference, which unfortunately
does not appear in this volume, entitled ``Quantum mechanics of this
specific universe.'' I have a hunch it deals with this issue, which
falls under the heading of ``quantum cosmology.'')

The first way things get trickier in quantum mechanics is that something
we are used to in classical mechanics fails. In classical mechanics,
pure states are always dispersion-free -- that is, for \emph{every}
observable, the probability measure assigned by the state to that
observable is a Dirac delta measure, that is, the observable has a 100\%
chance of being some specific value and a 0\% chance of having any other
value. (Consider the example of the dice, with the observable being the
number of dots on the face pointing up.) In quantum mechanics, pure
states need \emph{not} be dispersion-free. In fact, they usually aren't.

A second, subtler way things get trickier in quantum mechanics concerns
systems made of parts, or subsystems. Every observable of a subsystem is
automatically an observable for the whole system (but not all
observables of the whole system are of that form; some involve, say,
adding observables of two different subsystems). So every state of the
whole system gives rise to, or as we say, ``restricts to,'' a state of
each of its subsystems. In classical mechanics, pure states restrict to
pure states. For example, if our system consisted of 2 dice, a pure
state of the whole system would be something like ``the first die is in
state 2 and the second one is in state 5;'' this restricts to a pure
state for the first die (state 2) and a pure state for the second die
(state 5). In quantum mechanics, it is \emph{not} true that a pure state
of a system must restrict to a pure state of each subsystem.

It is this latter fact that gave rise to a whole bunch of quantum
puzzles such as the Einstein--Podolsky--Rosen puzzle and Bell's
inequality. And it is this last fact that makes things a bit tricky when
one of the two subsystems happens to be \emph{you}. It is possible, and
indeed very common, for the following thing to happen when two
subsystems interact as time passes. Say the whole system starts out in a
pure state which restricts to a pure state of each subsystem. After a
while, this need no longer be the case! Namely, if we solve
Schr\"odinger's equation to calculate the state of the system a while
later, it will necessarily still be a pure state (pure states of the
whole system evolve to pure states), but it need no longer restrict to
pure states of the two subsystems. If this happens, we say that the two
subsystems have become ``entangled.''

In fact, this is the sort of thing that often happens when one of the
systems is a measuring apparatus and the other is something measured.
Studying this issue, by the way, does \emph{not} require a general
definition of what counts as a ``measuring apparatus'' or a
``measurement'' -- on the contrary, this is exactly what is not needed,
and is probably impossible to attain. What is needed is a description in
quantum theory of a \emph{particular} kind of measuring apparatus,
possibly quite idealized, but hopefully reasonably realistic, so that we
can study what goes on using quantum mechanics and see what it actually
predicts will occur. For example:, taking a very idealized case for
simplicity:

Our system consists of two subsystems, the ``detector'' and an
``electron.'' The systems starts out, let's suppose, in a pure state
which restricts to a pure state of each subsystem: the detector is
``ready to measure the electron's spin in the z direction'' and the
electron is in a state with its spin pointing along the x axis. After a
bit of time passes, if we restrict the state of the whole system to the
first subsystem, the detector, we get a mixed state like ``with 50\%
probability it has measured the spin to be up, and with 50\% probability
it has measure the spin to be down.'' Meanwhile, the if we restrict the
state to the second subsystem, the electron it is in the mixed state
``with 50\% change it has spin up, and with 50\% chance it has spin
down.'' In fact these two mixed states are \emph{correlated} in an
obvious sense. Namely, the observable of the \emph{whole} system that
equals 1 if the reading on the detector agrees with the spin of the
electron, and 0 otherwise, will have expectation value 1 (if the
detector is accurate). The catchy term ``entangled,'' which is a little
silly, really just refers to this correlation. I don't want to delve
into the math of correlations, but it is perhaps not surprising that, in
classical or quantum mechanics, interesting correlations can only occur
between subsystems if both of them are in mixed states. What's sneaky
about quantum mechanics is that the whole system can be in a pure state
which when restricted to each subsystem gives a mixed state, and that
these mixed states are then correlated (necessarily, as it turns out).
That's what ``entanglement'' is all about.

It was through analyses like this, but more detailed, that Everett
realized what was going on in a quantum system composed of two
subsystems, one of which was a measuring apparatus (or person, for that
matter), the other of which was something measured. The post-Everett
work amounts to refining Everett's analysis by looking at more realistic
examples, and more varied examples. In particular, it is interesting to
study situations where nothing very controlled like a scientific
``measurement'' is going on. For example, one subsystem might be an atom
in outer space, and the other subsystem might be its environment (a
bunch of other atoms or radiation). If one started out in a state which
restricted to a pure state of each subsystem, how fast would the
subsystems become entangled? And exactly \emph{how} would they become
entangled? -- this is very interesting. When we are doing a scientific
measurement, it's pretty clear what sort of correlation is involved in
the entanglement. In the above example, say, the detector reading is
becoming correlated to the electron's spin about the z axis. If all we
have is an atom floating about in space, it's not so clear. Can we think
of the environment as doing something analogous ``measuring'' something
about the atom, which establishes correlations of a particular kind?
This is the kind of thing Zurek and Unruh are studying.

In my description above I have tried to be very matter-of-fact, but
probably you all know that this subject is shrouded in mystery, largely
because of the misty and dramatic rhetoric people like to use, which
presumably makes it seem more profound. At least ``entangled'' has a
precise technical meaning. But anyone studying this subject will soon
run into ``collapse of the wavefunction,'' ``branches,'' ``the
many-worlds interpretation,'' the ``observer,'' and so on. These things
mean many things to many people, and nothing in particular to many more,
so one must always be on the alert.

Now for a little math to ground the above discussion. To keep life
simple suppose we have a quantum system described by a \(n\)-dimensional
Hilbert space \(H\) which we just think of as \(\mathbb{C}^n\),
\(n\)-dimensional complex space. The main thing to get straight is the
difference between superpositions and mixtures of quantum states. An
observable in quantum theory is described by a self-adjoint operator
\(A\), which for us is just an \(n\times n\) self-adjoint matrix. A
state is something that assigns to each observable a number called its
expectation value, in a manner that is 1) linear, 2) positive, and 3)
normalized. To explain this let us call our state \(\psi\). Linearity
means \(\psi(A + B) = \psi(A) + \psi(B)\) and \(\psi(cA) = c \psi(A)\)
for all observables \(A\),\(B\) and real numbers \(c\). Positivity means
\(\psi(A) > 0\) when \(A\) is a nonzero matrix that has non-negative
eigenvalues (a so-called non-negative matrix). And the normalization
condition is that \(\psi(1) = 1\).

This may seem unfamiliar, and that is because elementary quantum
mechanics only considers states of the form
\[\psi(A) = \langle v, Av\rangle\] where \(v\) is a unit vector in
\(H\). Not all states are of this form, but they are an extremely
important special class of states. It is also important to consider
states that are represented as ``density matrices,'' which are
non-negative matrices \(D\) with trace 1:
\[\operatorname{tr}(D) = \sum_i D_{ii} = 1\] Such a density matrix
defines a state \(\psi\) by \[\psi(A) = \operatorname{tr}(AD).\] It's
worth checking that this really meets the definition of a ``state''
given above!

The states corresponding to unit vectors in \(H\) are in fact a special
case of the density matrices. Namely, if \(v\) is a unit vector in \(H\)
we can let \(D\) be the self-adjoint matrix corresponding to projection
onto \(v\). I.e., the matrix \(D\) acts on any other vector, say \(w\),
by \[Dw = \langle v,w \rangle v.\] It's not to hard to check that the
matrix \(D\) really is a density matrix (do it!) and that this density
matrix defines the same state as does the vector \(v\), that is,
\[\operatorname{tr}(AD) = \langle v, Av\rangle\] for any observable
\(A\).

The entropy of a state \(\psi\) corresponding to the density matrix
\(D\) is defined to be \[S(\psi) = -\operatorname{tr}(D \ln D)\] where
one calculates \(D \ln D\) by working in a basis where \(D\) is diagonal
and replacing each eigenvalue \(x\) of \(D\) by the number \(x \ln x\),
which we decree to be \(0\) if \(x = 0\). Check that if \(D\)
corresponds to a \emph{pure} state as above then \(D \ln D = 0\) so the
entropy is zero.

Now about superpositions versus mixtures. They teach you how to take
superpositions in basic quantum mechanics. They usually don't tell you
about density matrices; all they teach you about is the states that
correspond to unit vectors in Hilbert space. Given two unit vectors in
H, one can take any linear combination of them and, if it's not zero,
normalize it to be a unit vector again, which we call a superposition.

Mixtures are an utterly different sort of linear combination. Given two
states \(\psi\) and \(\phi\) -- which recall are things that assign
numbers to observables in a linear way -- and given any number \(c\)
between \(0\) and \(1\), we can form a new state by taking
\[c \psi + (1-c) \phi\] This is called a mixture of \(\psi\) and
\(\phi\). Finally, some nontrivial exercises:

\textbf{Exercise:} Recall that a pure state is defined to be a state
which is not a mixture of two different states with \(0 < c < 1\). Show
that the states corresponding to unit vectors in Hilbert space are pure.

\textbf{Exercise:} Conversely, show (in the finite-dimensional case we
are considering) that all the pure states correspond to unit vectors in
Hilbert space.

\textbf{Exercise:} Show that every density matrix is a mixture of states
corresponding to unit vectors in Hilbert space.

\textbf{Exercise:} Show (in the finite-dimensional case we are considering) that
all states correspond to density matrices. Show that such a state is
pure if and only if its entropy is zero.

Well, this took longer than expected, so let me quickly say a bit more
about a few other papers in the conference proceedings\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Carlo Rovelli, ``Is there incompatibility between the ways time is treated in general
  relativity and in standard quantum mechanics?'', the
  volume above.

 Karel V.\ Kuchar, ``The problem of time in canonical quantization of relativistic systems'', the volume above.

  James B.\ Hartle, ``Time and prediction in quantum cosmology'', the
  volume above.

  Lee Smolin, ``Space and time in the quantum universe'', the volume
  above.
\end{enumerate}
\noindent
In the section on the problem of time in quantum gravity, these papers
in particular show a lively contrast between points of view. One nice
thing is that discussions after the papers were presented have been
transcribed; these make the disagreements even more clear. Let me simply
give some quotes that highlight the issues:

\begin{quote}
\textbf{Rovelli:} A \textbf{partial observable} is an operation on the
system that produces a number. But this number may be totally
unpredictable even if the state is perfectly known. Equivalently, this
number by itself may give no information on the state of the system
{[}in the Heisenberg picture --- jb{]}. For example, the reading of a
clock, or the value of a field, not knowing where and when it has been
measured, are partial observables.

A \textbf{true observable} or simply an \textbf{observable} is an
operation on the system that produces a number than can be predicted (or
whose probability distribution may be predicted) if the (Heisenberg)
state is known. Equivalently, it is an observable that gives information
about the state of the system.

\ldots.

Time is an experimental fact of nature, a very basic and general
experimental fact, but just an experimental fact. The formal development
of mechanics, and in particular Heisenberg quantum mechanics and the
presymplectic formulation of classical mechanics, suggests that it is
possible to give a coherent description of the world that is independent
of the presence of time.

\ldots.

From the mathematical point of view, \textbf{time} is a structure on the
set of observables (the foliation that I called a time structure).

From the physical point of view, time is the \emph{experimental fact}
that, in the nature as we see it, meaningful observables are always
constructed out of two partial observables. That is, it is the
experimental fact (not a priori required), that knowing the position of
a particle is meaningless unless we also know ``at what time'' a
particle was at that position.

In the formulation of the theory, this experimental fact is coded in the
time structure of the set of observables. If true observables are
composed of correspondences of partial observables, one of which is the
reading of a clock, then the set of true observables can be foliated
into one-parameter families that are given by the same partial
observables at different clock readings.

From an operational point of view, mechanics is perfectly well defined
in the absence of this time structure. It will describe a world (maybe
one slightly unfamiliar to us) in which observables are not arranged
along one-parameter lines, in which they have no such time structure (a
kind of fixed-time world), or have more complicated structures. We must
not confuse the psychological difficulties in visualizing such worlds
with their logical impossibility.

\ldots{} Heisenberg states, observables, measurement theory -- none of
these require time.

The notion of probability does not require time\ldots.

What I am proposing is that there may exist a coherent description of a
system in the framework of standard quantum mechanics even if it does
not have a standard ``time evolution.''

Why should we be interested in mechanics with no time structure? Because
general relativity \emph{is} a system (a classical system) with no time
structure. At least, it has no clearly defined time structure.

\ldots{} What we have to do is simple: ``forget time.''
\end{quote}

\begin{quote}
\textbf{Kuchar:} For myself, I want to see observables changing along my
world line and therefore associated with individual leaves of a
foliation. In that sense, the problem of time is shifted to the problem
of constucting an appropriate class of quantities one would like to call
observables. Now, what I would like to call observables probably differs
from what Carlo Rovelli would like to call observables. Carlo may like
to restrict that term to constants of motion, while I would like to use
variables that depend on a time hypersurface. Of course, both of us know
that there is a technical way of translating my observables into his
observables. However, it is difficult to subject such a translated
observable to an actual observation. In principle, of course, it does
not matter at what instant of time one measures a constant of motion.
But the constants of motion that are translations of my observables are
much too complicated when expressed in terms of the coordinates and the
momenta at the time of measurement. You thus have a hard time to design
an apparatus that would measure such a constant of motion at a time
different from the moment for which it was originally designed.
\end{quote}

\begin{quote}
\textbf{Smolin:} Now, as I discussed above, and as Jim Hartle argues at
length, there can be no strict implementation of the principle of
conservation of probability for a time that this the value of a
dynamical variable of a quantum system. Therefore, a sensible
measurement theory for quantum cosmology can only be constructed if
there is a time variable that is not a dynamical variable of the quantum
system that describes the universe.

Does this mean that quantum cosmology is impossible, since there is no
possibility of a clock outside of the system?

There is, as far as I know, exactly one loophole in this argument, which
is the one exploited by the program of intrinsic time. This is that one
coordinate on the phase space of general relativity might be singled out
and called time in such a way that the states, represented by functions
on the configuration space, could be read as time-dependent functions
over a reduced configuration space from which the privileged time
coordinate is excluded.
\end{quote}

\noindent Jokes:

\begin{quote}
Kuchar: Because Leibniz didn't believe in the ontological significance
of time, he dropped the letter ``t'' from his name.

Smolin: Is that true?

Kuchar: Yes! He spelled his name with a ``z''.

DeWitt: It's a good thing that he did believe in space because the ``z''
would've gone too.
\end{quote}
Of course, time is ``Zeit'' in German, which complicates things. 

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Abhay Ashtekar,``Old problems in the light of new variables'', the
  volume above.

  Carlo Rovelli, ``Loop representation in quantum gravity'', the
  volume above.

  Lee Smolin, ``Nonperturbative quantum gravity via the loop representation'',  the volume above.
\end{enumerate}

\noindent
These are a bit more technical papers that give nice introductions to
various aspects of the loop representation.



\hypertarget{week28}{%
\section{January 4, 1994}\label{week28}}

I think I'll finally break my New Year's resolution to stop making a
fool of myself on the net, and attempt an explanation of some things I
am just learning a bit about, namely, Teichm\"uller space and moduli
space. These are concepts that string theorists often throw around, and
when I first heard of them in that context I immediately dimissed them
as just another example of how physicists were learning far too much
mathematics for their own good. I take it all back! They are, in fact,
beautifully simple pieces of mathematics suited to physics in
2-dimensional spacetime. Two dimensions is low enough that one can often
actually understand exactly what's going on in problems that become
infinitely more tricky in higher dimensions. So even if one doesn't
``believe'' in \(2\)-dimensional physics the way the string theorists do
-- for them, physics happens on the worldsheet of the string, which is
2-dimensional -- it's worth learning as a kind of textbook case.

Everything I know so far is culled from the following sources, which by
no means form an exhaustive or even optimal set of references:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Y.\ Imayoshi and M.\  Taniguchi, \emph{An Introduction to Teichm\"uller spaces}, Springer, Berlin, 1991.
\item
  Joe Harris, ``An introduction to the moduli space of curves'', in
  \emph{Mathematical Aspects of String Theory} (proceedings of a
  conference at UC San Diego in 1986), ed.~S. T. Yau, World Scientific
  Press, 1987.
\item 
R.\ C.\ Penner, ``The moduli space of punctured surfaces'', same
volume.
\item
   John L.\ Harer, ``The cohomology of the moduli space of curves'', in
  \emph{Theory of Moduli (lectures given at the 3rd 1985 session of
  C.I.M.E. at Mondecatini Terme, Italy)}, ed.~E. Sernesi,
  Springer Lecture Notes in Mathematics \textbf{1337}, 1988.
\end{enumerate}

There are a number of ways of describing Teichm\"uller space and moduli
space. Maybe the easiest is this. Start with the surface of a doughnut
with \(g\) handles, or as the experts say, a ``surface of genus \(g\)''.
We can make this into a ``Riemann surface'' if we cover it with lots of
patches, or ``charts,'' each of which looks just like part the complex
plane (imagine a little piece of graph paper), and such that the change
of coordinates function relating overlapping patches is analytic, in the
usual sense of complex variables. The simplest Riemann surface is the
Riemann sphere, which is of genus zero; one gets this by taking the
complex plane and sticking on one more point, ``\(\infty\)'' -- think of
a sphere with ``\(\infty\)'' as the north pole. If we have a Riemann
surface, we can tell whether a complex-valued function on it is
analytic, simply by working locally in charts, so we can do complex
analysis as usual on a doughnut with lots of handles as long as we make
it into a Riemann surface! Since the main point of my article will be to
provide the reader with lots of buzzwords, I should add that making a
surface of genus \(g\) into a Riemann surface is called ``giving it a
complex structure.''

Now, how many ways are there to give a surface of genus \(g\) a complex
structure? First of all we need a good notion of when two Riemann
surfaces are ``the same''. They must, of course, have the same genus,
but there must also be a 1-1 and onto function from one to the other
that is everywhere analytic, with an analytic inverse. (Again, it makes
sense to say such a function is analytic, since we can cover each
Riemann surface with charts that we can think of as bits of the complex
plane.) Such a mapping is called a ``biholomorphic mapping'' --
holomorphic just being another word for analytic -- and if we want to
sound fancy, we say that the two Riemann surfaces are
``biholomorphically equivalent.''

Well, there's a famous old theorem of Riemann that for genus 0, there is
only ONE way to do it; any Riemann surface of genus 0 is
biholomorphically equivalent with the Riemann sphere. But for higher
genus there are infinitely many essentially different ways to give a
surface of genus \(g\) a complex structure. In fact, we can imagine a
big fat ``space'' of all ways. This is the moduli space of genus \(g\)!

The first key problem in the theory is to ``get our hands on'' moduli
space; that is, to describe it quite concretely. String theory provided
a lot of motivation for doing this very well, since the worldsheet of a
string -- that is, the string viewed in spacetime -- is just a surface,
and Feynman path integrals in string theory involve integrating over all
complex structures for this surface. To do integrals over moduli space
we need to bring it down to earth!

To do so, it's awfully handy to get involved with Teichm\"uller space.
Note that moduli space can be thought of as the space of equivalence
classes of complex structures on a fixed surface of genus \(g\), where
two complex structures are deemed ``the same'' if they are
biholomorphically equivalent. Teichm\"uller space is defined using a more
fine-grained notion of ``the same''. Note that any biholomorphic mapping
is a diffeomorphism, that is, a smooth mapping with a smooth inverse. In
fact, it must also be orientation-preserving, since an
orientation-reversing map like complex conjugation can never be
holomorphic! Henceforth I will always mean ``orientation-preserving
diffeomorophism'' when I speak of diffeomorphisms of a surface.

Now, some diffeomorphisms are ``connected to the identity'' and some
aren't. We say a diffeomorphism \(f\) is connected to the identity if
there is a smooth 1-parameter family of diffeomorphisms starting at
\(f\) and ending at the identity diffeomorphism. In other words, a
diffeomorphism is connected to the identity if you can do it
``gradually'' without ever having to cut the surface. To really
understand this you need to know some diffeomorphisms that \emph{aren't}
connected to the identity. Here's how to get one: start with your
surface of genus \(g > 0\), cut apart one of the handles along a circle,
give one handle a 360-degree twist, and glue the handles back together!
This is called a Dehn twist.

Anyway, Teichm\"uller space may be defined as the space of equivalence
classes of complex structures on a fixed surface of genus \(g\), where
two complex structures are counted as the same if they are
biholomorphically equivalent \emph{by a diffeomorphism connected to the
identity}.

A good way of understanding the relation between Teichm\"uller space and
moduli space is this. Define the mapping class group (of genus \(g\)) to
be the group of diffeomorphisms of a surface of genus \(g\) modulo the
subgroup of those connected to the identity. A beautiful fact is that
this group is generated by Dehn twists! In other words, given any
diffeomorphism of a surface, you can get it by first doing a bunch of
Dehn twists and then doing a diffeomorphism connected to the identity.
Since the mapping class group is finitely generated one should think of
it as a discrete group. In fact, folks know what the relations between
the generators are, too, and these are also very beautiful. I guess good
places to read about this stuff are the first paper that gave an
explicit presentation of mapping class groups:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  A.\ Hatcher and W.\ Thurston, ``A presentation of the mapping class group of a closed, orientable
  surface'', \emph{Topology} \textbf{19}
  (1980), 221--237.
\end{enumerate}
\noindent
and the simplified treatment in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Bronislaw Wajnryb, ``A simple presentation for the mapping class group of an orientable
  surface'', \emph{Israel J.\ Math.} \textbf{45} (1983), 157--174.
\end{enumerate}
\noindent
Actually, though, I must admit my only acquaintance with mapping class
groups comes from leafing through

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Joan S.\ Birman, \emph{Braids, Links, and Mapping Class Groups},
  Annals of Mathematics Studies \textbf{82}, Princeton
  University Press, 1974.
\end{enumerate}

As one can gather from this title there is a close connection between
mapping class groups and the braid group and knot theory, which is the
main reason why string theory allowed Witten to get new insights into
knots. (The more mundane connection, namely that one ties knots out of
string, seems largely unexplored, but see
\protect\hyperlink{week18}{``Week 18''}.) Let me not digress into this
fascinating realm, however! The point I want to make here is just that:

\begin{quote}
The mapping class group acts on Teichm\"uller space, and the quotient by
this group action is moduli space.
\end{quote}

Anyone used to how math goes should find this pretty believable, but let
me explain: given a diffeomorphism of our surface of genus \(g\), we can use
it as a kind of ``coordinate transformation'' to turn one complex
structure into another. So the group of diffeomorphisms acts on
Teichm\"uller space, but, given how Teichmuller space is defined, the
subgroup of diffeomorphisms connected to the identity acts trivially.
Thus the mapping class group acts on Teichm\"uller space. By how moduli
space is defined, two points in Teichm\"uller space define the same point
in moduli space iff one is obtained from another by an element of the
mapping class group.

Now the good thing about Teichm\"uller space is that it has very nice
coordinates on it, called Fenchel-Nielsen coordinates, which reveal it
to be diffeomorphic to \(\mathbb{R}^{6g-6}\) when \(g > 1\). (The case
\(g = 0\) is utterly dull, since Teichm\"uller space is a point, and the
case \(g = 1\) is beautifully treated using the fact that any Riemann
surface of genus 1 is biholomorphically equivalent to the quotient of
the complex plane by a lattice, relating this case to the subject of
elliptic functions, as touched upon in \protect\hyperlink{week13}{``Week
13''}. I should also add that \protect\hyperlink{week13}{``Week 13''}
indicates, at least in the \(g = 1\) case, why moduli space is often
called the ``moduli space of curves.'')

Let me say how these coordinates go, rather sketchily, just so the
mysterious number \(6g-6\) becomes not so mysterious! Take your surface
of genus \(g\) -- just think of it as a doughnut with \(n\) holes -- and
cut it up into ``pairs of pants,'' that is, pieces that look like \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (0,-1) to (-0.5,-2);
    \draw[thick] (0.75,0) to (0.75,-1) to (1.25,-2);
    \draw[thick] (0.125,-2) to (0.375,-1.5) to (0.625,-2);
  \end{tikzpicture}
\] from above. Topologically, a pair of pants is just a sphere with
three discs cut out of it! A more dignified term for a pair of pants is
a ``trinion,'' by the way.

The idea now is to describe the complex structure on each pair of pants
separately, and then describe how the pairs of pants are glued together.
Now, it turns out that the complex structures on each pair of pants are
very easily described (up to biholomorphic equivalences connected to the
identity). It takes 3 positive real numbers. There's a unique metric on
the original surface pants that is compatible with the complex structure
(i.e.~is a ``K\"ahler metric") and has curvature equal to \(-1\). This is
called a hyperbolic metric, as in hyperbolic geometry. Then, we can cut
the surface into pairs of pants along circles that are geodesics
relative to this metric. To describe the complex structure on each pair
of pants we simply need to measure the lengths of the 3 bounding
circles; these are called the ``geodesic length functions". In other
words, if your pair of pants was hyperbolic, a tailor would only need to
measure you waistlength and the lengths around the two cuffs, not the
inseams!

Now it's a fun exercise to show that we can chop up a surface of genus
\(g > 1\) into exactly \(2g-2\) pairs of pants. Doing so, moreover,
requires that we cut the surface along \(3g-3\) circles. (Draw some
pictures!) Thus, we have a total of \(3g-3\) geodesic length functions.
However, we also need to describe how the pairs of pants are attached to
each other. We can glue them together with any amount of twisting, and
this twisting is a real-valued parameter. So there are \(3g-3\)
``twisting parameters'' required to describe how the pairs of pants are
attached. We thus have a total of \(6g-6\) parameters, the
Fenchel-Nielsen coordinates, and Teichm\"uller space is diffeomorphic to
\(\mathbb{R}^{6g-6}\) (since the positive real numbers are diffeomorphic
to \(\mathbb{R}\) itself).

I think I want to quit here but not before making a few random remarks.

First, there's another description of Teichm\"uller space which gives it
a triangulation, i.e., describes it as a bunch of high-dimensional
tetrahedra (simplices) glued together. Harer's paper gives a nice quick
sketch of this construction; the buzzword to look for is ``quadratic
differentials.'' The nice thing about this is that the mapping class
group action respects this triangulation so we get a triangulation of
moduli space.

Second, quite recent work by Penner:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  R.\ C.\ Penner, ``Universal constructions in Teichm\"uller theory'', 
  \emph{Adv. Math.} \textbf{98} (1993), 143--215.
\end{enumerate}
\noindent
shows how to fit the Teichm\"uller spaces for different genus \(g\) into
a single universal object. This was directly motivated by string theory,
but the basic idea is (I think) simply that there should be some sense
in which one can go ``continously'' from genus \(g+1\) to genus \(g\) by
making one handle smaller and smaller (with respect to the hyperbolic
metric) until it goes away.

Third, when studying the triangulation of Teichm\"uller space one
repeatedly runs across a certain ``Pachner move'' which goes from one
triangulation of a surface to another: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,1.5) node{$\bullet$} to (2,0) node{$\bullet$} to (1,-1.5) node{$\bullet$} to cycle;
    \draw[thick] (1,1.5) to (1,-1.5);
  \end{tikzpicture}
  \raisebox{4.5em}{$\qquad\longleftrightarrow\qquad$}
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,1.5) node{$\bullet$} to (2,0) node{$\bullet$} to (1,-1.5) node{$\bullet$} to cycle;
    \draw[thick] (0,0) to (2,0);
  \end{tikzpicture}
\] which reminds me of lattice field theories in 2 dimensions (see
\protect\hyperlink{week16}{``Week 16''} for an explanation) and the
``pentagon diagram'' showing how to get between the 5 simplest ways to
triangulate a pentagon using this move (see, for example, Figure 3 in
Penner's paper above, or Figure 3.2 of Harer's paper). The pentagon
diagram appears both in Moore and Seiberg's famous paper on string
theory and chopping up surfaces into pairs of pants:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  G.\ Moore and S.\ Seiberg, ``Classical and quantum conformal field theory'', \emph{Commun.\ Math.\ Phys.} \textbf{123} (1989), 177--254
\end{enumerate}
\noindent
and in category theory, with the relationship \emph{there} now pretty
well understood in terms of ``modular tensor categories'' --- see e.g.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Louis Crane, ``2-d physics and 3-d topology'', \emph{Commun.\ Math.\
  Phys.} \textbf{135} (1991) 615-640.
\end{enumerate}

Unfortunately, I haven't been able to get any string guru to sit down
and really clarify how the triangulations of Teichm\"uller space fit in.
Lest the reader wonder what the heck I'm going on about, the idea is
that category theory provides a marvelous way to unify the profusion of
mathematical structures that are coming up these days, and if we ever
understood everything in those terms, it would all seem much less
confusing.



\hypertarget{week29}{%
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I'm awfully busy this week, but feel like attempting to keep up with the
pile of literature that is accumulating on my desk, so this will be a
rather terse description of papers. All of these papers are related to
my current obsession with ``higher-dimensional algebra'' and its
applications to physics.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
   Ruth J.\ Lawrence, ``On algebras and triangle relations'', to appear
  in \emph{Proc. Top. \& Geom. Methods in Field Theory} (1992), eds.~J.\
  Mickelsson and O.\ Pekonen, World Scientific, Singapore.

  Ruth J.\ Lawrence, ``A presentation for Manin and Schechtman's higher braid groups'',
  available as MSRI preprint \texttt{04129-91}.

   Ruth J.\ Lawrence, ``Triangulations, categories and extended topological field
  theories'', to appear in \emph{Quantum Topology},
  eds.\ L.\ Kauffman and R.\ A.\ Baadhio, World Scientific, Singapore, 1993.

  Ruth J.\ Lawrence, ``Algebras and triangle relations'', Harvard U.\
  preprint.
\end{enumerate}

Many people are busily trying to extend the remarkable relationship
between knot theory and physics, which is essentially a feature of 3
dimensions, to higher dimensions. Since the \(3\)-dimensional case
required the development of new branches of algebra (namely, quantum
groups and braided tensor categories), it seems that the
higher-dimensional cases will require still further ``higher-dimensional
algebra.'' One approach, which is still being born, involves the use of
``\(n\)-categories,'' which are generalizations of braided tensor
categories suited for higher-dimensional physics. (See for example the
papers by Crane in \protect\hyperlink{week2}{``Week 2''}, by Kapranov
and Voevodsky in \protect\hyperlink{week4}{``Week 4''}, by Fischer and
Freed (separately) in \protect\hyperlink{week12}{``Week 12''}, and the
one by Gordon, Power, and Street below.) Lawrence has instead chosen to
invent ``\(n\)-algebras,'' which are vector spaces equipped with
operations corresponding to the ways one can subdivide
\((n-1)\)-dimensional simplices into more such simplices. (See the paper
by Chung, Fukuma and Shapere in \protect\hyperlink{week16}{``Week 16''}
for some of the physics motivation here.)

These alternative approaches should someday be seen as different aspects
of the same thing, but there as yet I know of no theorems to this
effect, so there is a lot of work to be done. Even more importantly,
there is a lot of work left to be done about inventing \emph{examples}
of these higher-dimensional structures. For example, there may
eventually be general results on ``boosting'' \(n\)-algebras to
\((n+1)\)-algebras, or \(n\)-categories to \((n+1)\)-categories, which
will explain how generally covariant physics in \(n\)-dimensional
spacetime relates to the same thing in one higher dimension. So far,
however, all we have is a few examples, which are not even clearly
related to each other. For example, Crane calls this boosting process
``categorification'' and has done it starting with the braided tensor
category of representations of a quantum group. Lawrence, on the other
hand, shows how to construct some 3-algebras from quantum groups. And
Freed has given a general procedure for ``boosting'' using path integral
methods that are not yet rigorous in the most interesting cases.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
   R.\ Gordon, A.\ J.\ Power, and Ross
  Street, \emph{Coherence for Tricategories}, Memoirs of the American
  Mathematical Society \textbf{558}, Providence, Rhode Island, 1995.
\end{enumerate}

An ``\(n\)-category'' is a kind of algebraic structure that has
``objects,'' ``morphisms'' between objects, ``2-morphisms'' between
morphisms, and so on up to ``\(n\)-morphisms.'' However, the
\emph{correct} definition of an \(n\)-category for the purposes of
physics is still unclear! I gave a rough explanation of the importance
of \(2\)-categories in physics in \protect\hyperlink{week4}{``Week 4''},
where I discussed Kapranov and Voevodsky's nice definition of braided
tensor \(2\)-categories. However, it seems likely that we will need to
understand the situation for larger n as well. This paper makes a big
step in this direction, by defining ``tricategories'' (what I might call
``weak \(2\)-categories'') and proving a ``strictification'' or
``coherence'' result analogous to the result that every braided tensor
category is equivalent to a ``strict'' one. The result is, however,
considerably more subtle, as it involves a special way of defining the
tensor product of \(2\)-categories due to Gray:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
   John W.\ Gray, \emph{Formal Category Theory: Adjointness for \(2\)-Categories}, 
  Springer Lecture Notes in Mathematics \textbf{391},
  Springer, Berlin, 1974.

    John W.\ Gray, ``Coherence for the tensor product of \(2\)-categories, and braid
  groups'', in \emph{Algebras, Topology, and Category Theory}, eds.~A.
  Heller and M. Tierney, Academic Press, New York, 1976, pp.~63--76.
\end{enumerate}

Briefly speaking, Gordon--Power--Street use a category they call ``Gray,''
the category of all \(2\)-categories, made into a symmetric monoidal
closed category using a modified version of Gray's tensor product. Then
they show that every tricategory (as defined by them) is
``triequivalent'' to a category enriched over Gray.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  J.\ M.\ Maillet, ``On pentagon and tetrahedron equations'',
  available as
  \href{https://arxiv.org/abs/hep-th/9312037}{\texttt{hep-th/9312037}}.
\end{enumerate}

Maillet shows how to obtain solutions of the tetrahedron equations from
solutions of pentagon equations; all these geometrical equations are
part of the theory of \(2\)-categories, and this is yet another example
of a ``boosting'' construction as alluded to above.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
    David Yetter, ``Homologically twisted invariants related to (2+1)- and
  (3+1)-dimensional state-sum topological quantum field theories'', 
 available as
  \href{https://arxiv.org/abs/hep-th/9311082}{\texttt{hep-th/9311082}}.
\end{enumerate}

Let me simply quote the abstract: ``Motivated by suggestions of Paolo
Cotta-Ramusino's work at the physical level of rigor relating \(BF\)
theory to the Donaldson polynomials, we provide a construction
applicable to the Turaev--Viro and Crane--Yetter invariants of \emph{a
priori} finer invariants dependent on a choice of (co)homology class on
the manifold.'' The dream is that this would give a state-sum formula
for the Donaldson polynomials, but Yetter is careful to avoid claiming
this! A while back, Crane and Yetter showed how to get \(4\)-dimensional
TQFTs from certain 3d TQFTs by another kind of ``boosting'' procedure
related to those mentioned above, but the resulting TQFT in
\(4\)-dimensions did not by itself yield interesting new invariants of
4-manifolds. The procedure Yetter describes here generalizes the earlier
work by allowing the inclusion of an embedded 2-manifold.



\hypertarget{week30}{%
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For the most part, this is a terse description of some papers dealing
with quantum gravity. Some look to be quite important, but as I have not
had time to read them as thoroughly as I would like, I won't say much.

First, however, let me note some books:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
   Silvan S. Schweber, \emph{QED and the Men Who Made It: Dyson, Feynman, Schwinger and
  Tomonaga}, Princeton U.\ Press, Princeton, 1994.
\end{enumerate}

Back in the 1930s there was a crisis in physics: nobody knew how to
reconcile quantum theory with special relativity. This book describes
the history of how people struggled with this problem and achieved a
marvelous, but flawed, solution: quantum electrodynamics (QED).
Marvelous, because it made verified predictions of unparalleled
accuracy, involves striking new concepts, and gave birth to beautiful
new mathematics. Flawed, only because nobody yet knows for sure whether
the theory is mathematically well-defined -- for reasons profoundly
related to physics at ultra-short distance scales. This story should
give some inspiration to those currently attempting to reconcile quantum
theory with general relativity! Feynman, Schwinger, and Tomonaga won
Nobel prizes for QED, but Dyson was also instrumental in inventing the
theory, and the book is mainly a story of these 4 men.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Bruce Stephenson, \emph{The Music of the Heavens: Kepler's Harmonic Astronomy},  
  Princeton U.\ Press, Princeton, 1994.

   Bruce Stephenson, \emph{Kepler's Physical Astronomy}, Princeton U.\
  Press, Princeton, 1994.
\end{enumerate}

Kepler's work on astronomy was in part based on the notion of the
``music of the spheres,'' and in his Harmonice Mundi (1619) he sought to
relate planetary velocities to the notes of a chord. He was also
fascinated with geometry, and sought to relate the radii of the
planetary orbits to the Platonic solids. While this may seem a bit silly
nowadays, it's clear that this faith that mathematical patterns pervade
the heavens was a crucial part of how Kepler found his famous laws of
planetary motion. Also important, of course, was his use of what we
would now call ``physical'' reasoning to understand the heavens -- that
is, the use of analogies between the motions of heavenly bodies and that
of ordinary terrestial matter. But even this is not as straightforward
as one might hope, since (Stephenson argues in the second book) this
physical reasoning was what we would now consider incorrect, even though
it led to valid laws. More inspiration for those now struggling amid
error to understand what the universe is really like!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Louis Kauffman and Sostenes Lins, 
  \emph{Temperley--Lieb Recoupling Theory and Invariants of 3-Manifolds},
  Annals of Mathematics Studies
  \textbf{133}, Princeton U.\ Press, Princeton, 1994.
\end{enumerate}

I described this briefly in \protect\hyperlink{week17}{``Week 17''},
before I had spent much time on it. Let me recall the main point: in the
late 80's Jones invented a new invariant of knots and links in ordinary
3d space, but then Witten recognized that this invariant came from a
quantum field theory, and thus could be extended to obtain an invariant
of links in arbitrary 3d manifolds. (In particular, taking the link to
be empty, one obtains a 3-manifold invariant.) In fact, there is a whole
family of such invariants, essentially one for each semisimple Lie
algebra, and Jones original example corresponded to the case
\(\mathfrak{su}(2)\). In this case the combinatorics of the invariants
are so simple that one can write a nice exposition in which one forgets
the underlying, fairly sophisticated, mathematical physics (quantum
groups, conformal field theory and the like) and simply presents the
``how-to'' using a kind of diagrammatic calculus known as ``skein
relations,'' or what Kauffman calls ``Temperley--Lieb recoupling
theory.'' That is the approach the authors take here. The curious reader
will naturally want to know more! For example, anyone familiar with
quantum theory and ``\(6j\) symbols'' will sense that this kind of thing
is lurking in the background, and indeed, it is.

Now for the papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  C.\ Rovelli and L.\
  Smolin, ``The physical hamiltonian in quantum gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/9308002}{\texttt{gr-qc/9308002}}.

  H.\ A.\ Morales-Tecotl and C.\
  Rovelli, ``Fermions in quantum gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/9401011}{\texttt{gr-qc/9401011}}.
\end{enumerate}

The Rovelli--Smolin loop variables program proceeds apace! In the former
paper, Rovelli and Smolin consider quantum gravity coupled to a scalar
matter field which plays the role of a clock. (Using part of the system
described to play the role of a clock is a standard idea for dealing
with the ``problem of time,'' which arises in quantum theories on
spacetimes having no preferred coordinates, like quantum gravity.
However, getting this idea to actually work is not at all easy. For a
bit on this issue see \protect\hyperlink{week27}{``Week 27''}.) Only
after choosing this ``clock field'' can one work out a Hamiltonian for
the theory, write down the analog of Schr\"odinger's equation, and examine
the dynamics. Before, there is only a ``Hamiltonian constraint''
equation, also known as the Wheeler--DeWitt equation.

In the latter paper, Rovelli and Marales-Tecotl discuss how to include
fermions. The beautiful thing here is that fermions are described in the
loop representation by the \emph{ends} of arcs, while pure gravity is
described by loops. This is completely analogous to the old string
theory of mesons, in which mesons were represented as arcs of ``string''
-- the gluon field -- connecting two fermionic ``ends'' -- the quarks.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  C. Di Bartolo, R. Gambini, J. Griego and J. Pullin, ``Extended loops: a new arena for           
  nonperturbative quantum gravity'',
  available as
  \href{https://arxiv.org/abs/gr-qc/9312029}{\texttt{gr-qc/9312029}}.
\end{enumerate}

For a while now, Gambini and collaborators have been developing a
modified version of the loop representation that appears to be
especially handy for doing perturbative calculations (perturbing in the
coupling constant, that is, Newton's gravitational constant --
\emph{not} perturbing about a fixed flat ``background'' spacetime, which
is regarded as a ``no-no'' in this philosophy). The mathematical basis
for this ``extended'' loop representation is something quite charming in
itself: it amounts to embedding the loop group into an
(infinite-dimensional) Lie group. The ``perturbative'' calculations
described above are thus analogous to how one uses Lie algebras to study
Lie groups. In fact, this analogy is a deep one, since the extended loop
representation also permits perturbative calculations in Chern--Simons
theory, allowing one to calculate ``Vassiliev invariants'' starting just
from Lie-algebraic data. In fact this was done by Bar-Natan (cf
\protect\hyperlink{week3}{``Week 3''}), who was using the extended loop
representation without particularly knowing about that fact!

This paper puts the extended loop representation to practical use by
finding some new solutions to the quantum version of Einstein's
equations. These solutions are essentially Vassiliev invariants! (See
also the paper by Gambini and Pullin listed in
\protect\hyperlink{week23}{``Week 23''}).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Domenico
  Giulini, ``Ashtekar variables in classical general relativity'', available as
  \href{https://arxiv.org/abs/gr-qc/9312032}{\texttt{gr-qc/9312032}}.
\end{enumerate}

This was a lecture given at the 117th WE-Heraeus Seminar: ``The
Canonical Formalism in Classical and Quantum General Relativity'', 13-17
September 1993, Bad Honnef, Germany, the goal of which was to give an
introduction to Ashtekar's ``new variables'' for general relativity.



\hypertarget{week31}{%
\section{February 18, 1994}\label{week31}}

Well, I'm really busy these days trying to finish up a big project,
hence the low number of ``Weeks'' per week,
but papers are piling up, and there are some pretty interesting ones, so
I thought I'd quickly mention a few. This bunch will mainly concern
quantum gravity.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Louis
  Crane, ``Possible implications of the quantum theory of gravity'', available as
  \href{https://arxiv.org/abs/hep-th/9402104}{\texttt{hep-th/9402104}}.
\end{enumerate}
\noindent
This is one paper that everyone can read and enjoy, for although one may
find it too close to science fiction for comfort, it is far more
interesting than most science fiction. Louis Crane has been doing a lot
of excellent work on topological quantum field theory for the last few
years, strongly advocating the use of category theory as a unifying
principle in physics (essentially as an extension of the concept of
symmetry embodied in \emph{group} theory), but this is quite different
in flavor.

To begin with, Lee Smolin, one of the originators of the loop
representation of quantum gravity, has been spending the last year or so
writing a book in a popular style, to be entitled ``Life and Light,''
which tours the cosmos and makes some interesting speculations on
``evolutionary cosmology.'' These speculations are based on 2
hypotheses.

\begin{quote}
A. The formation of a black hole creates ``baby universe,'' the final
singularity of the black hole tunnelling right on through to the initial
``Big Bang'' singularity of the new universe thanks to quantum effects.
\end{quote}

While this must undoubtedly seem outre to anyone unfamiliar with the
sort of thing theoretical physicists amuse themselves with these days,
in a recent review article by John Preskill on the information loss
paradox for black holes, he reluctantly concluded that this was the
\emph{most conservative} solution of that famous problem! Recall the
problem: if a black hole evaporates its mass away via Hawking radiation,
and that radiation is pure blackbody radiation, hence carries none of
the information about the matter that originally formed the black hole,
one does not have conservation of information, or more technically
speaking, the time evolution is not unitary, since a pure state is
evolving into a mixed state. Hawking's original solution to this problem
was to bite the bullet and accept the nonunitarity, even though it goes
against the basic principles of quantum theory. This appears in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  S. W. Hawking, ``Black holes and thermodynamics'', \emph{Phys. Rev. D} \textbf{13} 
  (1976), 191--197.
\end{enumerate}

The ``baby universe'' solution simply says that the matter seeds a baby
universe and the information goes \emph{there}. Many other solutions
have been proposed; two recent review articles are

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  J. Preskill, ``Do black holes destroy information?'', available as
  \href{https://arxiv.org/abs/hep-th/9209058}{\texttt{hep-th/9209058}}.
\item
   Don Page, ``Black hole information'', in \emph{Proceedings of the 5th Canadian Conference on
  General Relativity and Relativistic Astrophysics, University of
  Waterloo, 13--15 May, 1993}, eds.\ R. B. Mann and R. G. McLenaghan,
  World Scientific, Singapore, 1994.  Available as
  \href{https://arxiv.org/abs/hep-th/9305040}{\texttt{hep-th/9305040}}.
\end{enumerate}
\noindent
Personally, I am a complete agnostic about this problem, since it rests
upon so many phenomena that are hypothesized but not yet observed, and
since any solution would require a theory of quantum gravity. I am
merely reporting the ideas of respected physicists! In any event, the
second hypothesis is:

\begin{quote}
B. Certain parameters of the baby universe are close to but different
than those of the parent universe.
\end{quote}

 The notion that certain physical
facts that appear as ``laws'' are actually part of the state of the
univese has in fact been rather respectable since the application of
spontaneous symmetry breaking to the Weinberg--Salaam model of electroweak
interactions, part of the standard model. (Again, being my usual
cautious self, I must note that a crucial piece of evidence for this
model, the Higgs boson, has not yet been seen.) The notion of
spontaneous symmetry breaking has become quite popular in particle
physics and is a key component of all current theories, such as GUTs or
string theory, that attempt to model the messy heap of observed
particles and interactions by some pristinely symmetrical Lagrangian.
The spontaneous symmetry breaking would be expected to have occured
shortly after the Big Bang, when it got cool enough, much as a hot piece
of iron will randomly settle upon some direction of magnetization as its
temperature fall below the Curie temperature. One application of this
notion to cosmology is already widely popular, namely, inflation. In
fact, pursuing the analogy with magnetic domains, i.e.~small regions
with different directions of magnetization, cosmologists have spend a
fair amount of energy thinking about ``domain walls,'' ``cosmic
strings,'' monopoles and other defects that might occur as residues of
this cooling-down process.

So again, while the idea must seem wild to anyone who has not
encountered it before, physicists these days are fairly comfortable with
the idea that certain ``fundamental constants'' could have been other
than they were. As for the constants of a baby universe being close to,
but different than, those of the parent universe, there is as far as I
know no suggested mechanism for this. This is perhaps the weakest link
in Smolin's argument (though I haven't seen his book yet). But it is at
least conceivable.

Now, given these hypotheses a marvellous consequence ensues: Darwinian
evolution! Those universes whose parameters are such that many black
holes are formed will have many progeny, so the constants of physics can
be expected to be ``tuned'' for the formation of many black holes. As
Smolin emphasizes, while the hypotheses A and B may seem impossible to
test directly at present, we do at least have a hope of testing this
consequence. He has studied the marvellously intricate process of star
formation in the galaxy and attempted to see whether altering the
constants of physics appear ``tuned'' for maximizing black hole
production, and he argues in his book that they do appear so tuned. Of
course, this is an extremely delicate business, since our understanding
of galaxy formation, star formation and black hole formation even in
\emph{this} universe is still rather weak --- much less for other
conceivable universes in which the fundamental constants take different
values.

Crane enters the fray at this point, and proposes an additional
conjecture:

\begin{quote}
SUCCESSFUL INDUSTRIAL CIVILIZATIONS WILL EVENTUALLY CREATE BLACK HOLES.
\end{quote}
\noindent
(The capital letters are his.) He breaks it up into two parts for us:

\begin{quote}
SUBCONJECTURE 1: SUCCESSFUL INDUSTRIAL CIVILIZATIONS WILL EVENTUALLY
WANT TO MAKE BLACK HOLES
\end{quote}
\noindent
and

\begin{quote}
SUBCONJECTURE 2: SUCCESSFUL INDUSTRIAL CIVILIZATIONS WILL EVENTUALLY BE
ABLE TO PRODUCE BLACK HOLES.
\end{quote}
\noindent
and argues for each. The result, as any good evolutionist will
recognize, is a kind of feedback loop whereby intelligence and baby
universe formation both affect each other. Indeed, Crane calls his
hypothesis the ``meduso-anthropic hypothesis,'' after certain jellyfish
with a two-stage life cycle in which medusids produce polyps and vice
versa. This has the charm of completely destroying the usual approach
(dare I say ``paradigm''?) of physics in which the parameters of the
universe are regarded as indifferent to the existence of intelligence.
Of course, the anthropic hypothesis is a previous attempt to breach this
firewall, but a much less dramatic one, since the only role intelligence
plays in that is \emph{noticing} the laws of the universe.

At this point let me leave off with a quote from Crane's paper:

\begin{quote}
``It is not hard to see that if these ideas are true, they will be the
victims of abuse to dwarf quantum healing and even quantum golf. That is
not sufficient reason to ignore them.''
\end{quote}
\noindent
and let me \emph{gradually} turn towards slightly less speculative
realms, eventually finishing with some papers containing rigorous
mathematics! To begin with, some more on black hole entropy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Leonard Susskind, ``Some speculations about black hole entropy in string theory'',
   available as
  \href{https://arxiv.org/abs/hep-th/9309145}{\texttt{hep-th/9309145}}.

  Leonard Susskind and J. Uglum,``Black hole entropy in canonical quantum gravity and superstring
  theory'', available as
  \href{https://arxiv.org/abs/hep-th/9401070}{\texttt{hep-th/9401070}}.
\end{enumerate}
\noindent
The fact that the entropy of a black hole is (at least under certain
circumstances) proportional to the area of its event horizon is a
curious relationship between general relativity, quantum field theory
and statistical mechanics that many people believe to pointing
somewhere, but unfortunately nobody is sure where. Part of the reason is
that the standard derivations are somewhat indirect, and the event
horizon is not a physical object, so the sense in which it is the locus
of entropy is difficult to understand. These authors suggest that in
string theory it can be explained in terms of open strings having both
ends attached to the horizon.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  C.\ R.\ Stephens,
  G.\ 't Hooft and B.\ F.\ Whiting, ``Black hole evaporation without information loss'', available as
  \href{https://arxiv.org/abs/gr-qc/9310006}{\texttt{gr-qc/9310006}}.
\end{enumerate}
\noindent
This is an attempt to make black holes radiate away and disappear in a
manner that preserves unitarity. I've been too busy to read it. And now
for some wormholes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Hoi-Kwong Lo,
  Kai-Ming Lee, and John Preskill, ``Complementarity in Wormhole Chromodynamics'', available as
  \href{https://arxiv.org/abs/hep-th/9308044}{\texttt{hep-th/9308044}}.
\end{enumerate}
\noindent
Let me just quote the abstract and note that there is probably some
quite interesting topology to be obtained by applying this sort of idea
to mathematics:

\begin{quote}
The electric charge of a wormhole mouth and the magnetic flux ``linked''
by the wormhole are non-commuting observables, and so cannot be
simultaneously diagonalized. We use this observation to resolve some
puzzles in wormhole electrodynamics and chromodynamics. Specifically, we
analyze the color electric field that results when a colored object
traverses a wormhole, and we discuss the measurement of the wormhole
charge and flux using Aharonov-Bohm interference effects. We suggest
that wormhole mouths may obey conventional quantum statistics, contrary
to a recent proposal by Strominger.
\end{quote}

Finally, lest the mathematicians think I have abandoned ship, some
rigorous results:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Piotr T.\
  Chrusciel, ````No hair'' theorems --- folklore, conjectures, results", available 
  as \href{https://arxiv.org/abs/gr-qc/9402032}{\texttt{gr-qc/9402032}}.
\end{enumerate}
\noindent
The famous ``no hair'' theorem says that in general relativity static
black hole solutions are determined by very few parameters --- typically
listed as mass, angular momentum and charge in ``rest frame'' of the
black hole. There have been many attempts to extend this result,
especially because no \emph{actual} black hole is likely to be utterly
static, since it presumably formed at some time. I have not read this
but Chrusciel is a very careful person so I expect it will be up to the
standards of his nice review of work on the cosmic censorship
hypothesis,

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Piotr T. Chrusciel, ``On uniqueness in the large of solutions of Einstein's equations
  (``Strong cosmic censorship'')'', in
  \emph{Mathematical Aspects of Classical Field Theory}, Contemp. Math.
  \textbf{132}, eds.~Gotay, Marsden and Moncrief, American Mathematical
  Society, Providence, Rhode Island,
  1992, pp.~235--274.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum}: See \protect\hyperlink{week33}{``Week 33''} for a
paper by Smolin on his evolutionary cosmology theory. His book came out
in 1997 under the title \emph{The Life of the Cosmos'} --- see
\protect\hyperlink{101}{``Week 101''} for details.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{The thing that makes things and the thing that makes things fall
apart --- they're the same thing. Entropy maximization!}

--- Chris Lee
\end{quote}



\hypertarget{week32}{%
\section{March 10, 1994}\label{week32}}

Well, I visited Georgia Tech last week to spread the gospel of ``knots
and quantum gravity,'' and came across a most fascinating development.
I'm sure readers of \texttt{sci.math} and \texttt{sci.math.research}
have taken note of the \emph{New York Journal of Mathematics}. This is
one of the first refereed electronic journals of mathematics. Neil
Calkin at Georgia Tech is helping to start up another one --- the
\emph{Electronic Journal of Combinatorics}. Though it's unlikely,
perhaps some among you are still unaware (or unconvinced) of how
essential it is that we develop fully refereed free-of-charge electronic
journals of mathematics and physics. The first and most obvious reason
is that computer-based media offer all sorts of flexibility that print
media lack --- more on this later. But the other reason is that the
monopoly of print journals \emph{must} be broken.

For example, U. C. Riverside does not subscribe to \emph{Communications
in Mathematical Physics}, despite the fact that this is \emph{the}
crucial journal in that subject, because this journal costs \$3,505 a
year! The ridiculous price is, of course, in part precisely because this
is the crucial journal in that subject, in part because the journal uses
antiquated and expensive production methods involving paper, and in part
because, being a big operation, it is basically run by a publishing
house rather than mathematical physicists. Luckily, with the advent of
the preprint mailing lists \texttt{hep-th} and \texttt{gr-qc}, I don't
\emph{need} to read Communications in Mathematical Physics very often! I
simply get my list of abstract each day by email from Los Alamos, and
send email to get the papers I want, in LaTeX or TeX form. The middleman
has been cut out --- at least for the moment.

One problem with preprint mailing lists, though, is that the preprints
have not gone through the scrutiny of the referee process. This is,
frankly, much less of a problem for the \emph{readers} than is commonly
imagined, because this scrutiny is less intense than people who have
never refereed papers think! Many refereed papers have errors, and I
would personally feel very uncomfortable using a result unless I either
understood the proof or knew that most experts believed it. The real
need for refereed journals, in my slightly cynical opinion, is that
academics need \emph{refereed publications} to advance in their jobs:
the people who give tenure, promotions etc. cannot be expected to read
and understand ones papers. This is, of course, also the reason for
other strange phenomena, such as the idea of \emph{counting} somebody's
publications to see how good they are. We need only count Alexander
Abian's publications to see the limitations of this approach.

Eventually, a few birds may be killed with one stone by means of ``seals
of approval'' or SOAPs, which are being widely discussed by people
interested in the ``information superhighway,'' or --- let's call a
spade a spade --- the Internet. For more on these, check out the
\texttt{newsgroup\ comp.interpedia}, or read material about the Xanadu
project. The idea here is that eventually we will have a good system
whereby people can append comments to documents, such as ``there is an
error in the proof of Lemma 1.5, which can be fixed as follows\ldots{}''
or simply various seals of approval, functioning similarly to the seal
of approval ones paper obtains by being published in a journal. E.g.,
one could make ones paper available by ftp or some other protocol, and
``submitting it to a journal'' might amount to asking for a particular
SOAP, with various SOAPs carrying various amounts of prestige, and so
on.

Of course, journals also function as a kind of information ``hub'' or
central access point. We all know that to find out what's the latest
trend in particle physics, it suffices to glance at \emph{Nuc. Phys. B}
and certain other journals, and so on. It is not clear that the function
of ``hub'' and the function of SOAP need be combined into a single
institution, once the onerous task of transcribing ideas onto dead trees
and shipping them all around the world becomes (at least partially)
obsolete.

It is also not at all certain whether, in the long run, the monopolistic
power of journals to charge large fees for accessing information will be
broken by the new revolutions in technology. This is, of course, just
one small facet of the political/economic struggle for control over
information flow that is heating up these days, at least in the U.S.,
among telephone companies, cable TV stations, computer networks such as
Compuserve, etc. etc.. If mathematicians and physicists don't think
about these issues, someone else who has will wind up defining the
future for us.

Anyway, for now it seems to make good sense to start refereed journals
of mathematics and physics that are accessible electronically, free of
charge, over the Internet. Not too long ago one would commonly hear the
remark ``\ldots but of course nobody would ever want to do that,
because\ldots{}'' followed by some reason or other, reminiscent of how
\textbf{clearly} nobody would want to switch from horses to automobiles
because then one would have to build \textbf{gas stations all over the
place} --- obviously too much bother to be worthwhile. Now, however,
things are changing and the new electronic journals are getting quite
respectable lists of editors, and they seem to have a good chance of
doing well. I urge everyone to support free-of-charge electronic
journals by submitting good papers!

Let me briefly describe the electronic journals I mentioned above. The
New York Journal's chief editor is Mark Steinberger, at SUNY Albany,
\texttt{mark@sarah.albany.edu}. The journal covers algebra, modern
analysis, and geometry/topology. Access is through anonymous ftp, gopher
and listserv, the latter being (I believe) a mailing list protocol. One
can subscribe by sending email to \texttt{listserv@albany.edu} or
\texttt{listserv@albany.bitnet}; if you want abstracts for all the
papers, the body of your email should read

\begin{center}
\begin{verbatim}
subscribe NYJMTH-A <your full name>
\end{verbatim}
\end{center}
\noindent
but you can also subscribe to only certain topics (one of the great
things about electronic journals --- one can only begin to imagine the
possibilities inherent in this concept!), as follows:

\begin{quote}
{\rm 
Algebra:

\texttt{subscribe\ NYJM-ALG\ \textless{}your\ full\ name\textgreater{}}

Analysis:

\texttt{subscribe\ NYJM-AN\ \ \textless{}your\ full\ name\textgreater{}}

Geometry/Topology:

\texttt{subscribe\ NYJM-TOP\ \textless{}your\ full\ name\textgreater{}}
}
\end{quote}
\noindent
Papers are accepted in amstex and amslatex, and when you get papers you
get a \texttt{.dvi} file.

The \emph{Electronic Journal of Combinatorics} is taking a somewhat more
ambitious approach that has me very excited. Namely, they are using
Mosaic, a hypertext interface to the WWW (World-Wide Web). This means,
to technical illiterates such as myself, that if you can ever get your
system manager to get the software running, you can see a ``front page''
of the journal, with the names of the articles and other things
underlined (or in color if you're lucky). To go to any underlined item,
you simply click your mouse on it. In fact, you can use this method to
navigate throughout the whole WWW, which is a vast, sprawling network of
linked files, including --- so I hear --- ``This Week's Finds''! In the
\emph{Electronic Journal of Combinatorics}, when you click on an article
you will see it in postscript form, pretty equations and all. You can
also get yourself a copy and print it out. Neil showed me all this stuff
and my mouth watered! The danger of this ambitious approach is of course
that folks who haven't kept up with things like the WWW may find it
intimidating\ldots{} for a while. It's actually not too complicated.

This journal will be widely announced pretty soon. The editor in chief
is Herbert S. Wilf, \texttt{wilf@central.cis.upenn.edu}, and the
managing editor is Neil Calkin, \texttt{calkin@math.gatech.edu}. It
boasts an impressive slate of editors (even to me, who knows little
about combinatorics), including Graham, Knuth, Rota and Sloane. To get
browse the journal, which is presently under construction, you just do
the following if you can use Mosaic: ``Click on the button marked `Open'
and then type in
\texttt{http://math34.gatech.edu:8080/Journal/journalhome.html}''. To
\emph{get} Mosaic, do anonymous ftp to \texttt{ftp.ncsa.uiuc.edu} and
\texttt{cd} to \texttt{Web/Mosaic\_binaries} --- and then you're on your
own, I just tried it and there were too many people on! --- but Neil
says it's not too hard to get going. I will try as soon as I have a free
day.

``Ahem!'' the reader comments. ``What does this have to do with
mathematical physics?'' Well, seeing how little I'm being paid, I see
nothing wrong with interpreting my mandate rather broadly, but I should
add the following. 

1) There are periodic posts on \texttt{sci.physics}
about physics on the WWW; there's a lot out there, and to get started
one always try the following. The information below is taken from Scott
Chase's physics FAQ:

\begin{verbatim}
* How to get to the Web

    If you have no clue what WWW is, you can go over the Internet with
telnet to info.cern.ch (no login required) which brings you to the WWW 
Home Page at CERN. You are now using the simple line mode browser. To move 
around the Web, enter the number given after an item. 

* Browsing the Web

    If you have a WWW browser up and running, you can move around
more easily. The by far nicest way of "browsing" through WWW uses the
X-Terminal based tool "XMosaic". Binaries for many platforms (ready for
use) and sources are available via anonymous FTP from ftp.ncsa.uiuc.edu
in directory Web/xmosaic.  The general FTP repository for browser
software is info.cern.ch (including a hypertext browser/editor for
NeXTStep 3.0)

* For Further Information

    For questions related to WWW, try consulting the WWW-FAQ: Its most 
recent version is available via anonymous FTP on rtfm.mit.edu in 
/pub/usenet/news.answers/www-faq , or on WWW at 
http://www.vuw.ac.nz:80/overseas/www-faq.html

    The official contact (in fact the midwife of the World Wide Web) 
is Tim Berners-Lee, timbl@info.cern.ch. For general matters on WWW, try 
www-request@info.cern.ch or Robert Cailliau (responsible for the "physics" 
content of the Web, cailliau@cernnext.cern.ch).
\end{verbatim}

And: 2) there are rumors, which I had better not elaborate on yet, about
an impending electronic journal of mathematical physics! I eagerly await
it!

Okay, just a bit about actual mathematical physics per se this time.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Carlo Rovelli, ``On quantum mechanics'', available as
  \href{https://arxiv.org/abs/hep-th/9403015}{\texttt{hep-th/9403015}}.
\end{enumerate}
\noindent
This interesting paper suggests that reason why we are constantly
arguing about the meaning of quantum mechanics, despite the fact that it
works perfectly well and is obviously correct, is that we are making a
crucial conceptual error. Rovelli very nicely compares the problem to
special relativity before Einstein did his thing: we had Lorentz
transformations, but they seemed very odd and paradoxical, because the
key notion that the space/time split was only defined \emph{relative to
a frame} (or ``observer'' if we wish to anthropomorphize) was lacking.
Rovelli proposes that in quantum mechanics the problem is that we are
lacking the notion that the \emph{state} of a system is only defined
relative to an observer. (The ``Wigner's friend'' puzzle is perhaps the
most obvious illustration here.) What, though, is an observer? Any
subsystem of a quantum system, says Rovelli; there is no fundamental
``observer-observed distinction.'' This fits in nicely with some recent
work by Crane and myself on quantum gravity, so I like it quite a bit,
though it is clearly not the last word on this issue (nor does Rovelli
claim it to be).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Alan D.\ Rendall, ``Adjointness relations as a criterion for choosing an inner
  product'', available as
  \href{https://arxiv.org/abs/gr-qc/9403001}{\texttt{gr-qc/9403001}}.
\end{enumerate}
\noindent
The inner product problem in quantum gravity is an instance of a
general, very interesting mathematics problem, namely, of determining an
inner product on a representation of a star-algebra, by demanding that
the representation be a star-representation. Rendall has proved some
very nice results on this issue.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Maxim Kontsevich and Yuri Manin, ``Gromov-Witten classes, quantum cohomology, and  
  enumerative  geometry'', available as 
  \href{https://arxiv.org/abs/hep-th/9402147}{\texttt{hep-th/9402147}}.
\end{enumerate}

I will probably never understand this paper so I might as well mention
it right away. Kontsevich's work on knot theory, and Manin's work on
quantum groups and (earlier) instantons is extremely impressive, so I
guess they can be forgiven for their interest in algebraic geometry. (A
joke.) Let me simply quote:

\begin{quote}
``The paper is devoted to the mathematical aspects of topological
quantum field theory and its applications to enumerative problems of
algebraic geometry. In particular, it contains an axiomatic treatment of
Gromov-Witten classes, and a discussion of their properties for Fano
varieties. Cohomological Field Theories are defined, and it is proved
that tree level theories are determined by their correlation functions.
Applications to counting rational curves on del Pezzo surfaces and
projective spaces are given.''
\end{quote}



\hypertarget{week33}{%
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With tremendous relief, I have finished writing a book, and will return
to putting out This Week's Finds on a roughly weekly basis. Let me
briefly describe my book, which took so much more work than I had
expected\ldots{} and then let me start catching up on listing some of
the stuff that's cluttering my desk!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Baez and Javier de
  Muniain, \emph{Gauge Fields, Knots and Gravity}, World Scientific Press, Singapore, 
  1994.
\end{enumerate}

This book is based on a seminar I taught in 1992--93. We start out
assuming the reader is familiar with basic stuff --- Maxwell's
equations, special relativity, linear algebra and calculus of several
variables --- and try to prepare the reader to understand recent work on
quantum gravity and its relation to knot theory. It proved difficult to
do this well in a mere 460 pages. Lots of tantalizing loose ends are
left dangling. However, there are copious references so that the reader
can pursue various subjects further.

\begin{quote}
{\rm
Part 1. Electromagnetism

Chapter 1. Maxwell's Equations

Chapter 2. Manifolds

Chapter 3. Vector Fields

Chapter 4. Differential Forms

Chapter 5. Rewriting Maxwell's Equations

Chapter 6. DeRham Theory in Electromagnetism

Part 2. Gauge Fields

Chapter 1. Symmetry

Chapter 2. Bundles and Connections

Chapter 3. Curvature and the Yang--Mills Equations

Chapter 4. Chern--Simons Theory

Chapter 5. Link Invariants from Gauge Theory

Part 3. Gravity

Chapter 1. Semi-Riemannian Geometry

Chapter 2. Einstein's Equations

Chapter 3. Lagrangians for General Relativity

Chapter 4. The ADM Formalism

Chapter 5. The New Variables
}
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Asher Peres, \emph{Quantum Theory: Concepts and Methods}, Kluwer
  Academic Publishers, Amsterdam, 1994.
\end{enumerate}
\noindent
As Peres notes, there are many books that teach students how to solve
quantum mechanics problems, but not many that tackle the conceptual
puzzles that fascinate those interested in the foundations of the
subject. His book aims to fill this gap. Of course, it's impossible not
to annoy people when writing about something so controversial; for
example, fans of Everett will be distressed that Peres' book contains
only a brief section on ``Everett's interpretation and other bizarre
interpretations''. However, the book is clear-headed and discusses a lot
of interesting topics, so everyone should take a look at it.

Schr\"odinger's cat, Bell's inequality and Wigner's friend are old
chestnuts that everyone puzzling over quantum theory has seen, but there
are plenty of popular new chestnuts in this book too, like ``quantum
cryptography'', ``quantum teleportation'', and the ``quantum Zeno
effect'', all of which would send shivers up and down Einstein's spine.
There are also a lot of gems that I hadn't seen, like the
Wigner--Araki--Yanase theorem. Let me discuss this theorem a bit.

Roughly, the WAY theorem states that it is impossible to measure an
operator that fails to commute with an additive conserved quantity. Let
me give an example to clarify this and then give the proof. Say we have
a particle with position \(q\) and momentum \(p\), and a measuring
apparatus with position \(Q\) and momentum \(P\). Let's suppose that the
total momentum \(p + P\) is conserved --- which will typically be the
case if we count as part of the ``apparatus'' everything that exerts a
force on the particle. Then as a consequence of the WAY theorem we can
see that (in a certain sense) it is impossible to measure the particle's
position \(q\); all we can measure is its position \emph{relative} to
the apparatus, \(q-Q\).

Of course, whenever a ``physics theorem'' states that something is
impossible one must peer into it and determine the exact assumptions and
the exact result! Lots of people have gotten in trouble by citing
theorems that seem to show something is impossible without reading the
fine print. So let's see what the WAY theorem \emph{really} says!

It assumes that the Hilbert space for the system is the tensor product
of the Hilbert space for the thing being observed --- for short, let's
call it the ``particle'' --- and the Hilbert space for the measuring
apparatus. Assume also that \(A\) and \(B\) are two observables
belonging to the observed system, while \(C\) is an observable belonging
to the measuring apparatus; suppose that \(B + C\) is conserved, and
let's try to show that we can only measure \(A\) if it commutes with
\(B\). (Our assumptions automatically imply that \(A\) commutes with
\(C\), by the way.)

So, what do we mean when we speak of ``measuring \(A\)''? Well, there
are various things one might mean. The simplest is that if we start the
combined system in some tensor product state \(u(i) \otimes v\), where
\(v\) is the ``waiting and ready'' state of the apparatus and \(u(i)\)
is a state of the observed system that's an eigenvector of \(A\):
\[Au(i) = a(i)u(i),\] then the unitary operator \(U\) corresponding to
time evolution does the following:
\[\mathrm{U}(u(i) \otimes v) = u(i) \otimes v(i)\] where the state
\(v(i)\) of the apparatus is one in which it can be said to have
measured the observable \(A\) to have value \(a(i)\). E.g., the
apparatus might have a dial on it, and in the state \(v(i)\) the dial
reads ``\(a(i)\)''. Of course, we are really only justified in saying a
measurement has occurred if the states \(v(i)\) are \emph{distinct} for
different values of \(i\).

Note: here the WAY theorem seems to be restricting itself to
nondestructive measurements, since the observed system is remaining in
the state \(u(i)\). If you go through the proof you can see to what
extent this is crucial, and how one might modify the theorem if this is
not the case.

Okay, we have to show that we can only ``measure \(A\)'' in this sense
if \(A\) commutes with \(B\). We are assuming that \(B + C\) is
conserved, i.e., \[U^*(B + C)U = B + C.\] First note that
\[\langle u(i), [A,B] u(j)\rangle = (a(i)-a(j)) \langle u(i), Bu(j)\rangle.\]
On the other hand, since \(A\) and \(B\) only act on the Hilbert space
for the particle, we also have
\[\begin{aligned}\langle u(i),[A,B]u(j) \rangle &= \langle u(i)\otimes v,[A,B]u(j) \rangle \\ &= \langle u(i)\otimes v,[A,B+C]u(j) \rangle \\ &= (a(i)-a(j))\langle u(i)\otimes v,(B+C)u(j)\otimes v \rangle\end{aligned}\]
It follows that if \(a(i)-a(j)\) isn't zero,
\[\begin{aligned}\langle u(i),Bu(j) \rangle &= \langle u(i)\otimes v,(B+C)u(j)\otimes v \rangle \\ &= \langle u(i)\otimes v, U^*(B+C)Uu(j)\otimes v \rangle \\ &= \langle u(i)\otimes v(i),(B+C)u(j)\otimes v(j) \rangle \\ &= \langle u(i),Bu(j) \rangle\langle v(i),v(j) \rangle + \langle u(i),u(j) \rangle\langle v(i),Cv(j) \rangle\end{aligned}\]
but the second term vanishes since \(u(i)\) are a basis of eigenvectors
and \(u(i)\) and \(u(j)\) correspond to different eigenvalues, so
\[\langle u(i), Bu(j)\rangle = \langle u(i), Bu(j)\rangle \langle v(i), v(j)\rangle\]
which means that either \(\langle v(i), v(j)\rangle = 1\), hence
\(v(i) = v(j)\) (since they are unit vectors), so that no measurement
has really been done, OR that \(\langle u(i), B u(j)\rangle = 0\), which
means (if true for all \(i,j\)) that \(A\) commutes with \(B\).

So, we have proved the result, using one extra assumption that I didn't
mention at the start, namely that the eigenvalues \(a(i)\) are distinct.

I can't say that I really understand the argument, although it's easy
enough to follow the math. I will have to ponder it more, but it is
rather interesting, because it makes more precise (and general) the
familiar notion that one can't measure \emph{absolute} positions, due to
the translation-invariance of the laws of physics; this translation
invariance is of course what makes momentum be conserved. (What I just
wrote makes me wonder if someone has shown a classical analog of the WAY
theorem.)

Anyway, here's the table of contents of the book:

\begin{quote}
{\rm
Chapter 1: Introduction to Quantum Physics

1-1. The downfall of classical concepts 

1-2. The rise of randomness 

1-3. Polarized photons 

1-4. Introducing the quantum language 

1-5. What is a measurement? 

1-6. Historical remarks 

1-7. Bibliography 

Chapter 2: Quantum Tests

2-1. What is a quantum system? 

2-2. Repeatable tests 

2-3. Maximal quantum tests 

2-4. Consecutive tests 

2-5. The principle of interference 

2-6. Transition amplitudes 

2-7. Appendix: Bayes's rule of statistical inference 

2-8. Bibliography 

Chapter 3: Complex Vector Space

3-1. The superposition principle 

3-2. Metric properties 

3-3. Quantum expectation rule 

3-4. Physical implementation 

3-5. Determination of a quantum state 

3-6. Measurements and observables 

3-7. Further algebraic properties 

3-8. Quantum mixtures 

3-9. Appendix: Dirac's notation 

3-10. Bibliography 

Chapter 4: Continuous Variables

4-1. Hilbert space 

4-2. Linear operators 

4-3. Commutators and uncertainty relations 

4-4. Truncated Hilbert space 

4-5. Spectral theory 

4-6. Classification of spectra 

4-7. Appendix: Generalized functions 

4-8. Bibliography 

Chapter 5: Composite Systems

5-1. Quantum correlations 

5-2. Incomplete tests and partial traces 

5-3. The Schmidt decomposition 

5-4. Indistinguishable particles 

5-5. Parastatistics 

5-6. Fock space 

5-7. Second quantization 

5-8. Bibliography 

Chapter 6: Bell's Theorem

6-1. The dilemma of Einstein, Podolsky, and Rosen 

6-2. Cryptodeterminism 

6-3. Bell's inequalities 

6-4. Some fundamental issues 

6-5. Other quantum inequalities 

6-6. Higher spins 

6-7. Bibliography 

Chapter 7: Contextuality

7-1. Nonlocality versus contextuality 

7-2. Gleason's theorem 

7-3. The Kochen--Specker theorem 

7-4. Experimental and logical aspects of inseparability 

7-5. Appendix: Computer test for Kochen-Specker contradiction 

7-6. Bibliography 

Chapter 8: Spacetime Symmetries

8-1. What is a symmetry? 

8-2. Wigner's theorem 

8-3. Continuous transformations 

8-4. The momentum operator 

8-5. The Euclidean group 

8-6. Quantum dynamics 

8-7. Heisenberg and Dirac pictures 

8-8. Galilean invariance 

8-9. Relativistic invariance 

8-10. Forms of relativistic dynamics 

8-11. Space reflection and time reversal 

8-12. Bibliography 

Chapter 9: Information and Thermodynamics

9-1. Entropy 

9-2. Thermodynamic equilibrium 

9-3. Ideal quantum gas 

9-4. Some impossible processes 

9-5. Generalized quantum tests 

9-6. Neumark's theorem 

9-7. The limits of objectivity 

9-8. Quantum cryptography and teleportation 

9-9. Bibliography 

Chapter 10: Semiclassical Methods

10-1. The correspondence principle 

10-2. Motion and distortion of wave packets 

10-3. Classical action 

10-4. Quantum mechanics in phase space 

10-5. Koopman's theorem 

10-6. Compact spaces 

10-7. Coherent states 

10-8. Bibliography 

Chapter 11: Chaos and Irreversibility

11-1. Discrete maps 

11-2. Irreversibility in classical physics 

11-3. Quantum aspects of classical chaos 

11-4. Quantum maps 

11-5. Chaotic quantum motion 

11-6. Evolution of pure states into mixtures 

11-7. Appendix: PostScript code for a map 

11-8. Bibliography 

Chapter 12: The Measuring Process

12-1. The ambivalent observer 

12-2. Classical measurement theory 

12-3. Estimation of a static parameter 

12-4. Time-dependent signals 

12-5. Quantum Zeno effect 

12-6. Measurements of finite duration 

12-7. The measurement of time 

12-8. Time and energy complementarity 

12-9. Incompatible observables 

12-10. Approximate reality 

12-11. Bibliography
}
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Bernd Bruegmann, ``Loop representations'', available as \href{https://arxiv.org/abs/gr-qc/9312001}{\texttt{gr-qc/9312001}}.
\end{enumerate}
\noindent
This is a nice review article on loop representations of gauge theories.
Anyone wanting to jump into the loop representation game would be well
advised to start here.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Lee Smolin, ``The fate of black hole singularities and the parameters of the
  standard models of particle physics and cosmology'', 
  available as
  \href{https://arxiv.org/abs/gr-qc/9404011}{\texttt{gr-qc/9404011}}.
\end{enumerate}
\noindent
This is about Smolin's ``evolutionary cosmology'' scenario, which I
already discussed in \protect\hyperlink{week31}{``Week 31''}. Let me
just quote the abstract:

\begin{quote}
A cosmological scenario which explains the values of the parameters of
the standard models of elementary particle physics and cosmology is
discussed. In this scenario these parameters are set by a process
analogous to natural selection which follows naturally from the
assumption that the singularities in black holes are removed by quantum
effects leading to the creation of new expanding regions of the
universe. The suggestion of J. A. Wheeler that the parameters change
randomly at such events leads naturally to the conjecture that the
parameters have been selected for values that extremize the production
of black holes. This leads directly to a prediction, which is that small
changes in any of the parameters should lead to a decrease in the number
of black holes produced by the universe. On plausible astrophysical
assumptions it is found that changes in many of the parameters do lead
to a decrease in the number of black holes produced by spiral galaxies.
These include the masses of the proton, neutron, electron and neutrino
and the weak, strong and electromagnetic coupling constants.
Finally,this scenario predicts a natural time scale for cosmology equal
to the time over which spiral galaxies maintain appreciable rates of
star formation, which is compatible with current observations that
\(\Omega = .1-.2\)
\end{quote}



\hypertarget{week34}{%
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A bit of a miscellany this week\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  ``Algorithms for quantum computation: discrete log and factoring'',
  extended abstract by Peter Shor.
\end{enumerate}
\noindent
There has been a bit of a stir about this paper; since I know Peter
Shor's sister I was able to get a copy and see what it was really all
about.

Quantum computers are so far just a theoretical possibility. It's
easiest to see why machines that take advantage of quantum theory might
be efficient at computation if we think in terms of path integrals. In
Feynman's path-integral approach to quantum theory, the probability of
getting from state \(A\) at time zero to state \(B\) some later time is
obtained by integrating the exponential of the action 
\[\exp(iS/\hbar)\]
over \emph{all} paths from \(A\) to \(B\), and then taking the absolute
value squared. (Here we are thinking of states \(A\) and \(B\) that
correspond to points in the classical configuration space.) We can think
of the quantum system as proceeding along all paths simultaneously; it
is the constructive or destructive interference between paths due to the
phases \(exp(iS/\hbar)\) that makes certain final outcomes \(B\) more
likely than others. In many situations, there is massive destructive
interference except among paths very close to those which are critical
points of the action \(S\); the latter are the \emph{classical} paths.
So in a sense, a classical device functions as it does by executing all
possible motions; motions far from those satisfying Newton's laws simply
cancel out by destructive interference! (There are many other ways of
thinking about quantum theory; this one can be difficult to make
mathematically rigorous, but it's often very handy.)

This raises the idea of building a computer that would take advantage of
quantum theory by trying out all sorts of paths, but making sure that
paths that give the wrong answer cancel out! It seems that Feynman was
the first to seriously consider quantum computation:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
   Richard Feynman, ``Simulating physics with computers'',
  \emph{International Journal of Theoretical Physics},  \textbf{21},
  (1982), 467--488.
\end{enumerate}
\noindent
but by now quite a bit of work has been done on the subject, e.g.:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
    P.\  Benioff,
  ``Quantum mechanical Hamiltonian models of Turing machines'', \emph{J.\ Stat.\ Phys.} 
   \textbf{29} (1982), 515--546.

  D. Deutsch, ``Quantum theory, the Church--Turing principle and the universal
  quantum computer'',  \emph{Proc. R. Soc. Lond. A}
  \textbf{400} (1985), 96--117.

  D. Deutsch, Quantum computational networks, \emph{Proc. R. Soc.
  Lond. A} \textbf{425} (1989), 73--90.

  D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, 
  \emph{Proc. R. Soc. Lond. A } \textbf{439} (1992), 553--558.

  E. Bernstein and U. Vazirani, Quantum complexity theory, \emph{Proc.
  25th ACM Symp. on Theory of Computation} (1993), 11--20.

   A. Berthiaume and G. Brassard, editors, ``The quantum challenge to structural complexity theory'', 
   in  \emph{Proc. 7th IEEE Conference on
  Structure in Complexity Theory}, 1992.

   A. Yao, ``Quantum circuit complexity'', in \emph{Proc. 34th IEEE Symp.
  on Foundations of Computer Science}, 1993.
\end{enumerate}
\noindent
Thanks to this work, there are now mathematical definitions of quantum
Turing machines and the class ``BQP'' of problems that can be solved in
polynomial time with a bounded probability of error. This allows a
mathematical investigation of whether quantum computers can, in
principle, do things more efficiently than classical ones. Shor shows
that factoring integers is in BQP. I won't try to describe how, as it's
a bit technical and I haven't really comprehended it. Instead, I'd like
say a couple things about the \emph{practicality} of building quantum
computers, since people seem quite puzzled about this issue.

There are, as I see it, two basic problems with building quantum
computers. First, it seems that the components must be carefully
shielded from unwanted interactions with the outside world, since such
interactions can cause ``decoherence'', that is, superpositions of the
computer states will evolve into superpositions of the system consisting
of the computer together with what it's interacting with, which from the
point of view of the computer alone are the same as mixed states. This
tends to ruin the interference effects upon which the advantages of
quantum computation are based.

Second, it seems difficult to incorporate error-correction mechanisms in
a quantum computer. Without such mechanisms, slight deviations of the
Hamiltonian of the computer from the design specifications will cause
the computation to drift away from what was intended to occur. Luckily,
it appears that this drift is only \emph{linear} rather than
\emph{exponential} as a function of time. (This impression is based on
some simplifications that might be oversimplifications, so anyone who
wants to build a quantum computer had better ponder this issue
carefully.) Linear increase of error with time sets an upper bound on
how complicated a computation one could do before the answer is junk,
but if the rate of error increase was made low enough, this might be
acceptable.

Certainly as time goes by and computer technology becomes ever more
miniaturized, hardware designers will have to pay ever more attention to
quantum effects, for good or for ill! (Vaughn Pratt estimates that
quantum effects will be a serious concern by 2020.) The question is just
whether they are only a nuisance, or whether they can possibly be
harnessed. Some designs for quantum computers have already been proposed
(sorry, I have no reference for these), and seeing whether they are
workable should be a very interesting engineering problem, even if they
are not good enough to outdo ordinary computers.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Lee Smolin and Chopin Soo,  ``The Chern--Simons invariant as the natural time variable for
  classical and quantum cosmology'', available as
  \href{https://arxiv.org/abs/gr-qc/9405015}{\texttt{gr-qc/9405015}}.
\end{enumerate}
\noindent
Let me just quote the abstract on this one:

\begin{quote}
We propose that the Chern--Simons invariant of the Ashtekar--Sen
connection (or its imaginary part in the Lorentzian case) is the natural
internal time coordinate for classical and quantum cosmology. The
reasons for this are: 1) It is a function on the gauge and
diffeomorphism invariant configuration space, whose gradient is
orthogonal to the two physical degrees of freedom, in the metric defined
by the Ashtekar formulation of general relativity. 2) The imaginary part
of the Chern--Simons form reduces in the limit of small cosmological
constant, \(\Lambda\), and solutions close to DeSitter spacetime, to the
York extrinsic time coordinate. 3) Small matter-field excitations of the
Chern--Simons state satisfy, by virtue of the quantum constraints, a
functional Schr\"odinger equation in which the matter fields evolve on a
DeSitter background in the Chern--Simons time. We then propose this is
the natural vacuum state of the theory for nonzero \(\Lambda\). 4) This
time coordinate is periodic on the Euclidean configuration space, due to
the large gauge trans- formations, which means that physical expectation
values for all states in non-perturbative quantum gravity will satisfy
the KMS condition, and may then be interpreted as thermal states.
Finally, forms for the physical hamil- tonian and inner product are
suggested and a new action principle for general relativity, as a
geodesic principle on the connection superspace, is found.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  ``Symplectic geometry'', a series of lectures by Mikhail Gromov,
  compiled by Richard Brown, edited by Robert Miner.
 
\end{enumerate}
\noindent
Symplectic geometry is the geometry of classical phase spaces. That is,
it's the geometry of spaces on which one can take Poisson brackets of
functions in a manner given locally by the usual formulas. Gromov has
really revolutionized the subject, and these lectures look like a good
place to begin learning what is going on. There is also an appendix on
contact geometry (another aspect of classical physics) based on a
lecture by Eliashberg.
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\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Alexander Grothendieck, \emph{Pursuing Stacks (A la Poursuite des Champs)}, 1983, 
  593 pages.  Available as
  \href{https://thescrivener.github.io/PursuingStacks/ps-online.pdf}{\texttt{https://thescrivener.github.io/PursuingStacks/ps-online.pdf}}.
\end{enumerate}
\noindent
I owe Ronnie Brown enormous thanks for sending this to me (before it was
available online).   Grothendieck
is mainly famous for his work on algebraic geometry, in which he
introduced the concept of ``schemes'' to provide a modern framework for
the subject. He was also interested in reformulating the foundations of
topology, which is reflected in \emph{Pursuing Stacks}. This is a long
letter to Quillen, inspired by Quillen's 1967 book \emph{Homotopical
Algebra}. It's a fascinating mixture of visionary mathematics, general
philosophy and a bit of personal chat. Let me quote a bit:

\begin{quote}
I write you under the assumption that you have not entirely lost
interest for those foundational questions you were looking at more than
fifteen years ago. One thing which strikes me, is that (as far as I
know) there has not been any substantial progress since --- it looks to
me that understanding of the basic structures underlying homotopy
theory, or even homological algebra only, is still lacking --- probably
because the few people who have a wide enough background and perspective
enabling them to feel the main questions, are devoting their energies to
things which seem more directly rewarding. Maybe even a wind of
disrepute for any foundational matters whatever is blowing nowadays! In
this respect, what seems to me even more striking than the lack of
proper foundations for homological and homotopical algebra, is the
absence I daresay of proper foundations for topology itself! I am
thinking here mainly of the development of a context of ``tame''
topology, which (I am convinced) would have on the everyday technique of
geometric topology (I use this expression in contrast to the topology of
use for analysts) a comparable impact or even a greater one, than the
introduction of the point of view of schemes had on algebraic geometry.
The psychological drawback here I believe is not anything like
messyness, as for homological and homotopical algebra (or for schemes),
but merely the inrooted inertia which prevents us so stubbornly from
looking innocently, with fresh eyes, upon things, without being dulled
and emprisoned by standing habits of thought, going with a familiar
context --- \emph{too} familiar a context!
\end{quote}

One reason why I'm interested in this letter is that Grothendieck seems
to have understood the importance of ``higher algebraic structures''
before most people. Recently, interest in these has been heating up,
largely because of the recent work on ``extended topological quantum
field theories.'' The basic idea is that, just as a traditional quantum
field theory is (among other things) a representation of the symmetry
group of spacetime, a topological quantum field theory is a
representation of a more sophisticated algebraic structure, a
``cobordism \(n\)-category.'' An \(n\)-category is a wonderfully
recursive sort of thing in which there are objects, \(1\)-morphisms
between objects, 2-morphisms between morphisms, and so on up to
\(n\)-morphisms. In a ``cobordism \(n\)-category'' the objects are
0-manifolds, the \(1\)-morphisms are \(1\)-dimensional manifolds that go
between 0-manifolds (as the unit interval goes from one endpoint to
another), the \(2\)-morphisms are 2-dimensional manifolds that go
between 1-manifolds (as a cylinder goes from on circle to another), etc.
In practice one must work with manifolds admitting certain types of
``corners'', and equipped with extra structures that topologists and
physicist like, such as orientations, framings, or spin structures. The
idea is that all the cutting-and-pasting constructions in
\(n\)-dimensional topology can be described algebraically in the
cobordism \(n\)-category. To wax rhapsodic for a moment, we can think of
an \(n\)-category as exemplifying the notion of ``ways to go between
ways to go between ways to go between\ldots.. ways to go between
things,'' and cobordism \(n\)-categories are the particular
\(n\)-categories that algebraically encode the possibilities along these
lines that are implicit in the notion of \(n\)-dimensional spacetime.

Now, the problem is that the correct \emph{definition} of an
\(n\)-category is a highly nontrivial affair! And it gets more
complicated as n increases! A 0-category is nothing but a bunch of
objects. In other words, it's basically just a \emph{set}, if we allow
ourselves to ignore certain problems about classes that are too big to
qualify as sets. A \(1\)-category is nothing but a category. Recall the
definition of a
\href{http://math.ucr.edu/home/baez/categories.html}{category}:

A category consists of a set of \textbf{objects} and a set of
\textbf{morphisms}. Every morphism has a \textbf{source} object and a
\textbf{target} object. (A good example to think of is the category in
which the objects are sets and the morphisms are functions. If
\(f\colon X\to Y\), we call \(X\) the source and \(Y\) the target.)
Given objects \(X\) and \(Y\), we write \(\mathrm{Hom}(X,Y)\) for the
set of morphisms from \(X\) to \(Y\) (i.e., having \(X\) as source and
\(Y\) as target).

The axioms for a category are that it consist of a set of objects and
for any 2 objects \(X\) and \(Y\) a set \(\mathrm{Hom}(X,Y)\) of
morphisms from \(X\) to \(Y\), and

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  Given a morphism \(g\) in \(\mathrm{Hom}(X,Y)\) and a morphism \(f\)
  in \(\mathrm{Hom}(Y,Z)\), there is morphism which we call
  \(f \circ g\) in \(\mathrm{Hom}(X,Z)\). (This binary operation
  \(\circ\) is called \textbf{composition}.)
\item
  Composition is associative:
  \((f \circ g) \circ h = f \circ (g \circ h)\).
\item
  For each object \(X\) there is a morphism \(\mathrm{id}_X\) from \(X\)
  to \(X\), called the \textbf{identity on} \(X\).
\item
  Given any \(f\) in \(\mathrm{Hom}(X,Y)\),
  \(f \circ \mathrm{id}_X = f\) and \(\mathrm{id}_Y \circ f = f\).
\end{enumerate}

Now, a \(2\)-category is more complicated. There are objects,
\(1\)-morphisms, and \(2\)-morphisms, and one can compose morphisms and
also compose 2-morphisms. There is, however, a choice: one can make ones
\(2\)-category ``strict'' and require that the rules 2) and 4) above
hold for the 1-morphisms and \(2\)-morphisms, or one can require them
``literally'' only for the \(2\)-morphisms, and allow the
\(1\)-morphisms some slack. Technically, one can choose between
``strict'' \(2\)-categories, usually just called \(2\)-categories, or
``weak'' ones, which are usually called ``bicategories.''

What do I mean by giving the \(1\)-morphisms some ``slack''? This is a
very important aspect of the \(n\)-categorical philosophy\ldots{} I mean
that in a \(2\)-category one has the option of replacing
\emph{equations} between 1-morphisms by \emph{isomorphisms} --- that is,
by \(2\)-morphisms that have inverses! The basic idea here is that in
many situations when we like to pretend things are equal, they are
really just \emph{isomorphic}, and we should openly admit this when it
occurs. So, for example, in a ``weak'' \(2\)-category one doesn't have
associativity of \(1\)-morphisms. Instead, one has ``associators'',
which are \(2\)-morphisms like this:
\[a_{f,g,h}: (f \circ g) \circ h \to f \circ (g \circ h)\] In other
words, the associator is the \emph{process of rebracketing} made
concrete. Now, when one replaces equations between \(1\)-morphisms by
isomorphisms, one needs these isomorphisms to satisfy ``coherence
relations'' if we're going to expect to be able to manipulate them more
or less as if they \emph{were} equations. For example, in the case of
the associators above, one can use associators to go from
\[f \circ (g \circ (h \circ k))\] to \[((f \circ g) \circ h) \circ k\]
in two different ways: either
\[f \circ (g \circ (h \circ k)) \to (f \circ g) \circ (h \circ k) \to ((f \circ g) \circ h) \circ k\]
or
\[f \circ (g \circ (h \circ k)) \to f \circ ((g \circ h) \circ k) \to (f \circ (g \circ h)) \circ k \to ((f \circ g) \circ h) \circ k\]
Actually there are other ways, but in an important sense these are the
basic two. In a ``weak'' \(2\)-category one requires that these two ways
are equal\ldots{} i.e., this is an identity that the associator must
satisfy, known as the pentagon identity. This is one of the first
examples of a coherence relation. It turns out that if this holds,
\emph{all} ways of rebracketing that get from one expression to another
are equal. (Here I'm being rather sloppy, but the precise result is
known as Mac Lane's theorem.)

To learn about weak \(2\)-categories, which as I said people usually
call bicategories, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  J. Benabou, \emph{Introduction to Bicategories}, Springer Lecture Notes in Mathematics,
  \textbf{47},  Springer, Berlin, 1968.
\end{enumerate}
\noindent
Now, one can continue this game, but it gets increasingly complex if one
goes the ``weak'' route. In a ``weak \(n\)-category'' the idea is to
replace all basic identities that one might expect between
\(j\)-morphisms, such as the associative law, by \((j+1)\)-isomorphisms.
These, in turn, satisfy certain ``coherence relations'' that are really
not equations, but \((j+2)\)-morphisms, and so on\ldots{} up to level
\(n\). This becomes so complicated that only recently have ``weak
\(3\)-categories'' been properly defined, by Gordon, Power and Street,
who call them tricategories (see \protect\hyperlink{week29}{``Week
29''}).

A bit earlier, Kapranov and Voevodsky succeeded in defining a certain
class of weak \(4\)-categories, which happen to be called ``braided
monoidal \(2\)-categories'' (see \protect\hyperlink{week4}{``Week 4''}).
The interesting thing, you see, which justifies getting involved in this
business, is that a lot of topology \emph{automatically pops out} of the
definition of an \(n\)-category. In particular, \(n\)-categories have a
lot to do with \(n\)-dimensional space. A weak \(3\)-category with only
one object and one \(1\)-morphism is usually known as a ``braided
monoidal category,'' and the theory of these turns out to be roughly the
same as the study of knots, links and tangles!  The
``braided monoidal \(2\)-categories'' of Kapranov and Voevodsky are
really just weak \(4\)-categories with only one object and one
1-morphism. (The reason for the term ``\(2\)-category'' here is that
since all one has is \(2\)-morphisms, \(3\)-morphisms, and
\(4\)-morphisms, one can pretend one is in a \(2\)-category in which
those are the objects, morphisms, and \(2\)-morphisms.)

In any event, these marvelous algebraic structures have been cropping up
more and more in physics (see especially Crane's stuff listed in
\protect\hyperlink{week2}{``Week 2''} and Freed's paper listed in
\protect\hyperlink{week12}{``Week 12''}), so I got ahold of a copy of
Grothendieck's letter and have begun trying to understand it.

Actually, it's worth noting that these \(n\)-categorical ideas have been
lurking around homotopy theory for quite some time now. As Grothendieck
wrote:

\begin{quote}
At first sight it had seemed to me that the Bangor group had indeed come
to work out (quite independently) one basic intuition of the program I
had envisioned in those letters to Larry Breen --- namely, that the
study of \(n\)-truncated homotopy types (of semisimplicial sets, or of
topological spaces) was essentially equivalent to the study of so-called
\(n\)-groupoids (where \(n\) is any natural integer). This is expected
to be achieved by associating to any space (say) \(X\) its ``fundamental
\(n\)-groupoid'' \(\Pi_n(X)\), generalizing the familiar Poinar\'e
fundamental groupoid for \(n = 1\). The obvious idea is that 0-objects
of \(\Pi_n(X)\) should be the points of \(X\), 1-objects should be
``homotopies'' or paths between points, 2-objects should be homotopies
between 1-objects, etc. This \(\Pi_n(X)\) should embody the
\(n\)-truncated homotopy type of \(X\), in much the same way as for
\(n = 1\) the usual fundamental groupoid embodies the 1-truncated
homotopy type. For two spaces \(X\), \(Y\), the set of homotopy-classes
of maps \(X \to Y\) (more correctly, for general \(X\), \(Y\), the maps
of \(X\) into \(Y\) in the homotopy category) should correspond to
\(n\)-equivalence classes of \(n\)-functors from \(\Pi_n(X)\) to
\(\Pi_n(Y)\) --- etc. There are some very strong suggestions for a nice
formalism including a notion of geometric realization of an
\(n\)-groupoid, which should imply that any \(n\)-groupoid is
\(n\)-equivalent to a \(\Pi_n(X)\). Moreover when the notion of an
\(n\)-groupoid (or more generally of an \(n\)-category) is relativized
over an arbitrary topos to the notion of an \(n\)-gerbe (or more
generally, an \(n\)-stack), these become the natural ``coefficients''
for a formalism of non commutative cohomological algebra, in the spirit
of Giraud's thesis.
\end{quote}

The ``Bangor group'' referred to includes Ronnie Brown, who has done a
lot of work on ``\(\omega\)-groupoids''. A while back he sent me a nice
long list of references on this subject; here are some that seemed
particularly relevant to me (though I haven't looked at all of them).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  G.\ Abramson, J.-P.Meyer and J.\ Smith, ``A higher dimensional analogue of
  the fundamental groupoid'', in \emph{Recent Developments of Algebraic
  Topology}, RIMS Kokyuroku \textbf{781}, Kyoto, 1992, pp.\ 38--45, 

  F.\ Al-Agl, ``Aspects of multiple categories'', University of Wales Ph.D.
  Thesis, 1989.

  F.Al-Agl and R.J.Steiner, ``Nerves of multiple categories'',
  \emph{Proc. London Math. Soc.} \textbf{66} (1992), 92--128.

  N.\ Ashley, ``Simplicial T-complexes'', University of Wales Ph.D. Thesis,
  1976, published as \textsl{Simplicial T-complexes and Crossed Complexes: a 
  Non-Abelian Version of
  a Theorem of Dold and Kan}, Dissertationes Mathematicae \textbf{265}, 1988.

  H.J.\ Baues, \emph{Algebraic Homotopy}, Cambridge University Press, Cambridge,
  1989.

  H.J.\ Baues, \emph{Combinatorial Homotopy and \(4\)-Dimensional
  Complexes}, De Gruyter, Berlin, 1991.

  L.\ Breen, ``Bitorseurs et cohomologie non-AbÃ©lienne'', in \emph{The
  Grothendieck Festschrift: a collection of articles written in honour
  of the 60th birthday of Alexander Grothendieck, Vol. I}, ed.\
  P.\ Cartier \textit{et al.}, Birkh\"auser, Basel, 1990, pp.\ 401--476.

  R.\ Brown, ``Higher dimensional group theory'', in \emph{Low-dimensional
  topology}, ed.~R.\ Brown and T.L.Thickstun, \emph{London Math. Soc.
  Lect. Notes} \textbf{46}, Cambridge University Press, 215--238, 1982.

  R.\ Brown, ``From groups to groupoids: a brief survey'', \emph{Bull.
  London Math. Soc.}, \textbf{19}, 113--134, 1987.

  R.\ Brown, \emph{Elements of Modern Topology}, McGraw Hill, Maidenhead,
  1968.
  
   R.\ Brown, \emph{Topology: a Geometric Account of General Topology,
  Homotopy Types and the Fundamental Groupoid}, Ellis Horwood,
  Chichester, 1988.

  R.\ Brown, ``Some problems in non-Abelian homological and homotopical
  algebra'', in \emph{Homotopy Theory and Related Topics: Proceedings
  Kinosaki}, ed.\ M.\ Mimura, Springer Lecture Notes in
  Mathematics \textbf{1418}, 1990, Springer, Berlin pp.\ 105--129.

  R.\ Brown and P.\ J.\ Higgins, ``The equivalence of \(\omega\)-groupoids and
  cubical T-complexes'', \emph{Cah. Top. Geom. Diff.} \textbf{22} (1981),
  349--370.

  R.\ Brown and P.\ J.\ Higgins, ``The equivalence of \(\infty\)-groupoids and
  crossed complexes'', \emph{Cah. Top. Geom. Diff.} \textbf{22} (1981),
  371--386.

  R.\ Brown and P.\ J.\ Higgins, ``The algebra of cubes'', \emph{J. Pure Appl.
  Algebra} \textbf{21} (1981), 233--260.

  R.\ Brown and P.\ J.\ Higgins, ``Tensor products and homotopies for
  \(\omega\)-groupoids and crossed complexes'', \emph{J. Pure Appl.
  Algebra}, \textbf{47} (1987), 1--33.

  R.\ Brown and J.\ Huebschmann, ``Identities among relations'', in
  \emph{Low-dimensional topology}, eds.~R.\ Brown and T.\ L.\ Thickstun,
  London Math. Soc. Lect. Notes \textbf{46}, Cambridge University
  Press, Cambridge, 1982, pp.\ 153--202.

  R.\ Brown, ``Generalised group presentations'', \emph{Trans. Amer.
  Math. Soc.}, \textbf{334} (1992), 519--549.

  M.\ Bullejos, A.\ M.\ Cegarra and J.\ Duskin, ``On \(\mathrm{cat}^n\)-groups and
  homotopy types'', \emph{J. Pure Appl. Algebra} \textbf{86} (1993),
  135--154.

  M.\ Bullejos, P.\ Carrasco and A.\ M.\ Cegarra, ``Cohomology with coefficients in
  symmetric \(\mathrm{cat}^n\)-groups. An extension of Eilenberg-Mac
  Lane's classification theorem.'' Granada Preprint, 1992.

  P.\ J.\ Ehlers and T.\ Porter, ``From simplicial groupoids to crossed
  complexes'', UCNW Maths Preprint \texttt{92.19}, 1992.

  D.\ W.\ Jones, ``Polyhedral T-complexes'', University of Wales Ph.D. Thesis,
  1984; published as \emph{A General Theory of Polyhedral Sets and Their
  Corresponding T-complexes}, Dissertationes Mathematicae \textbf{266}, 1988.

  M.\ M.\ Kapranov and V.\ Voevodsky, ``Combinatorial-geometric aspects of
  polycategory theory: pasting schemes and higher Bruhat orders (list of
  results)'', \emph{Cah. Top. Geom. Diff. Cat.} \textbf{32} (1991), 11--27.

  M.\ M.\ Kapranov and V.\ Voevodsky, ``\(\infty\)-groupoids and homotopy
  types'', \emph{Cah. Top. Geom. Diff. Cat.} \textbf{32}, 29--46, 1991.

  M.\ M.\ Kapranov and V.\ Voevodsky, ``\(2\)-categories and Zamolodchikov
  tetrahedra equations'', preprint, 1992.

  J.-L.\ Loday, ``Spaces with finitely many non-trivial homotopy groups'',
  \emph{J. Pure Appl. Algebra} \textbf{24} (1982), 179--202.

  G.\ Nan Tie, ``Iterated W and T-groupoids'', \emph{J. Pure Appl.
  Algebra} \textbf{56} (1989), 195--209.

  T.\ Porter, ``A combinatorial definition of \(\infty\)-types'',
  \emph{Topology} \textbf{22} (1993), 5--24.

  S.\ J.\ Pride, ``Identities among relations of group presentations'', in
  \emph{Proc. Workshop on Group
  Theory from a Geometrical Viewpoint}, eds.\ E.\ Ghys, A.\ Haefliger, A.\ Verjodsky, 
    World Scientific (1991), 687--716.

  R.\ Steiner, ``The algebra of directed complexes'', University of
  Glasgow Math Preprint, 1992.

  A.\ Tonks, ``Cubical groups which are Kan'', \emph{J. Pure Appl.
  Algebra} \textbf{81} (1992), 83--87.

  A.\ Tonks and R.\ Brown, ``Calculation with simplicial and cubical groups
  in Axiom'', UCNW Math Preprint \texttt{93.04}.

  A.\ R.\ Wolf, ``Inherited asphericity, links and identities among
  relations'', \emph{J. Pure Appl. Algebra} \textbf{71} (1991), 99--107.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Since the month of March last year, so nearly a year ago, the
greater part of my energy has been devoted to a work of reflection on
the \textbf{foundations of non-commutative (co)homological algebra}, or
what is the same, after all, of homotopic algebra. These reflections
have taken the concrete form of a voluminous stack of typed notes,
destined to for then first volume (now being finished) of a work in two
volumes to be published by Hermann, under the overall title}
\textbf{Pursuing Stacks}\emph{. I now foresee (after successive
extensions of the initial project) that the manuscript of the whole of
the two volumes, which I hope to finish definitively in the course of
this year, will be about 1500 typed pages in length. These two volumes
are moreover for me the first in a vaster series, under the overall
title} \textbf{Mathematical Reflections}\emph{, in which I intend to
develop some of the themes sketched in the present report}

--- Alexander Grothendieck,
\textsl{Sketch of a Program} (1983)
\end{quote}
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I am attempting to keep my nose to the grindstone these days, in part
since I'm getting ready for the Knots and Quantum Gravity session of the
Marcel Grossman meeting on general relativity, which will take place at
Stanford the week after next (I will report any interesting news I hear
out there), and in part to make up for earlier stretches of laziness on
my part\ldots. Nonetheless, I feel I should describe a few new papers on
topological quantum field theories.

The real reason for physicists' interest in topological quantum field
theories (TQFTs) is that we sorely need a mathematical framework that
quantum gravity might fit into. It's likely, however, that quantum
gravity won't be much like the TQFTs people have studied so far. The
existing TQFTs tend to be ``exactly soluble'' and have
finite-dimensional state spaces; quantum gravity is likely to be
different. Still, any experience in studying quantum field theories that
don't rely on ``fixed background structures'' like a fixed spacetime
metric is likely to be worth having. Also, quantum gravity appears to be
tied mathematically to simpler TQFTs in a variety of ways. In
particular, the Ashtekar formulation of quantum gravity is closely
related to a \(4\)-dimensional TQFT variously known as ``\(B \wedge F\)
theory,'' ``\(BF\) theory,'' ``topological \(2\)-form gravity'' or
``topological quantum gravity''. This in turn is closely related to
Chern--Simons theory in 3 dimensions.

Let me just say what the heck BF theories \emph{are}, and then list a
few references on them. The easiest way to describe them is by giving
the Lagrangian. Say spacetime is an \(n\)-dimensional orientable
manifold \(M\) and we have a principal \(G\)-bundle \(E\) over \(M\),
where \(G\) is a Lie group whose Lie algebra is equipped with an
invariant trace on it. The two fields in BF theory are a connection
\(A\) on \(E\) --- which we can think of locally as a
\(\mathrm{Lie}(G)\)-valued one-form --- and a \(\mathrm{Lie}(G)\)-valued
\((n-2)\)-form called \(B\). If \(F\) denotes the curvature of \(A\),
which is a \(\mathrm{Lie}(G)\)-valued \(2\)-form, we can take the wedge
product \(B\wedge F\) and get a \(\mathrm{Lie}(G)\)-valued \(n\)-form,
which gives the Lagrangian \[\operatorname{tr}(B \wedge F),\] an
\(n\)-form we can integrate over \(M\) to get the action. Since we don't
need any metric to integrate an \(n\)-form over our spacetime \(M\),
this action is ``generally covariant''. (Note also that it's
gauge-invariant.) If we vary \(B\) and \(F\) to get the classical
equations of motion, varying \(B\) gives us \[F = 0,\] that is, the
connection \(A\) is flat, and varying \(A\) gives us \[d_A B = 0,\] that
is, the exterior covariant derivative of \(B\) vanishes.

In 4 dimensions we can soup up our \(BF\) theory a bit by adding terms
proportional to \[\operatorname{tr}(B \wedge B)\] and
\[\operatorname{tr}(F \wedge F)\] to the Lagrangian. If we take as our
Lagrangian
\[\operatorname{tr}(B \wedge F) + a \operatorname{tr}(B \wedge B) + b \operatorname{tr}(F \wedge F),\]
the third term, when integrated over \(M\), is proportional to an
invariant called the second Chern class of \(E\), that is, it's
independent of the connection \(A\), so it really doesn't affect the
equations of motion at all! In a sense it's utterly useless. The second
term does something, though; our equations of motion become
\[F = -2aB, \quad d_A B = 0.\] Note that if we plug the first equation
into the Lagrangian, we get that for solutions of the equations of
motion, the action is a constant times the second Chern class (if \(a\)
is nonzero).

Horowitz showed, in this four-dimensional case, that if \(a\) is
nonzero, there is a single state of the \emph{quantum} version of \(BF\)
theory when spacetime has the form \(\mathbb{R} \times S\) (\(S\) being
some oriented 3-manifold), and that this state, thought of as a
wavefunction on the space of connections on \(S\), is just the
exponential of the Chern--Simons action. This is how Chern--Simons theory
gets into the game.

Moreover, Baulieu and Singer showed that if you take the boring-looking
``FF theory'' with Lagrangian \(\operatorname{tr}(F \wedge F)\), and
quantize it using the BRST approach, you get something that Witten
proved was closely related to Donaldson theory --- an invariant of
4-manifolds. So there seems to be a relation between this stuff and
Donaldson theory. It is a rather mysterious one as far as I'm concerned,
though, because it seems you could just as well have used \emph{zero} as
a Lagrangian, rather than \(\operatorname{tr}(F \wedge F)\), and done
the same things Baulieu and Singer did. (At least, that's how it seems
to me, and I got Scott Axelrod to agree with me on that yesterday.) In
other words, Donaldson theory seems to have more to do with the geometry
of the space of connections on \(M\) than it does with the ``FF''
Lagrangian per se. But still, there are other relationships between
Donaldson theory and Chern--Simons theory (which I don't understand well
enough to want to discuss), so perhaps it is not too silly to say that
\(BF\) theory is related to Donaldson theory in some poorly understood
manner.

Now for some references: the reference that got me started on these was

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
Gary Horowitz, ``Exactly soluble diffeomorphism-invariant theories'',
\emph{Commun. Math. Phys.} \textbf{125} (1989), 417--437. (Listed in
\protect\hyperlink{week19}{``Week 19''})
\end{enumerate}
\noindent
I got more interested in them when I read

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
Paolo Cotta-Ramusino and Maurizio
Martellini, ``BF Theories and 2-knots'' in \emph{Knots and Quantum Gravity}, ed.~J. Baez,
Oxford U. Press, Oxford, 1994.  (Listed in \protect\hyperlink{week23}{``Week 23''})
\end{enumerate}
\noindent
which indicated that BF theories may give invariants of surfaces
embedded in \(4\)-dimensional manifolds, much as Chern--Simons theory
gives invariants of knots in \(3\)-dimensional manifolds. Actually, BF
theories make sense in any dimension, and in dimension 3 they appear to
give knot invariants, including the Alexander-Conway polynomial:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  A.\ S.\ Cattaneo, P.\ Cotta-Ramusino, and M.\ Martellini, ``Three-dimensional 
  BF theories and the Alexander--Conway invariant of knots'', available as
  \href{https://arxiv.org/ps/hep-th/9407070}{\texttt{hep-th/9407070}}.
\end{enumerate}
\noindent
Another nice-looking paper on BF theories is the following:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Henri Waelbroeck, ``\(B \wedge F\) theory and flat spacetimes'', available as
  \href{https://arxiv.org/ps/gr-qc/9311033}{\texttt{gr-qc/9311033}}.
\end{enumerate}
\noindent
Waelbrock also has a recent paper with Zapata on a Hamiltonian
formulation of the theory on a lattice:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Henri  Waelbrock and J. A. Zapata, ``A Hamiltonian formulation of topological gravity'', 
  available as
  \href{https://arxiv.org/ps/gr-qc/9311035}{\texttt{gr-qc/9311035}}.
\end{enumerate}
\noindent
The paper by Baulieu and Singer relating FF theory to Donaldson theory
is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  L. Baulieu and I. M. Singer, ``Topological Yang--Mills symmetry'',
  \emph{Nucl. Phys. (Proc. Suppl.)} \textbf{B5} (1988), 12--19.
\end{enumerate}
\noindent
\(BF\) theory in 2 dimensions is also called ``topological Yang--Mills
theory'', and it's discussed in various places, including

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
   Edward Witten, ``On quantum gauge theories in two dimensions'',
  \emph{Commun.\ Math.\ Phys.} \textbf{141} (1991), 153--209.
\end{enumerate}
\noindent
and

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
 Matthias Blau and George Thompson,  ``Topological gauge theories of antisymmetric tensor fields'', \emph{Ann. Phys.} \textbf{205} (1991), 130--172.
\end{enumerate}
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Mainly this week I have various bits of news to report from the 7th
Marcel Grossman Meeting on general relativity. It was big and had lots
of talks. Bekenstein gave a nice review talk on entropy/area relations
for black holes, and Strominger gave a talk in which he proposed a
solution to the information loss puzzle for black holes. (Recall that if
one believes, as most people seem to believe, that black holes radiate
away all their mass in the form of completely random Hawking radiation,
then there's a question about where the information has gone that you
threw into the black hole in the form of, say, old issues of \emph{Phys.
Rev.~Lett.}. Some people think the information goes into a new ``baby
universe'' formed at the heart of the black hole --- see
\protect\hyperlink{week31}{``Week 31''} for more. The information would
still, of course, be gone from \emph{our} point of view in this picture.
Strominger proposed a set up in which one had a quantum theory of
gravity with annihilation and creation operators for baby universes, and
proposed that the universe (the ``metauniverse''?) was in a coherent
state, that is, an eigenstate of the annihilation operator for baby
universes. This would apparently allow handle the problem, though right
now I can't remember the details.) There were also lots of talks on the
interferometric detection of gravitational radiation, other general
relativity experiments, cosmology, etc.. But I'll just try to describe
two talks in some detail here.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  L. Lindblom, ``Superfluid hydrodynamics and the stability of rotating
  neutron stars'', talk at MG7 meeting, Monday July 5, 1994, Stanford
  University.
\end{enumerate}

Being fond of knots, tangles, and such, I have always liked knowing that
in superfluids, vorticity (the curl of the velocity vector field) tends
to be confined in ``flux tubes'', each containing an angular momentum
that's an integral multiple of Planck's constant, and that similarly, in
type II superconductors, magnetic fields are confined to magnetic flux
tubes. And I was even more happy to find out that the cores of neutron
stars are expected to be made of neutronium that is \emph{both}
superfluid \emph{and} superconductive, and contain lots of flux tubes of
both types. In this talk, which was really about a derivation of
detailed equations of state for neutron stars, Lindblom began by saying
that the maximum rotation rate of a rotating neutron star is due to some
sort of ``gravitational radiation instability due to internal fluid
dissipation''. I didn't quite understand the details of that, which
weren't explained, but it motivated him to study the viscosity in
neutron star cores, which are superfluid if they are cool enough (less
than a billion degrees Kelvin). There are some protons and electrons
mixed in with the neutrons in the core, and both the protons and
neutrons go superfluid, but the electrons form a normal fluid. That
means that there are actually \emph{two} kinds of superfluid vortices
--- proton and neutron --- in addition to the magnetic vortices. These
vortices mainly line up along the axis of rotation, and their density is
about \(10^6\) per square centimeter. Rather curiously, since the
proton, neutron, and electron fluids are coupled due to \(\beta\) decay
(and the reverse process), even the neutron vortices have electric
currents associated to them and generate magnetic fields. This means
that the electrons scatter off the neutron vortex cores as well as the
proton vortex cores, which is one of the mechanisms that yields
viscosity.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Abhay Ashtekar, ``Mathematical developments in quantum general
  relativity, a sampler'', talk at MG7 meeting, Tuesday July 6, 1994,
  Stanford University.
\end{enumerate}
\noindent
This talk, in addition to reviewing what's been done so far on the
``loop representation'' of quantum gravity, presented two new
developments that I found quite exciting, so I'd like to sketch what
they are. The details will appear in future papers by Ashtekar and
collaborators.

The two developments Ashtekar presented concerned mathematically
rigorous treatments of the ``reality conditions'' in his approach to
quantum gravity, and the ``loop states'' used by Rovelli and Smolin.
First let me try to describe the issue of ``reality conditions''. As I
described in \protect\hyperlink{week7}{``Week 7''}, one trick that's
important in the loop representation is to use the ``new variables'' for
general relativity introduced by Ashtekar (though Sen and Plebanski
already had worked with similar ideas). In the older Palatini approach
to general relativity, the idea was to view general relativity as
something like a gauge theory with gauge group given by the Lorentz
group, \(\mathrm{SO}(3,1)\). But to do this one actually uses two
different fields: a ``frame field'', also called a ``tetrad'',
``vierbein'' or ``soldering form'' depending on who you're talking to,
and the gauge field itself, usually called a ``Lorentz connection'' or
``\(\mathrm{SO}(3,1)\) connection''. Technically, the frame field is an
isomorphism between the tangent bundle of spacetime and some other
bundle having a fixed metric of signature +---, usually called the
``internal space'', and the Lorentz connection is a metric-preserving
connection on the internal space.

The ``new variables'' trick is to use the fact that \(\mathrm{SO}(3,1)\)
has as a double cover the group \(\mathrm{SL}(2,\mathbb{C})\) of
two-by-two complex matrices with determinant one. (For people who've
read previous posts of mine, I should add that the Lie algebra of
\(\mathrm{SL}(2,\mathbb{C})\) is called \(\mathfrak{sl}(2,\mathbb{C})\)
and is the same as the complexification of the Lie algebra
\(\mathfrak{so}(3)\), which allows one to introduce the new variables in
a different but equivalent way, as I did in
\protect\hyperlink{week7}{``Week 7''}.) Ignoring topological niceties
for now, this lets one reformulate \emph{complex} general relativity
(that is, general relativity where the metric can be complex-valued) in
terms of a \emph{complex-valued} frame field and an
\(\mathrm{SL}(2,\mathbb{C})\) connection that is just the Lorentz
connection in disguise. The latter is called either the ``Sen
connection'', the ``Ashtekar connection'', or the ``chiral spin
connection'' depending on who you're talking to. The advantage of this
shows up when one tries to canonically quantize the theory in terms of
initial data. (For a bit on this, try \protect\hyperlink{week11}{``Week
11''}.) Here we assume our \(4\)-dimensional spacetime can be split up
into ``space'' and ``time'', so that space is a \(3\)-dimensional
manifold, and we take as our canonically conjugate fields the
restriction of the chiral spin connection to space, call it \(A\), and
something like the restriction of the complex frame field to a complex
frame field \(E\) on space. (Restricting the complex frame field to one
on space is a wee bit subtle, especially because one doesn't really want
a frame field or ``triad field'', but really a ``densitized cotriad
field'' --- but let's not worry about this here. I explain this in terms
even a mathematician can understand in my paper ``Strings, loops, knots
and gauge fields'' (\href{https://arxiv.org/abs/hep-th/9309067}{\texttt{hep-th/9309067}}). 
The point is, first, that the \(A\) and \(E\)
fields are mathematically very analogous to the vector potential and
electric field in electromagnetism --- or really in
\(\mathrm{SL}(2,\mathbb{C})\) Yang--Mills theory --- and secondly, that
if you compute their Poisson brackets, you really do see that they're
canonically conjugate. Third and best of all, the constraint equations
in general relativity can be written down very simply in terms of \(A\)
and \(E\). Recall that in general relativity, 6 of Einstein's 10
equations act as \emph{constraints} that the metric and its time
derivative must satisfy at \(t = 0\) in order to get a solution at later
times. In quantum gravity, these constraints are a big technical problem
one has to deal with, and the point of Ashtekar's new variables is
precisely that the constraints simplify in terms of these variables.
(There's more on these constraints in \protect\hyperlink{week11}{``Week
11''}.)

The price one has paid, however, is that one now seems to be talking
about \emph{complex-valued} general relativity, which isn't what one had
started out being interested in. One needs to get back to reality, as it
were --- and this is the problem of the so-called ``reality
conditions''. One approach is to write down extra constraints on the
\(E\) field that say that it comes from a \emph{real} frame field. These
are a little messy. Ashtekar, however, has proposed another approach
especially suited to the quantum version of the theory, and in his talk
he filled in some of the crucial details.

Here, to save time, I will allow myself to become a bit more technical.
In the quantum version of the theory one expects the space of
wavefunctions to be something like \(L^2\) functions on the space of
connections modulo gauge transformations --- actually this is the
``kinematical state space'' one gets before writing the constraints as
operators and looking for wavefunctions annihilated by these
constraints. The problem had always been that this space of \(L^2\)
functions is ill-defined, since there is no ``Lebesgue measure'' on the
space of connections. This problem is addressed (it's premature to say
``solved'') by developing a theory of generalized measures on the space
of connections and proving the existence of a canonical generalized
measure that deserves the name ``Lebesgue measure'' if anything does.
One can then define \(L^2\) functions and work with them. For compact
gauge groups, like \(\mathrm{SU}(2)\), this was done by Ashtekar,
Lewandowski and myself; see e.g.~the papers ``Spin network states in gauge
theory'' (\href{https://arxiv.org/abs/gr-qc/9411007}{\texttt{gr-qc/9411007}}) and
``Generalized measures in gauge theory'' (\href{https://arxiv.org/abs/hep-th/9310201}
{\texttt{hep-th/9310201}}).  In the case of
\(\mathrm{SU}(2)\), Wilson loops act as self-adjoint multiplication
operators on the resulting \(L^2\) space. But in quantum gravity we
really want to use gauge group \(\mathrm{SL}(2,\mathbb{C})\), which is
not compact, and we want the adjoints of Wilson loop operators to
reflect that fact that the \(\mathrm{SL}(2,\mathbb{C})\) connection
\(A\) in quantum gravity is really equal to \(\Gamma + iK\), where
\(\Gamma\) is the Levi--Civita connection on space, and \(K\) is the
extrinsic curvature. Both \(\Gamma\) and \(K\) are real in the classical
theory, so the adjoint of the quantum version of \(A\) should be
\(\Gamma - iK\), and this should reflect itself in the adjoints of
Wilson loop operators.

The trick, it turns out, is to use some work of Hall which appeared in
the \emph{Journal of Functional Analysis} in 1994 (I don't have a precise
reference on me). The point is that \(\mathrm{SL}(2,\mathbb{C})\) is the
complexification of \(\mathrm{SU}(2)\), and can also be viewed as the
cotangent bundle of \(\mathrm{SU}(2)\). This allows one to copy a trick
people use for the quantum mechanics of a point particle on
\(\mathbb{R}^n\) --- a trick called the Bargmann--Segal-Fock
representation. Recall that in the ordinary Schr\"odinger representation
of a quantum particle on \(\mathbb{R}^n\), one takes as the space of
states \(L^2(\mathbb{R}^n)\). However, the phase space for a particle in
\(\mathbb{R}^n\), which is the cotangent bundle of \(\mathbb{R}^n\), can
be identified with \(\mathbb{C}^n\), and in the Bargmann representation
one takes as the space of states \(HL^2(\mathbb{C}^n)\), by which I mean
the \emph{holomorphic} functions on \(\mathbb{C}^n\) that are in \(L^2\)
with respect to a Gaussian measure on \(\mathbb{C}^n\). In the Bargmann
representation for a particle on the line, for example, the creation
operator is represented simply as multiplication by the complex
coordinate \(z\), while the annihilation operator is \(d/dz\).
Similarly, there is an isomorphism between \(L^2(\mathrm{SU}(2))\) and a
certain space \(HL^2(\mathrm{SL}(2,\mathbb{C}))\). Using this, one can
obtain an isomorphism between the space of \(L^2\) functions on the
space of \(\mathrm{SU}(2)\) connections modulo gauge transformations,
and the space of holomorphic \(L^2\) functions on the space of
\(\mathrm{SL}(2,\mathbb{C})\) connections modulo gauge transformations.
Applying this to the loop representation, Ashtekar has found a very
natural way to take into account the fact that the chiral spin
connection \(A\) is really \(\Gamma + iK\), basically analogous to the
fact that in the Bargmann representation multiplication by \(z\) is really \(q + ip\)
(well, up to various factors of \(\sqrt{2}\), signs and the like).

Well, that was pretty sketchy and probably not especially comprehensible
to anyone who hasn't already worried about this issue a lot! In any
event, let me turn to the other good news Ashtekar reported: the
constuction of ``loop states''. Briefly put (I'm getting worn out), he
and some collaborators have figured out how to \emph{rigorously}
construct generalized measures on the space of connections modulo gauge
transformations, starting from invariants of links. This begins to
provide an inverse to the ``loop transform'' (which is a construction
going the other way).



\hypertarget{week38}{%
\section{August 19, 1994}\label{week38}}

I've been busy, and papers have been piling up; there are lots of
interesting ones that I really should describe in detail, but I had
better be terse and list them now, rather than waiting for the mythical
day when I will have time to do them justice.

So:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  B. Durhuus, H. P. Jakobsen and R. Nest, ``Topological quantum field
  theories from generalized 6j-symbols'', \emph{Rev.\ Math.
  Physics} \textbf{5} (1993), 1--67.
\end{enumerate}
\noindent
In \protect\hyperlink{week16}{``Week 16''} I explained a paper by
Fukuma, Hosono and Kawai in which they obtained topological quantum
field theories in 2 dimensions starting with a triangulation of a 2d
surface. The theories were ``topological'' in the sense that the final
answers one computed didn't depend on the triangulation. One can get
between any two triangulations of a surface by using a sequence of the
following two moves (and their inverses), called the (2,2) move: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,1.5) node{$\bullet$} to (2,0) node{$\bullet$} to (1,-1.5) node{$\bullet$} to cycle;
    \draw[thick] (1,1.5) to (1,-1.5);
  \end{tikzpicture}
  \raisebox{4.5em}{$\qquad\longleftrightarrow\qquad$}
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,1.5) node{$\bullet$} to (2,0) node{$\bullet$} to (1,-1.5) node{$\bullet$} to cycle;
    \draw[thick] (0,0) to (2,0);
  \end{tikzpicture}
\] and the (3,1) move: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1.8,3) node{$\bullet$} to (3.6,0) node{$\bullet$} to cycle;
    \node at (1.8,1.1) {$\bullet$};
    \draw[thick] (0,0) to (1.8,1.1);
    \draw[thick] (1.8,3) to (1.8,1.1);
    \draw[thick] (3.6,0) to (1.8,1.1);
  \end{tikzpicture}
  \raisebox{4.5em}{$\qquad\longleftrightarrow\qquad$}
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1.8,3) node{$\bullet$} to (3.6,0) node{$\bullet$} to cycle;
  \end{tikzpicture}
\] Note that in either case these moves amount to replacing one part of
the surface of a tetrahedron with the other part! In fact, similar moves
work in any dimension, and they are often called the Pachner moves.

The really \emph{wonderful} thing is that these moves are also very
significant from the point of view of algebra\ldots{} and especially
what I call ``higher-dimensional algebra'' (following Ronnie Brown), in
which the distinction between algebra and topology is largely erased,
or, one might say, revealed for the sham it always was.

For example, as explained more carefully in
\protect\hyperlink{week16}{``Week 16''}, the (2,2) move is really just
the same as the \emph{associative} law for multiplication. The idea is
that we are in a \(2\)-dimensional spacetime, and a triangle represents
multiplication: two ``incoming states'' go in two sides and their
product, the ``outgoing state'', pops out the third side: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[fill=white]{$A$} (2,3) node{$\bullet$} to node[fill=white]{$B$} (4,0) node{$\bullet$} to node[fill=white]{$AB$} cycle;
  \end{tikzpicture}
\] Then the (2,2) move represents associativity: \[
  \begin{tikzpicture}[scale=1.5]
    \draw[thick] (0,0) node{$\bullet$} to node[fill=white]{$A$} (1,1.5) node{$\bullet$} to node[fill=white]{$(AB)C$} (2,0) node{$\bullet$} to node[fill=white]{$C$} (1,-1.5) node{$\bullet$} to node[fill=white]{$B$} cycle;
    \draw[thick] (1,1.5) to node[fill=white]{$AB$} (1,-1.5);
  \end{tikzpicture}
  \raisebox{6.5em}{$\qquad\longleftrightarrow\qquad$}
  \begin{tikzpicture}[scale=1.5]
    \draw[thick] (0,0) node{$\bullet$} to node[fill=white]{$A$} (1,1.5) node{$\bullet$} to node[fill=white]{$A(BC)$} (2,0) node{$\bullet$} to node[fill=white]{$C$} (1,-1.5) node{$\bullet$} to node[fill=white]{$B$} cycle;
    \draw[thick] (0,0) to node[fill=white]{$BC$} (2,0);
  \end{tikzpicture}
\] Of course, the distinction between ``incoming'' and ``outgoing''
sides of the triangle is conventional, and the more detailed explanation
in \protect\hyperlink{week16}{``Week 16''} shows how that fits into the
formalism. Roughly speaking, what we have is not just any old algebra,
but an algebra that, thought of as a vector space, is equipped with an
isomorphism between it and its dual. This isomorphism allows us to
forget whether we are coming or going, so to speak.

Hmm, and here I was planning on being terse! Anyway, the still
\emph{more} interesting point is that when we think about
\(3\)-dimensional topology and ``3-dimensional algebra,'' we should no
longer think of \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,1.5) node{$\bullet$} to (2,0) node{$\bullet$} to (1,-1.5) node{$\bullet$} to cycle;
    \draw[thick] (1,1.5) to (1,-1.5);
  \end{tikzpicture}
  \raisebox{4.5em}{$\qquad\text{and}\qquad$}
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,1.5) node{$\bullet$} to (2,0) node{$\bullet$} to (1,-1.5) node{$\bullet$} to cycle;
    \draw[thick] (0,0) to (2,0);
  \end{tikzpicture}
\] as representing \emph{equal} operations (the 3-fold multiplication of
\(A\), \(B\), and \(C\)); instead, we should think of them as merely
\emph{isomorphic}, with the tetrahedron of which they are the front and
back being the isomorphism. The basic philosophy is that in
higher-dimensional algebra, as one ascends the ladder of dimensions,
certain things which had been regarded as \emph{equal} are revealed to
be merely isomorphic. This gets tricky, since certain
\emph{isomorphisms} that were regarded as equal at one level are
revealed to be merely isomorphic at the next level\ldots{} leading us
into a subtle world of isomorphisms between isomorphisms between
isomorphisms\ldots{} which the theory of \(n\)-categories attempts to
systematize. (I should note, however, that in the particular case of
associativity this business was worked out by Jim Stasheff quite a while
back: it's the homotopy theorists who were the ones with the guts to
deal with such issues first.)

Now, it turns out that in \(3\)-dimensional algebra, the isomorphism
corresponding to the (2,2) move is not something marvelously obscure. It
is in fact precisely what physicists call the ``\(6j\) symbol'', a
gadget they've been using to study angular momentum in quantum mechanics
for a long time! In quantum mechanics, the study of angular momentum is
just the study of representations of the group \(\mathrm{SU}(2)\), and
if one has representations \(A\), \(B\), and \(C\) of this group (or any
other), the tensor products \((A \otimes B) \otimes C\) and
\(A \otimes (B \otimes C)\) are not \emph{equal}, but merely
\emph{isomorphic}. It should come as no surprise that this isomorphism
is represented by physicists as a big gadget with 6 indices dangling on
it, the ``\(6j\) symbol''.

Quite a while back, Regge and Ponzano tried to cook up a theory of
quantum gravity in 3 dimensions using the \(6j\) symbols for
\(\mathrm{SU}(2)\). More recently, Turaev and Viro built a
\(3\)-dimensional topological quantum field theory using the
\(6j\)-symbols of the \emph{quantum group} \(SU_q(2)\), and this led to
lots of work, which the above article explains in a distilled sort of
way.

The original Ponzano--Regge and Turaev--Viro papers, and various other
ones clarifying the relation of the Turaev--Viro theory to quantum
gravity in spacetimes of dimension 3, are listed in
\protect\hyperlink{week16}{``Week 16''}. It's also worth checking out
the paper by Barrett and Foxon listed in
\protect\hyperlink{week24}{``Week 24''}, as well as the following paper,
for which I'll just quote the abstract:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Timothy J. Foxon, ``Spin networks, Turaev--Viro theory and the loop
  representation'', available as
  \href{https://arxiv.org/abs/gr-qc/9408013}{\texttt{gr-qc/9408013}}.
\end{enumerate}

\begin{quote}
We investigate the Ponzano--Regge and Turaev--Viro topological field
theories using spin networks and their \(q\)-deformed analogues. I
propose a new description of the state space for the Turaev--Viro theory
in terms of skein space, to which \(q\)-spin networks belong, and give a
similar description of the Ponzano--Regge state space using spin
networks. I give a definition of the inner product on the skein space
and show that this corresponds to the topological inner product, defined
as the manifold invariant for the union of two 3-manifolds. Finally, we
look at the relation with the loop representation of quantum general
relativity, due to Rovelli and Smolin, and suggest that the above inner
product may define an inner product on the loop state space.
\end{quote}

(Concerning the last point I cannot resist mentioning my own paper on
knot theory and the inner product in quantum gravity, ``Quantum gravity
and the algebra of tangles''.)

In addition to the papers by Turaev--Viro and Fukuma--Shapere listed in
\protect\hyperlink{week16}{``Week 16''}, there are some other papers on
Hopf algebras and 3d topological quantum field theories that I should
list:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Greg Kuperberg, ``Involutory Hopf algebras and three-manifold
  invariants'', \emph{Internat. Jour. Math} \textbf{2} (1991), 41--66.

  ``A definition of \(\#(M,H)\) in the non-involutory case'', by Greg
  Kuperberg, unpublished.
\end{enumerate}
\noindent
Greg Kuperberg is one of the few experts on this subject who is often
found on the net; he is frequently known to counteract my rhetorical
excesses with a dose of precise information. The above papers, one of
which is sadly still unpublished, make it beautifully clear how
``algebra knows more about topology than we do'', since various basic
structures on Hopf algebras have a pleasant tendency to interact just as
needed to give 3d topological quantum field theories.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  John W. Barrett and Bruce W. Westbury, ``Spherical categories'',
  available as
  \href{https://arxiv.org/abs/hep-th/9310164}{\texttt{hep-th/9310164}}.

  John W. Barrett and Bruce W. Westbury, ``Invariants of
  piecewise-linear 3-manifolds'', \emph{Trans. Amer. Math. Soc.}
  \textbf{348} (1996), 3997--4022. Also available as
  \href{https://arxiv.org/abs/hep-th/9311155}{\texttt{hep-th/9311155}}.

  John W. Barrett and Bruce W. Westbury, ``The equality of 3-manifold
  invariants'', available as
  \href{https://arxiv.org/abs/hep-th/9406019}{\texttt{hep-th/9406019}}.
\end{enumerate}
\noindent
Let me quote the abstract for the first one; the second one gives a
construction of 3-manifold invariants, and the third shows that the
authors' 3-manifold invariants agree with Kuperberg's when both are
defined.

\begin{quote}
This paper is a study of monoidal categories with duals where the tensor
product need not be commutative. The motivating examples are categories
of representations of Hopf algebras and the motivating application is
the definition of \(6j\)-symbols as used in topological field theories.

We introduce the new notion of a spherical category. In the first
section we prove a coherence theorem for a monoidal category with duals
following MacLane (1963). In the second section we give the definition
of a spherical category, and construct a natural quotient which is also
spherical.

In the third section we define spherical Hopf algebras so that the
category of representations is spherical. Examples of spherical Hopf
algebras are involutory Hopf algebras and ribbon Hopf algebras. Finally
we study the natural quotient in these cases and show it is semisimple.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Louis H. Kauffman and David E. Radford, ``Invariants of 3-Manifolds
  derived from finite dimensional Hopf algebras'', available as
  \href{https://arxiv.org/abs/hep-th/9406065}{\texttt{hep-th/9406065}}.
\end{enumerate}
\noindent
This paper also relates 3d topology and certain finite-dimensional
Hopf algebras, and it shows they give 3-manifold invariants distinct
from the more famous ones due to Witten (and a horde of mathematicians).
I have not had time to think about how they relate to the above ones,
but I have a hunch that they are the same, since all of them make heavy
use of special grouplike elements associated to the antipode.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Louis Crane and Igor Frenkel, ``Four dimensional topological quantum
  field theory, Hopf categories, and the canonical bases'', available as
  \href{https://arxiv.org/abs/hep-th/9405183}{\texttt{hep-th/9405183}}.
\end{enumerate}
\noindent
Work in 4 dimensions is, as one expects, still more subtle than in 3,
since again various things that were equalities becomes isomorphisms. In
particular, this means that various things one thought were vector
spaces --- which are \emph{sets} that have \emph{elements} that you can
\emph{add} and \emph{multiply by numbers}, and which satisfy
\emph{equations} like \[A + B = B + A\] are now reinterpreted as
``2-vector spaces'', which are \emph{categories} that have
\emph{objects} that you can \emph{direct sum} and \emph{tensor with
vector spaces}, and which have certain \emph{natural isomorphisms} like
the isomorphism \[A \oplus B \cong B \oplus A.\] In particular, using
Lusztig's canonical basis, Crane and Frenkel start with quantum groups
(which are Hopf algebras of a certain sort) and build marvelous ``Hopf
categories'' out of them. While they do not construct a 4d TQFT in this
paper, they indicate the game plan in terms clear enough that they will
probably now have to race other workers in the field to see who can get
the first interesting 4d TQFT\ldots{} or perhaps something a bit subtler
than a 4d TQFT (e.g.~Donaldson theory).

Finally, let me turn to a subject that is closely related (though
unfortunately this has not yet been made sufficiently clear), namely,
holonomy algebras and the loop representation of quantum gravity. Let me
simply list the references now; many of these papers were discussed at
my session on knots and quantum gravity at the Marcel Grossman
conference, so I promise to explain at some later time (and in some
papers I'm writing) a bit more about how the loop representation of a
gauge theory is interesting from the viewpoint of higher-dimensional
algebra!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao and T. Thiemann, ``A
  manifestly gauge-invariant approach to quantum theories of gauge
  fields'', contribution to the Cambridge meeting proceedings, available
  as
  \href{https://arxiv.org/abs/hep-th/9408108}{\texttt{hep-th/9408108}}.

  Jerzy Lewandowski, ``Topological measure and graph-differential
  geometry on the quotient space of connections'', \emph{Proceedings of
  ``Journees Relativistes 1993''}, available as
  \href{https://arxiv.org/abs/gr-qc/9406025}{\texttt{gr-qc/9406025}}.

  Abhay Ashtekar, Donald Marolf and Jose Mourao, ``Integration on the
  space of connections modulo gauge transformations'', available as
  \href{https://arxiv.org/abs/gr-qc/9403042}{\texttt{gr-qc/9403042}}.

  A. Ashtekar and R. Loll, ``New loop representations for 2+1 gravity'',
  available as
  \href{https://arxiv.org/abs/gr-qc/9405031}{\texttt{gr-qc/9405031}}.

  R. Loll, ``Independent loop invariants for 2+1 gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/9408007}{\texttt{gr-qc/9408007}}.

  R. Loll, J.M. MourÃ£o and J.N. Tavares, ``Generalized coordinates on
  the phase space of Yang--Mills theory'', available as
  \href{https://arxiv.org/abs/gr-qc/9404060}{\texttt{gr-qc/9404060}}.

  C. Di Bartolo, R. Gambini and J. Griego, ``The extended loop
  representation of quantum gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/9406039}{\texttt{gr-qc/9406039}}.

  Rodolfo Gambini, Alcides Garat and Jorge Pullin, ``The constraint
  algebra of quantum gravity in the loop representation'', available as
  \href{https://arxiv.org/abs/gr-qc/9404059}{\texttt{gr-qc/9404059}}.
\end{enumerate}
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I want to say a bit about Alain Connes' book, newly out in English, and
then some about Yang--Mills theory in 2 dimensions.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
   Alain Connes, \emph{Noncommutative Geometry}, Academic Press, Cambridge,
   Massachusetts.
\end{enumerate}

You know something is up when a prominent mathematical physicist (Daniel
Kastler) says ``Alain is great. I am just his humble prophet.'' (This
happened at a conference at Penn State I just went to.) What is
noncommutative geometry and what's so great about it?

Basically, the idea of noncommutative geometry is to generalize geometry
to ``quantum spaces''. For example, the ordinary plane has two functions
on it, the coordinate functions \(x\) and y, which commute: \(xy = yx\).
We can think of \(x\) and \(y\) as representing the position and
momentum of a classical particle. But when we consider a
quantum-mechanical particle, we must give up commutativity and instead
impose the ``canonical commutation relations'' \(xy-yx = i \hbar\),
where \(\hbar\) is Planck's constant. Now \(x\) and \(y\) are not really
functions on any space at all, but simply elements of a noncommutative
algebra. Still, we can try our best to \emph{pretend} that they are
functions on some mysterious sort of ``quantum space'' in which knowing
one coordinate of a point precisely precludes us from knowing the other
coordinate exactly, by the Heisenberg uncertainty principle.
Mathematically, noncommutative geometry consists of 1) expressing the
geometry of spaces algebraically in terms of the commutative algebra of
functions on them, and 2) then generalizing the results to classes of
noncommuative algebras.

The main trick invented by Connes was to come up with a substitute for
the ``differential forms'' on a space. Differential forms are the bread
and butter of modern geometry. If we start with a commutative algebra
\(A\) (say the algebra of smooth functions on some manifold like the
plane), we can form the algebra of differential forms over \(A\) by
introducing, for each element \(f\) in \(A\), a formal symbol \(df\),
and imposing the following rules:

\begin{itemize}
\tightlist
\item
  \(d(f+g) = df + dg\)
\item
  \(d(cf) = c df\) (\(c\) a constant)
\item
  \(d(fg) = (df)g + f dg\)
\item
  \(fdg = (dg)f\)
\item
  \(df dg = -dg df\).
\end{itemize}

More precisely, the differential forms over \(A\) are the algebra
generated by \(A\) and these differentials \(df\), modulo the above
relations. This gives a purely algebraic way of understanding what those
mysterious things like \(dx dy dz\) in integral signs are.

Now, the last two of the five rules listed above fit nicely with the
commutative of \(A\) when it \emph{is} commutative, but they jam up the
works horribly otherwise. So: how to generalize differential forms to
the noncommutative case? There are various things one can do if \(A\) is
commutative in some generalized sense, such as ``supercommutative'' or
``braided commutative'' (which I call ``R-commutative'' in some papers
on this subject). However, if \(A\) is utterly noncommutative, it seems
that the best approach is Connes', which is first to \emph{throw out}
the last two relations, obtaining something folks call the
``differential envelope'' of \(A\) or the ``universal differential
graded algebra'' over \(A\) --- which is pleasant but quite boring by
itself --- and then to consider ``chains'' which are linear maps \(F\)
from this gadget to the complex numbers (or whatever field you're
working in) satisfying the cyclic property \[F(uv) = (-1)^{ij} F(vu)\]
where \(u\) is something that looks like \(f_0 df_1 df_2 \ldots df_i\),
and \(v\) is something like \(g_0 dg_1 dg_2 \ldots dg_j\). There are
charming things one can do with chains that wind up letting one do most
of what one could do with differential forms. More precisely, just as
differential forms allow you entry into the wonderful world of de Rham
cohomology, chains let you develop something similar called cyclic
homology (and there is a corresponding cyclic cohomology that's even
more like the de Rham theory).

Connes, being extremely inventive and ambitious, has applied
noncommutative differential geometry to many areas: index theory,
K-theory, foliations, Penrose tilings, fractals, the quantum Hall
effect, and even elementary particle physics. Perhaps the most
intriguing result is that if one develops the Yang--Mills equations using
the techniques of noncommutative geometry, but with a very simple
``commutative'' model of spacetime, namely a two-sheeted cover of
ordinary spacetime, the Higgs boson falls out rather magically on its
own. This has led Kastler and other physicists to pursue a reformulation
of the whole Standard Model in terms of noncommutative geometry, hoping
to simplify it and even make some new predictions. It is far too early
to see if this approach will get somewhere useful, but it's certainly
interesting.

I haven't read this book, just part of the French version on which it's
based (with extensive additions), but my impression is that it's quite
easy to read given the technical nature of the subject.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
   Gregory
  Moore, ``2d Yang--Mills theory and topological field theory'', available as
  \href{https://arxiv.org/abs/hep-th/9409044}{\texttt{hep-th/9409044}}.
\end{enumerate}

This is a nice review of recent work on 2d Yang--Mills theory. While
Yang--Mills theory in 4 dimensions is the basis of our current theories
of the strong, weak, and electromagnetic forces, and mathematically
gives rise to a cornucopia of deep results about \(4\)-dimensional
topology, 2d Yang--Mills theory has traditionally been considered
``trivial'' in that one can exactly compute pretty much whatever one
wants. However, Witten, in ``On quantum gauge theories in two
dimensions'' (see \protect\hyperlink{week36}{``Week 36''}), showed that
precisely because 2d Yang--Mills theory was exactly soluble, one could
use it to study a lot of interesting mathematics problems relating to
``moduli spaces of flat connections.'' (More about those below.) And
Gross, Taylor and others have recently shown that 2d Yang--Mills theory,
at least working with gauge groups like \(\mathrm{SU}(N)\) or
\(\mathrm{SO}(N)\) and taking the ``large N limit'', could be formulated
as a string theory. So people respect 2d Yang--Mills theory more these
days; its complexities stand as a strong clue that we've just begun to
tap the depths of 4d Yang--Mills theory!

I can't help but add that Taylor and I did some work a while back in
which we formulated \(\mathrm{SU}(N)\) 2d Yang--Mills theory for
\emph{finite} N as a string theory. This was meant as evidence for my
proposal that the loop representation of quantum gravity is a kind of
string theory, a proposal described in \protect\hyperlink{week18}{``Week
18''}. For more on this sort of thing, try my paper in the book
\emph{Knots and Quantum Gravity} (see \protect\hyperlink{week23}{``Week
23''}) --- which by the way is finally out --- and also the following:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
   J. Baez and
  W. Taylor, ``Strings and two-dimensional QCD for finite \(N\)'', available as
  \href{https://arxiv.org/abs/hep-th/9401041}{\texttt{hep-th/9401041}}.
\end{enumerate}

When it comes to ``moduli spaces of flat connections'', it's hard to say
much without becoming more technical, but I certainly recommend starting
with the beautiful work of Goldman:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  William Goldman, ``The symplectic nature of fundamental groups of surfaces'',  
  \emph{Adv. Math.} \textbf{54} (1984), 200--225.

   William Goldman, ``Invariant functions on Lie groups and Hamiltonian flows of surface
  group representations'', \emph{Invent. Math.}
  \textbf{83} (1986), 263--302.

  William Goldman, ``Topological components of spaces of representations'', 
  \emph{Invent. Math.} \textbf{93} (1988), 557--607.
\end{enumerate}
\noindent
The basic idea here is to take a surface \(S\) with a particular
\(G\)-bundle on it, and carefully study the space of flat connections
modulo gauge transformations, which will be a finite-dimensional
stratified space. If you fix \(G\) and \(S\), no matter what bundle you
pick, this space will appear as a subspace of a bigger space called the
moduli space of flat connections, which is the same as
\(\mathrm{Hom}(\pi_1(S),G)/\mathrm{Ad} G\). There is an open dense set
of this space, the ``top stratum'', which is a symplectic manifold.
Geometric quantization of this manifold has everything in the world to
do with Chern--Simons theory, as summarized so deftly by Atiyah:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
   Michael Atiyah, \emph{The Geometry and Physics of Knots}, Cambridge
  U. Press, Cambridge, 1990.
\end{enumerate}
\noindent
On the other hand, lately people have been using 2d Yang--Mills theory,
\(BF\) theory, and the like (see \protect\hyperlink{week36}{``Week
36''}) to get a really thorough handle on the cohomology of the moduli
space of flat connections. For a mathematical approach to this problem
that doesn't talk much about gauge theory, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
   Lisa C. Jeffrey, ``Group cohomology construction of the cohomology of moduli spaces of
  flat connections on 2-manifolds'', available as 
  \href{https://arxiv.org/abs/alg-geom/9404012}{\texttt{alg-geom/9404012}}.
\end{enumerate}
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When I was an undergraduate I was quite interested in logic and the
foundations of mathematics --- I was always looking for the most
mind-blowing concepts I could get ahold of, and G\"odel's theorem, the
L\"owenheim--Skolem theorem, and so on were right up there with quantum
mechanics and general relativity as far as I was concerned. I did my
undergrad thesis on computability and quantum mechanics, but then I sort
of lost interest in logic and started thinking more and more about
quantum gravity. The real reason was probably that my thesis didn't turn
out as interesting as I'd hoped, but I remember feeling at the time that
logic had become less revolutionary than in it was in the early part of
the century. It seemed to me that logic had become a branch of
mathematics like any other, studying obscure properties of models of the
Zermelo--Fraenkel axioms, rather than questioning the basic presumptions
implicit in those axioms and daring to pursue new, different approaches.
I couldn't really get excited about the properties of super-huge
cardinals. Of course, I knew a bit about intuitionistic logic and
various forms of finitism, but these seemed to be the opposite of
daring; instead, they seemed to appeal mainly to grumpy people who
didn't trust abstractions and wanted to do everything as conservatively
as possible. I was pretty interested in quantum logic, too, but I tended
to think of this more as a branch of physics than `logic' proper.

Anyway, it's now quite clear to me that I just hadn't been reading the
right stuff. I think Rota has said that the really interesting work in
logic now goes under the name of `computer science', but for whatever
reason, I didn't dig into the \emph{Journal of Philosophical Logic}, other
logic journals, or proceedings of conferences on category theory,
computer science and the like and find the stuff that would have excited
me. It goes to show that one really needs to keep digging! Anyway, I
just went to a conference called the Lambda Calculus Jumelage up in
Ottawa, thanks to a kind invitation by Prakash Panangaden and Phil
Scott, who thought my ideas on category theory and physics might
interest (or at least amuse) the folks who attend this annual bash. It
became clear to me while up there that logic is alive and well!

Of course, I don't actually understand most of what these people are up
to, so take what I say with a large grain of salt. My goal here is more
to draw attention to some interesting-sounding ideas than to explain
them.

One interesting subject, which I think I'm finally beginning to get an
inkling of, is ``linear logic''. This was introduced in the following
paper (which I haven't gotten around to looking at):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Jean-Yves Girard,  ``Linear Logic'', \emph{Theoretical Computer
  Science} \textbf{50} (1987), 1--102.
\end{enumerate}

When I first heard about linear logic, it made utterly no sense. It
seemed to be a logic suitable for use in some completely different
universe than the one I inhabited! For example, there were the familiar
logical connectives ``and'' and ``or'', but they had weird alternate
versions called ``tensor'' and ``par'', the latter written with an
upside-down ampersand. There was also an alternate version of the
material implication ``\(\to\)'', and a strange operation called
``\(!\)'' (pronounced ``bang'') that somehow mediated between the
logical connectives I knew and loved and their eerie alter egos.

I understand a wee bit about these things now; one can get a certain
ways just by getting used to ``tensor'', since the rest of the weird
connectives are defined in terms of this one and the familiar ones. (I
won't worry about the ``\(!\)'' here.) One key idea, which finally
penetrated my thick skull, is that there is a good reason why ``tensor''
does not satisfy the following deduction rule so characteristic of
``and'':
\[\AxiomC{$S\vdash p$}\AxiomC{$S\vdash q$}\BinaryInfC{$S\vdash p\&q$}\DisplayProof\]
meaning: if from the set of premisses \(S\) we can deduce \(p\), and
from \(S\) we can also deduce \(q\), then from \(S\) we can deduce
\(p\&q\). The point is that in linear logic one should not think of
\(S\) as a \emph{set} of premisses, but rather as a \textbf{multiset},
meaning that the same premise can appear twice. The idea is that if we
use one premise in \(S\) to deduce something, we \emph{use it up}, and we can
only use it again if \(S\) has several copies of that premise in it. As
they say, linear logic is ``resource-sensitive'' (which is apparently
why computer scientists like it). So the idea is that in linear logic,
\[S\vdash p\&q\] means something like ``from the premisses \(S\) one can
deduce \(p\) if one feels like it, or alternatively one can deduce \(q\)
if one feels like it, but not necessarily both at once, since there
may not be enough copies of the premisses to do that.'' On the other
hand, \[S\vdash p\otimes q\] is stronger, since it means something like
``from the premisses \(S\) one can deduce both \(p\) and \(q\) at once,
since there are enough copies of all the premisses in \(S\) to do it.''
Thus ``\(\&\)'' satisfies the above deduction rule in linear logic just
as in classical logic, but ``tensor'' does not; instead, it satisfies
\[\AxiomC{$S\vdash p$}\AxiomC{$T\vdash q$}\BinaryInfC{$S\cup T\vdash p\otimes q$}\DisplayProof\]
where \(S \cup T\) denotes the union of the multisets \(S\) and \(T\)
(so that if both \(S\) and \(T\) have one copy of a premiss,
\(S \cup T\) has two copies of it).

Well, let me leave it at that. I should add that there is a paper
available online,

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
 Vaughan Pratt, ``Linear logic for generalized quantum mechanics'', by 
  available at \href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.649}{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.649}.
\end{enumerate}
\noindent
which relates linear logic and quantum logic, and which is part of a
body of work relating linear logic and category theory, with the key
idea being that ``linear logic is a logic of monoidal closed categories
in much the same way that intuitionistic logic is a logic of Cartesian
closed categories'' --- here I quote

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Richard Blute, ``Hopf algebras and linear logic'', 
  \emph{Mathematical Structures in Computer Science}, \textbf{6} (1996), 189--217.
  Available as \href{https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.114.8038}{https://citeseerx.ist.psu.edu/viewdoc/} \href{https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.114.8038}{summary?doi=10.1.1.114.8038}.
\end{enumerate}
\noindent
I suppose to most people, explaining linear logic in terms of monoidal
closed categories may seem like using mud to wipe one's windshield.
However, to some of us monoidal closed categories are rather familiar
things, and in fact anyone who knows about vector spaces, linear maps,
and the vector spaces \(\mathrm{Hom}(V,W)\) and \(V\otimes W\) knows a
really good example of a monoidal closed category. Thus monoidal closed
categories can be viewed as an abstraction of linear algebra, and indeed
this is how ``linear logic'' got its name.

It seems that I should read the following papers, too, before I really
understand the connection between linear logic and category theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  R. A. G. Seely, Linear logic, *-autonomous categories and cofree coalgebras, in \emph{Categories in Computer Science and Logic}, Contemp.
  Math. \textbf{92}, American Mathematical Society, Providence, Rhode Island, 1989.
\item
  D. Yetter, ``Quantales and (noncommutative) linear logic'',
  \emph{Journal of Symbolic Logic} \textbf{55} (1990), 41--64.
\end{enumerate}
\noindent
A terse summary of linear logic in terms a categorist might like can be
found in Section 3.5 of Pratt's paper cited above. I should add that
Pratt has lots of other interesting papers available online.
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In the beginning of September I went to a conference at the Center for
Gravitational Physics and Geometry at Penn State. This is the center run
by Abhay Ashtekar, and it has Jorge Pullin and Lee Smolin as faculty,
and Roger Penrose as a part-time visitor --- so it's a great place to
visit if you're interested in quantum gravity. There are a lot of good
postdocs and such there, too. I've been too busy to say much so far
about what happened at this conference, but I'd like to now.

One talk I enjoyed a lot was Steve Carlip's, on the entropy of black
holes. This has subsequently come out as a preprint, available
electronically:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Steve Carlip, ``The statistical mechanics of the (2+1)-dimensional black hole'', 
   available as
  \href{https://arxiv.org/abs/gr-qc/9409052}{\texttt{gr-qc/9409052}}.
\end{enumerate}

It's well-known by now that in certain situations it makes sense to
speak of the ``entropy'' of a black hole, but the real meaning of this
entropy is still mysterious. In particular, since the entropy of a black
hole is (often, but not always) proportional to the area of its event
horizon, it would be very satisfying if the entropy corresponded somehow
to degrees of freedom that ``lived at the event horizon''. Steve Carlip
has done a pretty credible calculation along these lines (though not
without various subtle difficulties) in the case of a black hole in
3-dimensional spacetime.

I should say a little bit about gravity in 3 dimensions and why people
are interested in it. \(3\)-dimensional gravity is drastically simpler
than 4-dimensional gravity, since in 3 dimensions the vacuum Einstein's
equations say the spacetime metric is \emph{flat}, at least if the
cosmological constant vanishes. Thus there can be no gravitational
radiation (and in quantum theory no ``gravitons''), and the metric
produced by a static point mass is not like the Schwarschild metric,
instead, on space it is just like that of a cone. Things are a bit
different if the cosmological constant is nonzero; in particular, there
are black-hole type solutions. But there is still no gravitational
radiation.

Basically, people are interested in \(3\)-dimensional quantum gravity
because it's simple enough that one can compute something and hope it
sheds some light on the \(4\)-dimensional world we live in. For some
issues this appears to be the case: primarily, conceptual issues having
to do with theories in which there is no ``background metric''.
Unfortunately, there are \emph{several different ways} to set up
\(3\)-dimensional quantum gravity, corresponding to different approaches
people have to 4-dimensional quantum gravity. For this, check out
Carlip's paper ``Six ways to quantize (2+1)-dimensional gravity,''
mentioned in \protect\hyperlink{week16}{``Week 16''}. However, I think
the ``best'' way to quantize gravity in 3 dimensions is the way
involving Chern--Simons theory, because this way is the most closely
related to Ashtekar's approach to quantizing gravity in 4 dimensions,
hence it sheds the most light on the things I'm interested in --- and I
also think it's the most beautiful. In this approach, you can compute a
lot of things, and basically what Carlip has done is to show that
associated to the event horizon there are degrees of freedom which
should give entropy proportional to its area.

I suppose I can't say how he does it much more clearly than he says it,
so I'll quote the introduction, taking the liberty of turning some of
his LaTeX into English. If you get scared by the ``Virasoro operator
\(L_0\)'' below, never fear --- in this context, it just amounts to the
angular momentum operator, which generates rotations about the origin.
So:

\begin{quote}
The basic argument is quite simple. Begin by considering general
relativity on a manifold \(M\) with boundary. We ordinarily split the
metric into true physical excitations and ``pure gauge'' degrees of
freedom that can be removed by diffeomorphisms of \(M\). But the
presence of a boundary alters the gauge invariance of general
relativity: the infinitesimal transformations {[}\ldots{]} must now be
restricted to those generated by vector fields {[}\ldots{]} with no
component normal to the boundary, that is, true diffeomorphisms that
preserve the boundary of \(M\). As a consequence, some degrees of
freedom that would naively be viewed as ``pure gauge'' become dynamical,
introducing new degrees of freedom associated with the boundary.

Now, the event horizon of a black hole is not a true boundary, although
the black hole complementarity approach of Susskind et al.~suggests that
it might be appropriately treated as such. Regardless of one's view of
that program, however, it is clear that in order to ask quantum
mechanical questions about the behavior of black holes, one must put in
``boundary conditions'' that ensure that a black hole is present. This
means requiring the existence of a hypersurface with particular metric
properties---say, those of an apparent horizon.

The simplest way to do quantum mechanics in the presence of such a
surface is to quantize fields separately on each side, imposing the
appropriate correlations as boundary conditions. In a path integral
approach, for instance, one can integrate over fields on each side,
equate the boundary values, and finally integrate over those boundary
values compatible with the existence of a black hole. But this process
again introduces boundary terms that restrict the gauge invariance of
the theory, leading once more to the appearance of new degrees of
freedom at the horizon that would otherwise be treated as unphysical.

My suggestion is that black hole entropy is determined by counting these
would-be gauge degrees of freedom. The resulting picture is similar to
Maggiore's membrane model of the black hole horizon, but with a
particular derivation and interpretation of the ``membrane'' degrees of
freedom.

The analysis of this phenomenon is fairly simple in 2+1 dimensions. It
is well known that (2+1)-dimensional gravity can be written as a
Chern--Simons theory, and it is also a standard result that a
Chern--Simons theory on a manifold with boundary induces a dynamical
Wess--Zumino--Witten (WZW) theory on the boundary. In the presence of a
cosmological constant \(\Lambda = -1/L^2\) appropriate for the
(2+1)-dimensional black hole, one obtains a slightly modified
\(\mathrm{SO}(2,1) \times \mathrm{SO}(2,1)\) WZW model, with coupling
constant \[k = \frac{L\sqrt{2}}{8G}\] This model is not completely
understood, but in the large \(k\) --- i.e., small \(\Lambda\) ---
limit, it may be approximated by a theory of six independent bosonic
oscillators. I show below that the Virasoro operator \(L_0\) for this
theory takes the form \[L_0 \sim N -\left(\frac{r}{4G}\right)^2,\] where
\(N\) is a number operator and \(r\) is the horizon radius. It is a
standard result of string theory that the number of states of such a
system behaves asymptotically as \[n(N) \sim \exp(\pi \sqrt{4} N)\] If
we demand that \(L_0\) vanish --- physically, requiring states to be
independent of the choice of origin of the angular coordinate at the
horizon --- we thus obtain \[\log n(r) \sim \frac{2 \pi r}{4G},\]
precisely the right expression for the entropy of the (2+1)-dimensional
black hole.
\end{quote}

Also, Carlo Rovelli spoke about describing the dynamics of quantum
gravity coupled to a scalar field in terms of ``spin network'' states. I
think this was based on work he did in collaboration with Lee Smolin,
and I don't think it's out yet. I'm just about to finish up a little
paper on spin network states myself, since they seem like very useful
things in quantum gravity. The simplest sort of spin network is just a
trivalent graph (i.e., 3 edges adjacent to each vertex) with edges
labelled by ``spins'' \(0,\frac{1}{2},1,\frac{1}{2},\ldots\), and satisfying the
``triangle inequality'' at each vertex:
\[j_1 + j_2 \leqslant j_3, \quad j_2 + j_3 \leqslant j_1, \quad j_3 + j_1 \leqslant j_2,\]
where \(j_1\), \(j_2\), \(j_3\) are the spins labelling the edges
adjacent to the given vertex. Really, the spins should be thought of as
irreducible representations of \(\mathrm{SU}(2)\), and the triangle
inequalities is necessary for the representation \(j_3\) to appear as a
summand in the tensor product of the representations \(j_1\) and
\(j_2\). (If the last sentence was meaningless to you, reading
\protect\hyperlink{week5}{``Week 5''} will help a little, though
probably not quite enough.)

Penrose introduced spin networks as part of a purely combinatorial
approach to spacetime in the paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Roger Penrose, ``Angular momentum; an approach to combinatorial space time'', 
   in \emph{Quantum Theory and Beyond}, ed.~T. Bastin,
  Cambridge University Press, Cambridge, 1971.  Available as 
  \href{https://math.ucr.edu/home/baez/penrose/}{https://math.ucr.edu/home/baez/penrose/}.
\end{enumerate}
\noindent
It is somehow satisfying, therefore, to see that spin networks arise
naturally as a convenient description of states in the loop
representation of quantum gravity, which \textbf{starts} mainly with
Einstein's equations and the principles of quantum mechanics. Certainly
there is a lot more we need to learn about them\ldots. One place worth
reading about them is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
 Louis Crane,  ``Conformal field theory, spin geometry, and quantum gravity'', by
  \emph{Phys. Lett.} \textbf{B259} (1991), 243--248.
\end{enumerate}
\noindent
I will be coming out with a paper on them next week if I get my act
together, and I may say a bit more about them in future
\protect\hyperlink{weeks}{``Week s''}.

Rovelli also mentioned an interesting paper he wrote about the problem
of time in quantum gravity with the operator-algebra/noncommutative-
geometry guru Alain Connes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  A. Connes and C. Rovelli, ``Von Neumann algebra automorphisms and time-thermodynamics
   relation in general covariant quantum theories'', available as
  \href{https://arxiv.org/abs/gr-qc/9406019}{\texttt{gr-qc/9406019}}.
\end{enumerate}
\noindent
The problem of time in quantum gravity is a bit tricky to describe,
since it takes different guises in different approaches to quantum
gravity, but I have attempted to give a rough introduction to it in
\protect\hyperlink{week11}{``Week 11''} and
\protect\hyperlink{week27}{``Week 27''}. One way to get a feeling for it
is to realize that anything you are used to doing with Hamiltonians in
quantum mechanics or quantum field theory, you CAN'T do in quantum
gravity, at least not in any simple way, because there is no Hamiltonian
in general relativity, but only a ``Hamiltonian constraint'' --- which
in quantum gravity becomes the Wheeler--DeWitt equation 
\[H \psi = 0.\]
Now, people know there is a mystical relationship between time and
temperature that might be written \[it = \frac{1}{kT}\] where \(t\) is
time, \(T\) is temperature, and \(k\) is Boltzmann's constant. This
equation is a bit of an exaggeration! But the point is that in quantum
theory, when there is a Hamiltonian \(H\) around one evolves states
using the operator \[\exp(-itH)\] while the Gibbs state, that is, the
equilibrium state at temperature \(T\), is given by the density matrix
\[\exp(-H/kT).\] It is this fact that relates statistical mechanics and
quantum field theory so closely.

Now, in quantum gravity things aren't so simple, since there isn't a
Hamiltonian (just a Hamiltonian constraint). However, people \emph{do}
know that there are all sorts of funny relationships between statistical
mechanics and quantum gravity. For example, an accelerating observer in
Minkowski space will see the vacuum as a heat bath with temperature
proportional to her acceleration, so in curved spacetime, where there
are no truly inertial frames, there really is no well-defined notion of
a vacuum; in some vague sense, all there are is ``thermal'' states. This
fact is also somehow related to Hawking radiation, and to the notion of
black hole entropy\ldots{} but really, there is a lot that nobody
understands about all these connections!

In any event, Rovelli was prompted to use thermodynamics to
\textbf{define} time in quantum gravity as follows. Given a mixed state
with density matrix \(D\), \emph{find} some operator \(H\) such that
\(D\) is the Gibbs state \(\exp(-H/kT)\). In lots of cases this isn't
hard; it basically amounts to \[H = -kT \ln D\] Of course, \(H\) will
depend on \(T\), but this really is just saying that fixing your units
of temperature fixes your units of time!

Operator theorists have pondered this notion very carefully for a long
time and generalized it into something called the Tomita--Takesaki
theorem, which Connes and Rovelli explain. This gives a very general way
to cook up a Hamiltonian (hence a notion of time evolution) from a state
of a quantum system! For example, one can use this trick to start with a
Robertson--Walker universe full of blackbody radiation, and recover a
notion of ``time''. This is very intriguing, and it may represent some
real progress in understanding the deep relations between time,
thermodynamics, and gravity. There are, of course, lots of problems and
puzzles to deal with.

Another intriguing talk at the conference was given by Viqar Husain, on
the subject of the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Viqar Husain, ``The affine symmetry of self-dual gravity", available as
  \href{https://arxiv.org/abs/hep-th/9410072}{\texttt{hep-th/9410072}}.
\end{enumerate}
\noindent
Let me simply quote the abstract, since I don't feel I really understand
the essence of this business well enough to say anything useful yet:

\begin{quote}
Self-dual gravity may be reformulated as the two dimensional chiral
model with the group of area preserving diffeomorphisms as its gauge
group. Using this formulation, it is shown that self-dual gravity
contains an infinite dimensional hidden symmetry algebra, which is the
Affine (Kac--Moody) algebra associated with the Lie algebra of area
preserving diffeomorphisms. This result provides an observable algebra
and a solution generating technique for self-dual gravity.
\end{quote}

A couple more things before I wrap this up\ldots. First, in case any
mathematicians out there are wondering what this ``knots and quantum
gravity'' business is all about, here's something I wrote to review the
subject:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  John Baez, ``Knots and quantum gravity: progress and prospects'', available as
  \href{https://arxiv.org/abs/gr-qc/9410018}{\texttt{gr-qc/9410018}}.
\end{enumerate}
\noindent
My abstract:

\begin{quote}
Recent work on the loop representation of quantum gravity has revealed
previously unsuspected connections between knot theory and quantum
gravity, or more generally, \(3\)-dimensional topology and
\(4\)-dimensional generally covariant physics. We review how some of
these relationships arise from a `ladder of field theories' including
quantum gravity and \(BF\) theory in 4 dimensions, Chern--Simons theory
in 3 dimensions, and the \(G/G\) gauged WZW model in 2 dimensions. We
also describe the relation between link (or multiloop) invariants and
generalized measures on the space of connections. In addition, we pose
some research problems and describe some new results, including a proof
(due to Sawin) that the Chern--Simons path integral is not given by a
generalized measure.
\end{quote}

Finally, let me draw people's attention to ``Matters of Gravity'', the
newsletter Jorge Pullin puts together at considerable effort, to keep
people informed about general relativity and the like, experimental and
theoretical:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  ``Matters of Gravity'', a newsletter for the gravity community,
  Number \textbf{4}, edited by Jorge Pullin, 24 pages in Plain TeX,
  available as
  \href{https://arxiv.org/abs/gr-qc/9409004}{\texttt{gr-qc/9409004}}.
\end{enumerate}

Here's the table of contents of this issue:

\begin{itemize}
\tightlist
\item
  Editorial.
\item
  Gravity News:

  \begin{itemize}
  \tightlist
  \item
    Report on the APS topical group in gravitation, Beverly Berger.
  \end{itemize}
\item
  Research briefs:

  \begin{itemize}
  \tightlist
  \item
    Gravitational microlensing and the search for dark matter, Bohdan
    Paczynski.
  \item
    Laboratory gravity: the G mystery, Riley Newman.
  \item
    LIGO project update, Stan Whitcomb.
  \end{itemize}
\item
  Conference Reports

  \begin{itemize}
  \tightlist
  \item
    PASCOS '94, Peter Saulson.
  \item
    The Vienna Meeting, P. Aichelburg, R. Beig.
  \item
    The Pitt binary black hole grand challenge meeting, Jeff Winicour.
  \item
    International symposium on experimental gravitation at Pakistan,
    Munawar Karim.
  \item
    10th Pacific coast gravity meeting, Jim Isenberg.
  \end{itemize}
\end{itemize}
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String theory means different things to different people. The original
theory of strings -- at least if I've got my history right -- was a
theory of hadrons (particles interacting via the strong force). The
strong force wasn't understood too well then, but in 1968 Veneziano
cleverly noticed when thumbing through a math book that Euler's beta
function had a lot of the properties one would expect of the formula for
how hadrons scattered (the so-called \(S\)-matrix). Later, around 1970,
Nambu and Goto noticed that this function would come out naturally if
one thought of hadrons as different vibrational modes of a relativistic
string.

This theory had problems, and eventually it was supplanted by the
current theory of the strong force, involving quarks and gluons. The
gluons are another way of talking about the strong force, which is a
gauge field. The biggest puzzle about this approach to hadrons is, ``how
come we don't see quarks?'' This is called the puzzle of confinement. In
the late 1970's, one proposed solution was that as you pulled the quark
and the antiquark in a meson apart, the strong force effectively formed
an elastic ``string'' with constant tension. This would mean that
pulling them apart took energy proportional to how far you pulled them
apart. Past a certain point, the energy would be enough to create a new
quark-antiquark pair and \emph{snap} --- the string would split into two
new strings with quark and antiquark on each end. So here the ``string''
idea is revived but as an approximation to a theory of gauge fields. One
can even try to derive approximate string equations from the equations
for the strong force: the Yang--Mills equations. In my paper on strings,
loops, knots and gauge fields (see \protect\hyperlink{week18}{``Week
18''}), I gave references to some early papers on the subject:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Y. Nambu, ``QCD and the string model'', \emph{Phys. Lett.}
  \textbf{B80} (1979), 372--376.

  ``Gauge fields as rings of glue'', A. Polyakov, \emph{Nucl. Phys.}
  \textbf{B164} (1979), 171--188.

  Y. Nambu, ``The quantum dual string wave functional in Yang--Mills theories'', 
  \emph{Phys. Lett.} \textbf{B80} (1979),
  255--258.

  F. Gliozzi and M. Virasoro, ``The interaction among dual strings as a manifestation of the gauge
  group'', \emph{Nucl. Phys.}
  \textbf{B164} (1980), 141--151.

  A. Jevicki, ``Loop-space representation and the large-\(N\) behavior of the
  one-plaquette Kogut-Susskind Hamiltonian'', \emph{Phys.
  Rev.} \textbf{D22} (1980), 467--471.

 Y. Makeenko and A. Migdal,  ``Quantum chromodynamics as dynamics of loops'', 
  \emph{Nucl. Phys.} \textbf{B188} (1981), 269--316.

  Y.  Makeenko and A. Migdal, ``Loop dynamics: asymptotic freedom and quark confinement'', \emph{Sov. J. Nucl. Phys.} \textbf{33} (1981), 882--893.
\end{enumerate}

These papers make very interesting reading even today. Anyone who knows
particle physics will recognize most of these names! Strings were big
back then. But then they went out of fashion, because the string models
predicted a massless spin-2 particle --- and there's no such thing in
particle physics. Later, when people were trying to cook up ``theories
of everything'' including gravity, this flaw was again seen as a plus,
since the hypothesized ``graviton'' meets that description.

The modern, more technical subject of string theory is a lot more fancy
than these early papers. In particular, the recognition that conformal
invariance was a very good thing when studying strings propagating on
fixed background metric (like that of Minkowski space) pushed string
theorists into a careful study of \(2\)-dimensional conformal invariant
quantum field theories. (Here the 2 dimensions refer to the surface the
string traces out as it moves through spacetime.) Conformal field theory
then developed a life of its own! By now it's pretty intimidating to the
outsider. Mathematicians might find the following summary handy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Krzysztof Gawedzki, ``Conformal field theory'', \emph{Seminaire
  Bourbaki}, Asterisque \textbf{177--178} (1989), 95--126.
\end{enumerate}
\noindent
while physicists might try

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Michio Kaku, \emph{Introduction to Superstrings},
  Springer, Berlin, 1988.

   Michio Kaku, \emph{String Fields, Conformal Fields, and Topology}, 
  New York, Springer, Berlin, 1991.
\end{enumerate}
\noindent
Kaku's books are a decent overview but rather sketchy in spots, since
they cover vast amounts of territory.

Then there is another kind of sophisticated modern string theory,
``string field theory'', which doesn't assume the strings are moving
around on a spacetime with a background geometry. This is clearly more
like what one wants to do if one is using strings to explain quantum
gravity. I don't understand this nearly as well as I'd like to, but the
guru on this subject is Barton Zwiebach, so if one was really gutsy one
would, after a suitable warmup with Kaku, plunge in and read something
like

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
   Ashoke Sen and Barton Zwiebach,  ``Quantum background independence of closed string 
   field theory'',  available as
  \href{https://arxiv.org/abs/hep-th/9311009}{\texttt{hep-th/9311009}}.

  Ashoke Sen and Barton Zwiebach,``Background independent algebraic structures in 
  closed string field theory'', available as
  \href{https://arxiv.org/abs/hep-th/9408053}{\texttt{hep-th/9408053}}.
\end{enumerate}
\noindent
Unfortunately I'm not quite up to it yet\ldots.

Then, in a different direction, a bunch of folks from general relativity
pursued some ideas about string and loops to the point of developing the
``loop representation of quantum gravity.'' I'm referring to

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  C. Rovelli and L. Smolin,  ``Loop representation for quantum general relativity'', by\emph{Nucl. Phys.} \textbf{B331} (1990), 80--152.
\end{enumerate}
\noindent
though it's important to credit some of the people who kept alive the
idea that one should study gauge fields as being ``loops of string'', or
more technically, ``Wilson loops'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  R. Gambini and A. Trias, ``Gauge dynamics in the C-representation'', \emph{Nucl. Phys.} \textbf{B278} (1986),
   436--448.
\end{enumerate}

Now what's frustrating here is that I understand the loop representation
business, but not the ``background-free closed string field theory''
business, even though they have the same historical roots and are both
trying to deal with quantum gravity (among other forces) in a way that
assumes that loops are the basic objects. Alas, the two strands speak in
different languages! Heavy-duty mathematicians like Getzler, Kapranov
and Stasheff know how to think about closed string fields in terms of
``operads'', and that stuff seems like it should be simple enough to
understand, but alas, when I read it I get snowed in detail (so far).

Let me digress to mention what an ``operad'' is. An ``operad'' is
basically a cool way to handle sets equipped with lots of \(n\)-ary
operations. These operations might be ``parametrized'' in various ways.
The operad elegantly keeps track of these parametrizations. So, for each
\(n\), an operad has a set \(X(n)\) which we think of as all the
\(n\)-ary operations. Think of something in \(X(n)\) as a black box that
has \(n\) ``input'' tubes and one ``output'' tube, or a tree-shaped
thing \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0.75,0)
        to (0.75,-2);
      \strand[thick] (0,0)
        to [out=down,in=up] (0.75,-1);
      \strand[thick] (1.5,0)
        to [out=down,in=up] (0.75,-1);
    \end{knot}
  \end{tikzpicture}
\] with \(n\) branches and one root (here \(n = 3\)). Then suppose we
have a bunch of these black boxes. Say we have something in \(X(n_1)\),
something in \(X(n_2)\), \ldots. and so on up to something in
\(X(n_k)\). Thus we've got a pile of black boxes with a total of
\(n_1 + \ldots + n_k\) input tubes and \(k\) output tubes. Now if we
\emph{also} have a guy in \(X(k)\), which has \(k\) input tubes, we can
hook up all the output tubes of all the boxes in our pile to the input
tubes of this guy, to get a monstrous machine with
\(n_1 + \ldots + n_k\) input tubes and one output. In short, there is an
operation from
\(X(n_1)\times \ldots\times X(n_k)\times X(k) \to X(n_1 + \ldots + n_k)\).
For example, if we take the tree up there, which represents something in
\(X(3)\), and another thing in \(X(3)\), we can hook up their outputs to
the inputs of something in \(X(2)\), to get something that looks like \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0.75,0)
        to (0.75,-1.5);
      \strand[thick] (0,0)
        to [out=down,in=up] (0.75,-1);
      \strand[thick] (1.5,0)
        to [out=down,in=up] (0.75,-1);
    \end{knot}
    \begin{scope}[shift={(2,0)}]
      \begin{knot}
        \strand[thick] (0.75,0)
          to (0.75,-1.5);
        \strand[thick] (0,0)
          to [out=down,in=up] (0.75,-1);
        \strand[thick] (1.5,0)
          to [out=down,in=up] (0.75,-1);
      \end{knot}
    \end{scope}
    \begin{scope}[shift={(0.75,-1.5)}]
      \begin{knot}
        \strand[thick] (0,0)
          to [out=down,in=up] (1,-1)
          to (1,-2);
        \strand[thick] (2,0)
          to [out=down,in=up] (1,-1);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] which is in \(X(6)\). The closed string field theorists like operads
because there are lots of parametrized ways of gluing together Riemann
surfaces with punctures together. It's a handy language,
apparently\ldots{} I am a bit more familiar with operads (though not
much) in the context of homotopy theory, where they can be used to
elegantly summarize the operations one has floating around in an
infinite loop space. \emph{Very} roughly, an infinite loop space is a
space that looks like the space of loops of loops of loops of
loops\ldots{} of loops in some topological space, where you get to make
the ``dot dot dot'' part go on as long as you want! A beautifully
unpretentious and utterly readable book on these spaces, operads, and
much much more, is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  J. F. Adams, \emph{Infinite Loop Spaces}, Princeton U. Press,
  Princeton, 1978.
\end{enumerate}

Lest ``infinite loop spaces'' seem abstruse, I should emphasize that the
book is really a nice tour of a lot of modern homotopy theory. As he
says, ``my object has been a more elementary exposition, which I hope
may convey the basic ideas of the the subject in a way as nearly
painless as I can make it. In this the Princeton audience encouraged me;
the more I found means to omit the technical details, the more they
seemed to like it.'' A lot of the general mathematical machinery he
discusses, especially in the chapter called ``Machinery'', is really too
nice to be left for only the homotopy theorists!

Anyway, once you have gotten the hang of operads you can try the work of
a reformed homotopy theorist, Jim Stasheff, on string field theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Jim Stasheff, ``Closed string field theory, strong homotopy Lie algebras and the
  operad actions of moduli spaces'', available as
  \href{https://arxiv.org/abs/hep-th/9304061}{\texttt{hep-th/9304061}}.
\end{enumerate}
\noindent
Actually Graeme Segal, another string theory guru, also used to do
homotopy theory. He's the one who's famous for:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Andrew Pressley and Graeme Segal, \emph{Loop groups}, Oxford
  University Press, Oxford, 1986.
\end{enumerate}
\noindent
So it's possible that these guys didn't really quit homotopy theory, but
just figured out how to get physicists interested in it. Notice all
those loops! :-)

But where was I\ldots{} romping through various approaches to string
theory, taking a detour to mention loops, but all the while sneaking up
on my goal, which is to list a few papers that lend evidence to the
thesis of my paper Strings, Loops, Knots and Gauge Fields, namely that a
profound ``string/gauge field duality'' is at work in many physical
models, and that the loop representation of quantum gravity, and string
theory, may eventually not be seen as so different after all.

Let's see what we've got here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  ``A reformulation of the Ponzano--Regge quantum gravity model in terms
  of surfaces'', Junichi Iwasaki, University of Pittsburgh, 11 pages in
  LaTeX format available as
  \href{https://arxiv.org/abs/gr-qc/9410010}{\texttt{gr-qc/9410010}}.
\end{enumerate}

I've discussed the Ponzano--Regge model quite a bit in
\protect\hyperlink{week16}{``Week 16''} and
\protect\hyperlink{week38}{``Week 38''}. It's an approach to quantum
gravity that is especially successful in 3 dimensions, and involves
chopping spacetime up into simplices. The exact partition function, as
they say, can be computed using this combinatorial discrete
approximation to the spacetime manifold. (In quantum field theory, when
you know enough about the partition function you can compute the
expectation values of observables to your heart's content.) Anyway, here
Iwasaki does the kind of thing I was pointing towards in my paper,
namely, to rewrite the theory, which starts out as a gauge theory, as a
theory of surfaces (``string worldsheets'') in spacetime.

Meanwhile, more work has been done on the same kind of idea for good old
quantum chromodynamics, though here there \emph{is} a background
geometry, and one approximates the spacetime manifold by a discrete
lattice not because one expects to get the \emph{exact} answers out that
way, but just because it's a decent approximation that makes things a
bit more manageable:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\item
  B. Rusakov, ``Lattice QCD as a theory of interacting surfaces'',  available as
  \href{https://arxiv.org/abs/hep-th/9410004}{\texttt{hep-th/9410004}}.

   Ivan K.  Kostov,  ``\(\mathrm{U}(N)\) gauge theory and lattice strings'', available as
  \href{https://arxiv.org/abs/hep-th/9308158}{\texttt{hep-th/9308158}}.
\end{enumerate}
\noindent
Also, if there were any gauge theory that deserved to be a string
theory, it's probably Chern--Simons theory, which has so much to do with
knots\ldots{} and indeed something like this seems to be the case,
though it's all rather subtle and mysterious so far:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Michael R. Douglas, ``Chern--Simons-Witten theory as a topological Fermi liquid'', 
  available as
  \href{https://arxiv.org/abs/hep-th/9403119}{\texttt{hep-th/9403119}}.
\end{enumerate}
\noindent
Frequently, when there is a whole lot of frenetic,
sophisticated-sounding activity around a certain idea, like this
relation between strings and gauge fields, there is a simple truth
yearning to be known. Sometimes it takes a while! We'll see.



\hypertarget{week43}{%
\section{November 5, 1994}\label{week43}}

It is very exciting, yet somewhat scary, as work continues on the loop
representation of quantum gravity. On the one hand, researches are busy
making it mathematically rigorous; on the other hand, they are beginning
to understand its physical significance. The reasons for excitement are
obvious, but the scary part is that until the final touches are put on
the mathematical rigor, we don't know if the theory really exists!

Of course there is the whole separate issue of whether the theory will
find experimental confirmation. If the theory were experimentally
confirmed, questions of mathematical rigor wouldn't be quite such a big
deal. But experimental verification will probably take a long time!
Also, we don't really expect a theory of ``pure gravity'' to be
experimentally confirmed. One will need to figure out how all the other
particles and fields fit in --- except perhaps for very general,
qualitative issues. (See the paper mentioned at the very end of this
article for some of \emph{those}.) So here the suspense is of a
long-term sort. Luckily, the question of whether the theory makes
mathematical sense is already very interesting, since so many theories
of quantum gravity have already been shot down on that basis, and the
loop representation approach seems so pretty. Either it will make sense,
or we will run into some obstacle, which is bound to be enlightening.

Let me briefly review the loop representation, without too many
technical details. For more details try the original paper by Rovelli
and Smolin (see \protect\hyperlink{week42}{``Week 42''} for a
reference), the book by Ashtekar (see \protect\hyperlink{week7}{``Week
7''}), or, especially if you're a mathematician, my review article
\href{http://math.ucr.edu/home/baez/knot.ps}{``Knots and quantum
gravity: progress and prospects''}.

There are 3 basic steps in the ``canonical quantization'' of general
relativity. At each step there is a vector space of quantum states, but
only in the last do we really need a Hilbert space of states, since only
when we're done do we want to be able to compute expectation values of
observables, which takes an inner product.

In what follows I'll talk about the simplest situation, where we have
the \emph{vacuum} Einstein equations \[G = 0\] where \(G\) is the
``Einstein tensor'' cooked up from the curvature of spacetime. Say
spacetime is of the form \(\mathbb{R} \times S\), where \(\mathbb{R}\)
is the real numbers (time) and \(S\) is a \(3\)-dimensional manifold
(space). We will think of \(S\) as the ``\(t = 0\) slice'' of
\(\mathbb{R} \times S\).

\begin{enumerate}
\def\labelenumi{\Roman{enumi})}
\item
  The first stage is to get the space of ``kinematical states''. In the
  quantum mechanics of a point particle on the line, the space of
  wavefunctions is a space of functions on the real line. Similarly, in
  quantum gravity we naively expect kinematical states to be functions
  on the space of Riemannian metrics on the \(3\)-dimensional manifold
  \(S\) we're taking to be ``space''. In the loop representation one
  does something a bit more clever, but let's move on and then come back
  to that.
\item
  The second stage is getting the space of ``diffeomorphism-invariant
  states''. In fact, Einstein's equations in coordinates look like
  \[G_{\mu \nu} = 0\] where the indices \(\mu\), \(\nu\) range from 0 to
  3. It's customary to work in coordinates \(x_{\mu}\) where \(x_0\) is
  ``time'' and the other three coordinates are the ``space'' coordinates
  on \(S\). Then classically, the equations \(G_{0 \mu} = 0\) serve as
  \emph{constraints} on the initial data for Einstein's equations, while
  the remaining equations describe time evolution. I.e., only for
  certain choices of a metric and its first time derivative at \(t = 0\)
  can we get a solution of Einstein's equations. In fact, \(G_{0 \mu}\)
  can be calculated knowing only the metric and its first time
  derivative at \(t = 0\), and the equations saying they are zero are
  the constraints that this data must satisfy to get a solution of
  Einstein's equations.
\end{enumerate}

Following the usual recipes of quantum theory, we want to turn these
constaints into \emph{operators} on the kinematical Hilbert space of
stage I, and then demand that the states relevant for physics be
annihilated by these operators. The ``diffeomorphism-invariant
subspace'' is the subspace of the kinematical state space that is
annihilated by the constraints corresponding to \(G_{0i}\) where
\(i = 1, 2, 3\). Let us put off for a moment why it's called what it is!

\begin{enumerate}
\def\labelenumi{\Roman{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  The third and final stage is getting the space of ``physical states''.
  Here we look at the subspace of diffeomorphism-invariant states that
  are also annihilated by the constaint corresponding to \(G_{00}\). The
  equation saying that a diffeomorphism-invariant state is annihilated
  by this constraint is called the ``Wheeler--DeWitt equation'', and this
  is generally regarded as the fundamental equation of quantum gravity.
\end{enumerate}

Now, it should make some sense why we call the ``physical states'' what
we do. These are quantum states satisfying the quantum analogues of the
constraints that the \emph{classical} initial data must satisfy to be
initial data for a solution of Einstein's equations. But why do we
impose the constraints \(G_{\mu \nu} = 0\) in two separate stages, and
call the states in part II ``diffeomorphism-invariant states''?

This is a very important question which gives quantum gravity much of
its curious character. In classical general relativity, \(G_{0i}\) not
only gives one of Einstein's equations, namely \(G_{0i}\) = 0, it also
``generates diffeomorphisms'' of the \(3\)-dimensional manifold \(S\)
representing space. If you don't quite know what this means, let me
simply say that in classical mechanics, observables give rise to
one-parameter families of symmetries. For example, momentum gives rise
to spatial translations, while energy (aka the Hamiltonian) gives rise
to time translations. We say that the observable ``generates'' the
one-parameter family of symmetries. This is (roughly) what I mean by
saying that \(G_{0i}\) generates diffeomorphisms of \(S\). Similarly,
\(G_{00}\) generates diffeomorphisms of the spacetime
\(\mathbb{R} \times S\) corresponding to time evolution.

A similar thing happens in quantum theory. BUT: in quantum theory, if a
state is annihilated by some observable, it implies that the state is
invariant under the one-parameter family of symmetries generated by that
observable. This is not true in classical mechanics. Indeed, it's rather
odd. But what it implies is that in step II we are really restricting
ourselves to kinematical states that are invariant under diffeomorphisms
of the spatial manifold \(S\). This is why we call them
``diffeomorphism-invariant'' states. Similarly, in step III we're
further restricting ourselves to states that are invariant under time
evolution. The final ``physical states'' are, at least heuristically,
invariant under \emph{all diffeomorphisms of spacetime}. (So maybe the
physical states are the ones that really should be called
``diffeomorphism-invariant'' --- but it's too late now.) While this may
seem odd, all it really means is that in the quantum theory of gravity
--- at least when one does it this way --- the physical states describe
only those aspects of the world that are independent of any choice of
coordinate system. That has a certain charm, philosophically speaking.
It is, however, not something physicists are used to.

Now, the general scheme outlined above has been around ever since the
work of DeWitt:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Bryce S. DeWitt, ``Quantum theory of gravity, I-III'', \emph{Phys.
  Rev.} \textbf{160} (1967), 1113--1148, \textbf{162} (1967) 1195--1239,
  1239--1256.
\end{enumerate}

However, the problem has always been making the scheme mathematically
rigorous, or else to do some kind of calculations that shed some light
on the meaning of it all! There are lots of problems. Let me not delve
into them now, but simply cut directly to the ``new variables'' idea for
handling these problems. The key idea of Ashtekar was to use as basic
variables, not the metric on \(S\) and its first time derivative, but
the ``chiral spin connection'' on \(S\) and a ``complex frame field''.
To describe these would require a digression into differential geometry
that I'm not in the mood for right now, especially since I already
explained this stuff a bit in \protect\hyperlink{week7}{``Week 7''}.
(There I call the chiral spin connection the ``right-handed''
connection.)

I do, however, want to emphasize that the new variables rely heavily
upon some of the basic group-theoretic facts about 3 and 4 dimensions.
The group of rotations in 3d space is called \(\mathrm{SO}(3)\), because
mathematically these are \(3\times3\) orthogonal matrices with
determinant \(1\). Now, a key fact in math and physics is that this
group has the group \(\mathrm{SU}(2)\) of \(2\times2\) complex unitary
matrices with determinant \(1\) as a ``double cover''. This means
roughly that there are two elements of this other group corresponding to
each element of \(\mathrm{SO}(3)\). It's this fact that allows the
existence of spin-\(\frac12\) particles!

Now, \(\mathrm{SU}(2)\) is sitting inside a bigger group,
\(\mathrm{SL}(2,\mathbb{C})\), the group of all \(2\times2\) complex
matrices with determinant \(1\), not necessarily unitary. Just as
\(\mathrm{SU}(2)\) is used to describe the symmetries of
spin-\(\frac12\) particles in space, \(\mathrm{SL}(2,\mathbb{C})\)
describes the symmetries of spin-\(\frac12\) particles in spacetime. The
reason is that \(\mathrm{SL}(2,\mathbb{C})\) is the double cover of the
group \(\mathrm{SO}(3,1)\) of Lorentz transformations.

Given a Riemannian metric on the space \(S\), there is always an
``\(\mathrm{SO}(3)\) connection'' describing how objects rotate when you
move them around a loop, due to the curvature of space. This is called
the Levi--Civita connection. With a little work we can also think of this
as an \(\mathrm{SU}(2)\) connection. However, Ashtekar works instead
with the chiral spin connection, which is an
\(\mathrm{SL}(2,\mathbb{C})\) connection cooked up from the Levi--Civita
connection and the first time derivative of the metric (which turns out
to be closely related to the ``extrinsic curvature'' of \(S\) as it sits
in the spacetime \(\mathbb{R} \times S\).)

The great advantage of Ashtekar's ``new variables'' is that the
Hamiltonian and diffeomorphism constraints are simpler in these
variables. Unfortunately, they lead to a curious new issue which at
first seemed very nasty --- the problem of ``reality conditions''. This
has a lot to do with going from \(\mathrm{SU}(2)\), which is a ``real''
group in a technical sense, to \(\mathrm{SL}(2,\mathbb{C})\), which is a
``complex'' group that's roughly twice as big. Essentially, Ashtekar's
formalism seems at first to be better suited to general relativity with
a complex-valued metric than to good old ``real'' general relativity.
For quite a while people didn't know quite what to do about this, so a
lot of work on the new variables more or less ignores this issue.
Luckily, there is now a very elegant approach to handling it, worked out
by Ashtekar and collaborators. They are coming out with a couple of
papers on this, hopefully by mid-November:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, Jos\'e Mour\~ao and Thomas
  Thiemann, ``Coherent state transforms for spaces of connections'', available
  as \href{https://arxiv.org/abs/gr-qc/9412014}{\texttt{gr-qc/9412014}}.

  Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, Jos\'e Mour\~ao and Thomas
  Thiemann, ``Quantization of diffeomorphism invariant theories of connections with local degrees of freedom'', available as \href{https://arxiv.org/abs/gr-qc/9504018}{\texttt{gr-qc/9504018}}.
 
\end{enumerate}
\noindent
The first paper constructs a kind of transform that takes functions on
the space of \(\mathrm{SU}(2)\) connections on \(S\) into functions on
the space of \(\mathrm{SL}(2,\mathbb{C})\) connections on \(S\). The
``kinematical states'' in Ashtekar's approach are, roughly speaking,
functions of the latter kind. (Really they are more like ``measures''.)
This is some really pretty mathematics --- it's a kind of generalization
of the Bargmann--Segal transform to the case of functions on spaces of
connections.

Physically, the transform allows us to relate Ashtekar's approach to the
traditional ``metric'' approach much more clearly, since, as I
described, \(\mathrm{SU}(2)\) connections are closely related to metrics
on \(S\). The second paper should treat the physics behind this in more
detail, and also describe a rigorous construction of ``loop states'' ---
a large class of diffeomorphism-invariant states which Rovelli and
Smolin have claimed are actually \emph{physical} states. (For more on
these, see below.) This means that to check Rovelli and Smolin's claim,
the main thing we need is a rigorous treatment of the Hamiltonian
constraint in quantum gravity.

Unfortunately, this is where it gets scary, since the Hamiltonian
constraint is a very tricky thing. For more on it, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  M. Blencowe, ``The Hamiltonian constraint in quantum gravity'', 
  \emph{Nucl. Phys.} \textbf{B341} (1990), 213--251.

  Bernd Bruegmann and Jorge Pullin, ``On the constraints of quantum gravity 
  in the loop representation'', \emph{Nucl. Phys.} \textbf{B390}
  (1993), 399--438.

  Bernd Bruegmann, \emph{On the Constraints of Quantum General Relativity in 
  the Loop Representation},  Ph.D.~Thesis, Syracuse University, 1993.
\end{enumerate}

The loop states of Rovelli and Smolin are in one-to-one correspondence
with \emph{knots} in space, or more precisely, isotopy classes of knots.
(Roughly, two knots are isotopic if you can get one from the other by
applying a diffeomorphism of space that can be continuously deformed to
the identity.)

What is the physical meaning of these loop states? Roughly it's this.
Say you take a spin-\(\frac12\) particle and move it around in a path
that traces out a knot. When you do this using the Levi--Civita
connection, it comes back ``rotated'' by some \(\mathrm{SU}(2)\) matrix.
If you take the trace of this matrix (sum of diagonal entries) and
divide by two, you get a number between -1 and 1. This number is called
a ``Wilson loop''.

This should remind you of the Bohm--Aharonov effect where a split
electron beam takes two paths from \(A\) to \(B\). Depending on the
magnetic flux through the loop, one can have constructive or destructive
interference in the split beam experiment. Mathematically, one can
imagine moving the electron around a loop that starts at \(A\), goes to
\(B\) by one path, and goes back to \(A\) by the other path. If this
phase corresponding to going is 1 we get total constructive interference
in the split beam experiment, while if it's -1 we get total destructive
interference. So, just as the Bohm--Aharonov effect measures interference
effects due to the magnetic field, the the above Wilson loop sort of
measures the interference effects due to \textbf{gravity}!

In the Rovelli--Smolin loop state corresponding to a particular knot
K, the expectation value of a Wilson loop around any knot K' will be 1
if K and K' are isotopic, and 0 otherwise! That's the physical meaning
of the loop states: they describe quantum states of geometry in terms of
the resulting interference effects on spin-\(\frac12\) particles.

Now, there is a more general kind of diffeomorphism-state than than the
loop states. These are the spin network states! Here one fancies up the
Wilson loop idea and imagines a graph embedded in space --- i.e.~a bunch
of edges and vertices --- where each edge is labelled by a spin that can
be \(0\),\(\frac{1}{2}\),\(1\),\(\frac{1}{2}\), etc. In the simplest flavor of spin
network, one only allows 3 edges to meet at each vertex, and requires
\(j_3\) to be of the form
\[j_3 = |j_1-j_2|, |j_1-j_2| + 1, \ldots, j_1+j_2-1, j_1+j_2.\] where
\(j_1\), \(j_2\), \(j_3\) are the spins labelling the edges adjacent to
the given vertex. For example, we can have the the three spins be
\(\frac{1}{2}\),\(3\), and \(\frac{5}{2}\), because it's possible for a spin-\(\frac12\)
particle and a spin-3 particle to interact and form a spin-\(\frac{5}{2}\)
particle. Here by ``possible'' I simply mean that it doesn't violate
conservation of angular momentum. Mathematicians would say the spins
should be thought of as irreducible representations of
\(\mathrm{SU}(2)\), and the condition above is just the condition that
the representation \(j_3\) appears as a summand in the tensor product of
the representations \(j_1\) and \(j_2\).

Just as we can compute a kind of ``Wilson loop'' number from a knot that
a spin-\(\frac12\) particle goes around, we can compute a number from a
spin network. I've thought about spin networks for quite a while, since
they are very important in topological quantum field theories. A great
introduction to how they show up in TQFTs, by the way, is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
   Louis Crane, Louis H. Kauffman, and David N. Yetter, 
  ``State-sum invariants of manifolds, I'', 
  available as
  \href{https://arxiv.org/abs/hep-th/9409167}{\texttt{hep-th/9409167}}.
\end{enumerate}
\noindent
This explains how to cook up 3d quantum gravity (or more precisely, the
Turaev--Viro model) and a 4d TQFT field theory called the Crane--Yetter
model using spin networks.

However, Rovelli's talk on spin network states in quantum gravity (see
\protect\hyperlink{week41}{``Week 41''}), followed by some good
conversations, got me motivated to write up something on spin network
states:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
   John Baez,``Spin network states in gauge theory'', available as
  \href{https://arxiv.org/abs/gr-qc/9411007}{\texttt{gr-qc/9411007}}.
\end{enumerate}
\noindent
Basically, I show that in the loop representation of any gauge theory,
states at the kinematical level can be described by spin networks,
slightly generalized. Heck, I'll quote my abstract:

\begin{quote}
Given a real-analytic manifold \(M\), a compact connected Lie group
\(G\) and a principal \(G\)-bundle \(P \to M\), there is a canonical
`generalized measure' on the space \(A/G\) of smooth connections on
\(P\) modulo gauge transformations. This allows one to define a Hilbert
space \(L^2(A/G)\). Here we construct a set of vectors spanning
\(L^2(A/G)\). These vectors are described in terms of `spin networks':
graphs \(\varphi\) embedded in \(M\), with oriented edges labelled by
irreducible unitary representations of \(G\), and with vertices labelled
by intertwining operators from the tensor product of representations
labelling the incoming edges to the tensor product of representations
labelling the outgoing edges. We also describe an orthonormal basis of
spin networks associated to any fixed graph \(\varphi\). We conclude
with a discussion of spin networks in the loop representation of quantum
gravity, and give a category-theoretic interpretation of the spin
network states.
\end{quote}

I'm now hard at work trying to show that spin networks also give a
complete description of states at the diffeomorphism-invariant level.
Well, actually right NOW I'm goofing off by writing this darn thing, but
you know what I mean.

Rovelli and Smolin have come out with one of their papers on spin
networks and they should be coming out with another soon. These are not
about the rigorous mathematics of spin network states, but how to use
them to really understand the \emph{physics} of quantum gravity. The
first one out is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
   Carlo Rovelli and Lee Smolin, ``Discreteness of area and volume in quantum gravity'', 
   available as
  \href{https://arxiv.org/abs/gr-qc/9411005}{\texttt{gr-qc/9411005}}.
\end{enumerate}
\noindent
This is perhaps the most careful computation so far that derives
\emph{discreteness} of geometrical quantities directly from Einstein's
equations and the principles of quantum theory! Let me quote the
abstract:

\begin{quote}
We study the operator that corresponds to the measurement of volume, in
non-perturbative quantum gravity, and we compute its spectrum. The
operator is constructed in the loop representation, via a regularization
procedure; it is finite, background independent, and
diffeomorphism-invariant, and therefore well defined on the space of
diffeomorphism invariant states (knot states). We find that the spectrum
of the volume of any physical region is discrete. A family of
eigenstates are in one to one correspondence with the spin networks,
which were introduced by Penrose in a different context. We compute the
corresponding component of the spectrum, and exhibit the eigenvalues
explicitly. The other eigenstates are related to a generalization of the
spin networks, and their eigenvalues can be computed by diagonalizing
finite dimensional matrices. Furthermore, we show that the eigenstates
of the volume diagonalize also the area operator. We argue that the
spectra of volume and area determined here can be considered as
predictions of the loop-representation formulation of quantum gravity on
the outcomes of (hypothetical) Planck-scale sensitive measurements of
the geometry of space.
\end{quote}



\hypertarget{week44}{%
\section{November 6, 1994}\label{week44}}

\begin{center}
\textbf{SPECIAL EDITION: THE END OF DONALDSON THEORY?}
\end{center}

I got some news today from Allen Knutson. Briefly, it appears that
Witten has come up with a new way of doing Donaldson theory that is far
easier than any previously known. According to Taubes, many of the main
theorems in Donaldson theory should now have proofs that are
\(1/1000\)th as long!

I suppose to find this exciting one must already have some idea of what
Donaldson theory is. Briefly, Donaldson theory is a theory born in the
1980s that revolutionized the study of smooth \(4\)-dimensional
manifolds by using an idea from physics, namely, the self-dual
Yang--Mills equations. The Yang--Mills equations describe most of the
forces we know and love (not gravity), but only in 4 dimensions can one
get solutions of them of a special form, known as self-dual solutions.
(In physics these self-dual solutions are known as instantons, and they
were used by 't Hooft to solve a problem plaguing particle physics,
called the \(\mathrm{U}(1)\) puzzle.)

Mathematically, \(4\)-dimensional manifolds are very different from
manifolds of any other dimension! For example, one can ask whether
\(\mathbb{R}^n\) admits any smooth structure other than the usual one.
(Technically, a smooth structure for a manifold is a maximal set of
coordinate charts covering the manifold which have smooth transition
functions. Loosely, it's a definition of what counts as a smooth
function.) The answer is no --- \emph{except} if \(n = 4\), where
there are uncountably many smooth structures! These ``exotic
\(\mathbb{R}^4\)'s'' were discovered in the 1980's, and their existence
was shown using the work of Donaldson using the self-dual solutions of
the Yang--Mills equation, together with work of the topologist Freedman.
More recently, a refined set of invariants of smooth 4-manifolds, the
Donaldson invariants, have been developed using closely related ideas.

Some references are:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Simon K. Donaldson and Peter B. Kronheimer, \emph{The Geometry of Four-Manifolds}, 
  Oxford University Press, Oxford, 1990.

  Simon K.  Donaldson, ``Polynomial invariants for smooth four-manifolds'', 
  \emph{Topology} \textbf{29} (1990), 257--315.

  Daniel S. Freed and Karen K. Uhlenbeck, \emph{Instantons and 
  Four-Manifolds}, Springer, Berlin, 1984.

  Charles Nash, \emph{Differential Topology and Quantum Field Theory}, 
  Academic Press, London, 1991.
\end{enumerate}

This is an extremely incomplete list, but it should be enough to get
started. Or, while you wait for the new, simplified treatments to come
out, you could make some microwave popcorn and watch the following
video:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
   Simon K. Donaldson, ``Geometry of four dimensional manifolds'', 
  videocassette (ca. 60 min.), color, American Mathematical
  Society, Providence, Rhode Island, 1988.
\end{enumerate}

Now, what follows is my interpretation of David Dror Ben-Zvi's comments
on a lecture by Clifford Taubes entitled ``Witten's Magical Equation'',
these comments being kindly passed on to me by Knutson. I have tried to
flesh out and make sense of what I received, and this required some
work, and I may have screwed up some things. Please take it all with a
grain of salt. I only hope it gives some of the flavor of what's going
on!

So, we start with a compact oriented 4-manifold \(X\) with \(L\) a
complex line bundle over \(X\) having first Chern class equal to
\(w_2\), the second Stiefel--Whitney class of \(TX\), modulo \(2\). If
\(X\) is spin (meaning that the \(w_2 = 0\)), take the bundle of spinors
over \(X\). Otherwise, pick a Spin-c bundle and take the bundle of
complex spinors over X. Note that Spin-c structure is enough to define
complex spinors on \(X\), and it will always exist if \(w_2\) is the
\(\mod 2\) reduction of an integral characteristic class. For more on
this sort of stuff, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  H. Blaine Lawson, Jr.~and Marie-Louise
  Michelson, \emph{Spin Geometry}, Princeton U. Press, Princeton, 1989.
\end{enumerate}

In either case, take our bundle of spinors, tensor it with the square
root of \(L\), and call the resulting bundle \(B\). (Perhaps someone can
explain to me why \(L\) has a square root here; it's obvious if \(X\) is
spin, but I don't understand the other case so well.) The data for our
construction are now a connection \(A\) on \(L\), and a section \(\psi\)
of the self-dual part of \(B\). (Note: I'm not sure what the ``self-dual
part of \(B\)'' is supposed to mean. I guess it is something required to
make the right-hand side of the formula below be self-dual in the
indices \(a,b\).) Consider now two equations. The first is the Dirac
equation for \(\psi\). The second is that the self-dual part \(F^+\) of
the curvature of \(A\) be given in coordinates as
\[F^+_{ab} = -\frac12 \langle\psi, e^a e^b \psi\rangle\] where the basis
\(1\)-forms \(e^a\), \(e^b\) act on \(\psi\) by Clifford multiplication.

Next form the moduli space \(M\) of solutions \((A, \psi)\) modulo the
action of the automorphisms of \(L\). The wonderful fact is that this
moduli space is always compact, and for generic metrics it's a smooth
manifold. Still more wonderfully (here I read the lines between what was
written), it is a kind of substitute for the moduli space normally used
in Donaldson theory, namely the moduli space of instantons. It is much
nicer in that it lacks the singularities characteristic of the other
space.

What this means is that everything becomes easy! Apparently Taubes,
Kronheimer, Mrowka, Fintushel, Stern and the other bigshots of Donaldson
theory are frenziedly turning out new results even as I type these
lines. On the one hand, the drastic simplifications are a bit
embarassing, since the technical complications of Donaldson theory were
the stuff of many erudite and difficult papers. On the other hand,
Donaldson invariants were always notoriously difficult to compute.
Taubes predicted that a purely combinatorial formula for them may be
around within a year. (Here it is interesting to note the work of Crane,
Frenkel, and Yetter in that direction; see
\protect\hyperlink{week2}{``Week 2''} and
\protect\hyperlink{week38}{``Week 38''}.) This is sure to lead to a
deeper understanding of \(4\)-dimensional topology, and quite possibly,
4-dimensional physics as well.



\hypertarget{week45}{%
\section{November 12, 1994}\label{week45}}

\begin{center}
\textbf{DONALDSON THEORY UPDATE}
\end{center}

In the previous edition of ``This Week's Finds'' I mentioned a burst of
recent work on Donaldson theory. I provocatively titled it ``The End of
Donaldson Theory?'', since the rumors I was hearing tended to be phrased
in such terms. But I hope I made it clear at the conclusion of the
article that this recent work should lead to a lot of \emph{new} results
in 4-dimensional topology! An example is Kronheimer and Mrowka's proof
of the Thom conjecture.

Many thanks to my network of spies for obtaining a preprint of the
following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Peter B. Kronheimer and Tomasz S. Mrowka, ``The genus of 
  embedded surfaces in the projective plane''.
\end{enumerate}
\noindent
Let me simply quote the beginning of the paper:

\begin{quote}
The genus of a smooth algebraic curve of degree \(d\) in
\(\mathbb{CP}^2\) is given by the formula \(g = (d-1)(d-2)/2\). A
conjecture sometimes attributed to Thom states that the genus of the
algebraic curve is a lower bound for the genus of any smooth 2-manifold
representing the same homology class. The conjecture has previously been
proved for \(d \leqslant 4\) and for \(d = 6\), and less sharp lower
bounds for the genus are known for all degrees {[}references omitted{]}.
In this note we confirm the conjecture.

Theorem 1. Let \(S\) be an oriented 2-manifold smoothly embedded in
\(\mathbb{CP}^2\) so as to represent the same homology class as an
algebraic curve of degree \(d\). Then the genus \(g\) of \(S\) satisfies
\(g \geqslant (d-1)(d-2)/2\).

Very recently, Seiberg and Witten {[}references below{]} introduced new
invariants of 4-manifolds, closely related to Donaldson's polynomial
invariants {[}reference omitted{]}, but in many respects much simpler to
work with. The new techniques have led to more elementary proofs of many
theorems in the area. Given the monopole equation and the vanishing
theorem which holds when the scalar curvature is positive (something
which was pointed out by Witten), the rest of the argument presented
here is not hard to come by. A slightly different proof of the Theorem,
based on the same techniques, has been found by Morgan, Szabo and
Taubes.
\end{quote}

\noindent
The reference to Donaldson's polynomial invariants appears in
\protect\hyperlink{week44}{``Week 44''}. The references to the new
Seiberg--Witten invariants are:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Edward Witten,``Monopoles and four-manifolds'', available as
  \href{https://arxiv.org/abs/hep-th/9411102}{\texttt{hep-th/9411102}}.

  Edward Witten and
  Nathan Seiberg, ``Electric-magnetic duality, monopole condensation, and confinement in
  \(N=2\) supersymmetric Yang--Mills theory'', available as
  \href{https://arxiv.org/abs/hep-th/9407087}{\texttt{hep-th/9407087}}.

  Edward Witten and Nathan Seiberg, ``Monopoles, duality and chiral symmetry 
  breaking in \(N=2\) supersymmetric QCD'', 
  available as
  \href{https://arxiv.org/abs/hep-th/9408099}{\texttt{hep-th/9408099}}.
\end{enumerate}

Differential geometers attempting to read the second two papers will
find that they contain no instance of the term ``Donaldson theory'', and
they may be frustrated to find that these are very much \emph{physics}
papers. They concern the ground states of supersymmetric Yang--Mills
theory in 4 dimensions with gauge group \(\mathrm{SU}(2)\). The ``ground
states'' of a field theory are its least-energy states, which represent
candidates for the physical vacuum. In certain theories there is not a
unique ground state, but instead a ``moduli space'' of ground states.
Seiberg and Witten study these moduli spaces of ground states in both
the classical and quantum versions of \(\mathrm{SU}(2)\) supersymmetric
Yang--Mills theory in 4 dimensions. They also consider the theory coupled
to spinor fields, which they call ``quarks'', using the analogy of the
theory to quantum chromodynamics, aka ``QCD''.

I haven't had time to go through their papers, since this isn't my main
focus of interest. Perhaps the most useful thing I can do at this point
is to use Kronheimer and Mrowka's clear description of their moduli
space (which is presumably closely related to Seiberg and Witten's
moduli spaces) to simplify and fill in the holes of what I wrote in
\protect\hyperlink{week44}{``Week 44''}. I will aim my exposition to
mathematicians, but make some elementary digressions on physics to spice
things up.

We start with a compact oriented Riemannian 4-manifold \(X\), and assume
we are given a $\mathrm{Spin}^\mathbb{C}$ structure on \(X\). Recall the meaning of this.
First, the orthonormal frame bundle of \(X\) has structure group
\(\mathrm{SO}(4)\), and a spin structure would be a double cover of this
which is a principal bundle with structure group given by the double
cover of \(\mathrm{SO}(4)\), namely
\(\mathrm{SU}(2) \times \mathrm{SU}(2)\). Thus we get two principal
bundles with structure group \(\mathrm{SU}(2)\), the left-handed and
right-handed spin bundles. Using the fundamental representation of
\(\mathrm{SU}(2)\), we obtain two vector bundles called the bundles of
left-handed and right-handed spinors. This ``handedness'' or
``chirality'' phenomenon for spinors is of great importance in physics,
since neutrinos are left-handed spinors --- meaning, in down-to-earth
terms, that they always spin clockwise relative to their direction of
motion. The fact that the laws of nature lack chiral symmetry came as
quite a shock when it was first discovered, and part of Seiberg and
Witten's motivation in their second paper is to study mechanisms for
``spontaneous breaking'' of chiral symmetry. This means simply that
while the theory has chiral symmetry, its ground states need not.

A $\mathrm{Spin}^\mathbb{C}$ structure is a bit more subtle, but it allows us to define
bundles of left-handed and right-handed spinors as \(\mathrm{U}(2)\)
bundles, which Kronheimer and Mrowka denote by \(W+\) and \(W-\). The
determinant bundle \(L\) of \(W+\) is a line bundle on \(X\). The first
big ingredient of the theory is a hermitian connection \(A\) on \(L\).
In physics lingo this is the vector potential of a \(\mathrm{U}(1)\)
gauge field. This gives a Dirac operator \(D_A\) mapping sections of
\(W+\) to sections of \(W-\). The connection \(A\) has curvature \(F\),
and the self-dual part \(F^+\) of \(F\) can be identified with a section
of \(\mathfrak{sl}(W+)\). (This is just a global version of the
isomorphism between the self-dual part of \(\Lambda^2 \mathbb{C}^4\) and
\(\mathfrak{sl}(2,\mathbb{C})\).)

The second big ingredient of the theory is a section \(\psi\) of \(W+\),
i.e.~a left-handed spinor field. There is a way to pair two sections of
\(W+\) to get a section of \(\mathfrak{sl}(W+)\), which we write as
\(\sigma(.,.)\) and which is conjugate-linear in the first argument and
linear in the second. This is a global version of the similar pairing
\[\sigma(.,.)\colon \mathbb{C}^2 \times \mathbb{C}^2 \to \mathfrak{sl}(2,\mathbb{C})\]
where \(\sigma(v,w)\) given by taking the traceless part of the
\(2\times2\) matrix \(v^* \otimes w\). Here \(v^*\) is the element of
the dual of \(\mathbb{C}^2\) coming from \(v\) via the inner product on
\(\mathbb{C}^2\).

To get the magical moduli space, we consider solutions \((A,\psi)\) of
\[\begin{aligned}D_A\psi &= 0 \\ F^+ &= i\sigma(\psi,\psi).\end{aligned}\]
Here we are thinking of \(F^+\) as a section of \(\mathfrak{sl}(W+)\).
These are pretty reasonable equations for some sort of massless
left-handed spinor field coupled to a \(\mathrm{U}(1)\) gauge field. Let
\(M\) be the space of solutions modulo gauge transformations. Kronheimer
and Mrowka show the ``moduli space'' \(M\) is compact.

One can also perturb the equations above as follows. If we have any
self-dual \(2\)-form \(\delta\) on \(X\) we can consider
\[\begin{aligned}D_A\psi &= 0 \\ F^+ +i\delta &= i\sigma(\psi,\psi).\end{aligned}\]
and get a moduli space \(M(\delta)\). This will still be compact if
\(\delta\) is nice (here I gloss over issues of analysis).

Now, if \(X\) has an almost complex structure, Kronheimer and Mrowka
show that one can pick a  $\mathrm{Spin}^\mathbb{C}$  structure for \(X\) such that, for
``good'' metrics and generic small \(\delta\), \(M(\delta)\) is a
compact 0-dimensional manifold. Using this fact and some geometrical
yoga, it follows that the number \(n\) of points in \(M(\delta)\),
counted mod 2, is independent of (such) \(\delta\). (This is
essentially a glorified version of the fact that, when you look at the
multiple images of an object in a warped mirror and slowly bend the
mirror, the images generically appear or disappear in pairs.) Moreover,
if the self-dual Betti number \(b^+\) of \(X\) is \(> 1\), the space of
good metrics is path-connected, and \(n\) mod 2 is independent of the
choice of good metric. Kronheimer and Mrowka call this a ``simple
mod 2 version of the invariants of Seiberg and Witten''. It is one
ingredient of their proof of the Thom conjecture.



\hypertarget{week46}{%
\section{December 12, 1994}\label{week46}}

I will be on sabbatical during the first half of 1995. I'll be roaming
hither and thither, and also trying to get some work done on
\(n\)-categories, quantum gravity and such, so this will be the last
``This Week's Finds'' for a while. I have also taken a break from being
a co-moderator of \texttt{sci.physics.research}.

So, let me sign off with a roundup of diverse and sundry things! I'm
afraid I'll be pretty terse about describing some of them. First for
some news of general interest, then a little update on Seiberg--Witten
theory, then some neat stuff on TQFTs, \(n\)-categories, quantum gravity
and all that, and then various other goodies\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
   Gary Stix, ``The speed of write'', \emph{Scientific American},
  Dec.~1994, 106--111.

  Jacques Leslie, ``Goodbye, Gutenberg: pixilating peer review is revolutionizing 
  scholarly journals'',  \emph{Wired} 2.10,
  Oct.~1994.  Available as \href{https://www.wired.com/1994/10/ejournals/}{\texttt{https://www.wired.com/1994/10/ejournals/}}.
\end{enumerate}

Among other things, the above articles show that Paul Ginsparg is
starting to get the popular recognition he deserves for starting up
\texttt{hep-th}. In case anyone out there doesn't know yet,
\texttt{hep-th} is the ``high-energy physics --- theoretical'' preprint
archive, which revolutionized communications within this field by making
preprints easily available world-wide, thus rendering many (but not all)
aspects of traditional journals obsolete. The idea was so good it
quickly spread to other subjects. Within physics it went like this:

\begin{itemize}
\tightlist
\item
  High Energy Physics --- Theory (\texttt{hep-th}), started 8/91
\item
  High Energy Physics --- Lattice (\texttt{hep-lat}), started 2/92
\item
  High Energy Physics --- Phenomenology (\texttt{hep-ph}), started 3/92
\item
  Astrophysics (\texttt{astro-ph}), started 4/92
\item
  Condensed Matter Theory (\texttt{cond-mat}), started 4/92
\item
  General Relativity \& Quantum Cosmology (\texttt{gr-qc}), started 7/92
\item
  Nuclear Theory (\texttt{nucl-th}), started 10/92
\item
  Chemical Physics (\texttt{chem-ph}), started 3/94
\item
  High Energy Physics --- Experiment (\texttt{hep-ex}), started 4/94
\item
  Accelerator Physics (\texttt{acc-phys}), started 11/94
\item
  Nuclear Experiment (\texttt{nucl-ex}), started 11/94
\item
  Materials Theory (\texttt{mtrl-th}), started 11/94
\item
  Superconductivity (\texttt{supr-con}), started 11/94
\end{itemize}

Similar archives are sprouting up in mathematics (see below --- but also
note the existence of the American Mathematical Society preprint server,
described later in this week's finds).

There are many ways to access these preprint archives, since Ginsparg
has kept up very well with the times --- indeed, so much better than I
that I'm afraid to go into any details for fear of making a fool of
myself. The \emph{dernier cri}, I suppose, is to access the archives using the
World-Wide Web, which is conveniently done by opening the document

\begin{verbatim}
http://xxx.lanl.gov
\end{verbatim}
\noindent
If this makes no sense to you, my first and very urgent piece of advice
is to learn about the World-Wide Web (WWW), Mosaic, and the like, since
they are wonderful and very simple to use! In the meantime, however, you
can simply send mail to various addresses with subject header

\begin{verbatim}
help
\end{verbatim}

and no message body, in order to get information. Some addresses are:

\begin{itemize}
\item
  \texttt{acc-phys@xxx.lanl.gov} (accelerator physics)
\item
  \texttt{astro-ph@xxx.lanl.gov} (astrophysics)
\item
  \texttt{chem-ph@xxx.lanl.gov} (chemical physics)
\item
  \texttt{cond-mat@xxx.lanl.gov} (condensed matter)
\item
  \texttt{funct-an@xxx.lanl.gov} (functional analysis)
\item
  \texttt{gr-qc@xxx.lanl.gov} (general relativity / quantum cosmology)
\item
  \texttt{hep-lat@ftp.scri.fsu.edu} (computational and lattice physics)
\item
  \texttt{hep-ph@xxx.lanl.gov} (high energy physics phenomenological)
\item
  \texttt{hep-th@xxx.lanl.gov} (high energy physics formal)
\item
  \texttt{hep-ex@xxx.lanl.gov} (high energy physics experimental)
\item
  \texttt{nucl-th@xxx.lanl.gov} (nuclear theory)
\item
  \texttt{nucl-ex@xxx.lanl.gov} (nuclear experiment)
\item
  \texttt{mtrl-th@xxx.lanl.gov} (materials theory)
\item
  \texttt{supr-con@xxx.lanl.gov} (superconductivity)
\item
  \texttt{alg-geom@publications.math.duke.edu} (algebraic geometry)
\item
  \texttt{auto-fms@msri.org} (automorphic forms)
\item
  \texttt{cd-hg@msri.org} (complex dynamics \& hyperbolic geometry)
\item
  \texttt{dg-ga@msri.org} (differential geometry \& global analysis)
\item
  \texttt{nlin-sys@xyz.lanl.gov} (non-linear systems)
\item
  \texttt{cmp-lg@xxx.lanl.gov} (computation and language)
\item
  \texttt{e-mail@xxx.lanl.gov} (e-mail address database)
\end{itemize}

One might also want to check out the:

\begin{quote}
Directory of Electronic Journals, Newsletters, and Academic Discussion
Lists: Send e-mail to \texttt{ann@cni.org} at the Association of
Research Libraries, +1 (202) 296-2296, fax +1 (202) 872 0884.
\end{quote}

Let me say a bit about how the AMS preprint server works. Assuming you
are hip to the WWW, just go to

\begin{verbatim}
http://e-math.ams.org
\end{verbatim}
\noindent
You will then see a menu, and you can click on ``Mathematical
Preprints'', and then ``AMS Preprint Server'', where preprints are
classified by subject. Alternatively, click on ``New Items This Month
(all Subjects)''.

On a related note, you can also get some AMS stuff using telnet by doing

\begin{verbatim}
telnet e-math.ams.org
\end{verbatim}
\noindent
and using

\begin{verbatim}
e-math
\end{verbatim}
\noindent
as login and password. This doesn't seem to get you to the preprints,
though. For gopher fans,

\begin{verbatim}
gopher e-math.ams.org
\end{verbatim}
\noindent
has roughly similar effects.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Carlo Rovelli and Lee Smolin, ``Spin networks in quantum gravity''.
\end{enumerate}

This paper is closely related to the earlier one in which Rovelli and
Smolin argue that discreteness of area and volume arise naturally in the
loop representation of quantum gravity, and also to my own paper on spin
networks. (See \protect\hyperlink{week43}{``Week 43''} for more on
these, and a brief intro to spin networks.) Basically, while my paper
shows that spin networks give a kind of basis of states for gauge
theories with arbitrary (compact, connected) gauge group, in this paper
Rovelli and Smolin concentrate on the gauge groups
\(\mathrm{SL}(2,\mathbb{C})\) and \(\mathrm{SU}(2)\), which are relevant
to quantum gravity, and work out a lot of aspects particular to this
case, in more of a physicist's style. This makes spin networks into a
practical computational tool in quantum gravity, used to great effect in
the paper on the discreteness of area and volume.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
    Abhay Ashtekar, ``Recent mathematical developments in quantum general 
    relativity'', available as
  \href{https://arxiv.org/abs/gr-qc/9411055}{\texttt{gr-qc/9411055}}
  (discussed in \protect\hyperlink{week37}{``Week 37''}).

  Abhay
  Ashtekar, Jerzy Lewandowski, Donald Marolf, Jose Mourao and Thomas
  Thiemann, ``Coherent state transforms for spaces of connections'', available as
  \href{https://arxiv.org/abs/gr-qc/9412014}{\texttt{gr-qc/9412014}}
  (discussed in \protect\hyperlink{week43}{``Week 43''}).
\end{enumerate}

These are two papers on the loop representation of quantum gravity which
I talked about in earlier ``finds'', and are out now. The former is a
nice review of recent mathematically rigorous work; the latter takes a
tremendous step towards handling the infamous ``reality conditions''
problem.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Abhay Ashtekar and Jerzy Lewandowski, ``Differential geometry 
  on the space of connections via graphs and
  projective limits'', available as
  \href{https://arxiv.org/abs/hep-th/9412073}{\texttt{hep-th/9412073}}.
\end{enumerate}
\noindent
I've spoken quite a bit about doing rigorous functional
\emph{integration} in gauge theory using ideas from the loop
representation; this paper treats functional \emph{derivatives} and
other things that are more differential than integral in nature. This is
crucial in quantum gravity because the main remaining mystery, the
Wheeler--DeWitt equation or Hamiltonian constraint, involves a
differential operator on the space of connections. (For a wee bit more,
try \protect\hyperlink{week11}{``Week 11''} or
\protect\hyperlink{week43}{``Week 43''}, where the Hamiltonian
constraint is simply written as \(G_{00} = 0\).)

Let me quote their abstract:

\begin{quote}
In a quantum mechanical treatment of gauge theories (including general
relativity), one is led to consider a certain completion, \(A\), of the
space of gauge equivalent connections. This space serves as the quantum
configuration space, or, as the space of all Euclidean histories over
which one must integrate in the quantum theory. \(A\) is a very large
space and serves as a ``universal home'' for measures in theories in
which the Wilson loop observables are well-defined. In this paper, \(A\)
is considered as the projective limit of a projective family of compact
Hausdorff manifolds, labelled by graphs (which can be regarded as
``floating lattices'' in the physics terminology). Using this
characterization, differential geometry is developed through algebraic
methods. In particular, we are able to introduce the following notions
on \(A\): differential forms, exterior derivatives, volume forms, vector
fields and Lie brackets between them, divergence of a vector field with
respect to a volume form, Laplacians and associated heat kernels and
heat kernel measures. Thus, although \(A\) is very large, it is small
enough to be mathematically interesting and physically useful. A key
feature of this approach is that it does not require a background
metric. The geometrical framework is therefore well-suited for
diffeomorphism invariant theories such as quantum general relativity.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  A. P.  Balachandran, L. Chandar, Arshad Momen, ``Edge states in gravity and 
  black hole physics'',  available as
  \href{https://arxiv.org/abs/gr-qc/9412019}{\texttt{gr-qc/9412019}}.
\end{enumerate}

Ever since it started seeming that black holes have an entropy closely
related to (and often proportional to) the area of their event horizons,
many physicists have sought a better understanding of this entropy. In
many ways, the nicest sort of explanation would say that the entropy was
due to degrees of freedom living on the event horizon. A concrete
calculation along these lines was recently made by Steve Carlip (see
\protect\hyperlink{week41}{``Week 41''}) in the context of
2+1-dimensional gravity. The mechanism is mathematically very similar to
what happens in (a widely popular theory of) the fractional quantum Hall
effect! In both cases, Chern--Simons theory on a 3d manifold with
boundary gives rise to an interesting field theory on the boundary, or
``edge''. The above paper clarifies this, especially for those of us who
don't understand the fractional quantum Hall effect too well. Let me
quote:

\begin{quote}
Abstract: We show in the context of Einstein gravity that the removal of
a spatial region leads to the appearance of an infinite set of
observables and their associated edge states localized at its boundary.
Such a boundary occurs in certain approaches to the physics of black
holes like the one based on the membrane paradigm. The edge states can
contribute to black hole entropy in these models. A ``complementarity
principle'' is also shown to emerge whereby certain ``edge'' observables
are accessible only to certain observers. The physical significance of
edge observables and their states is discussed using their similarities
to the corresponding quantities in the quantum Hall effect. The coupling
of the edge states to the bulk gravitational field is demonstrated in
the context of (2+1) dimensional gravity.
\end{quote}

I can't resist adding that I have a personal stake in the notion that a
lot of interesting things about quantum gravity will only show up when
we consider it on manifolds with boundary, including the area-entropy
relations. The loop representation of quantum gravity has a lot to do
with knots and links, but on a manifold with boundary it has a lot to do
with \emph{tangles}, which can contain arcs that begin and end at the
boundary. I wrote a paper on this a while back:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  John Baez, ``Quantum gravity and the algebra of tangles'', 
  \emph{Jour. Class. Quantum Grav.} \textbf{10} (1993), 673--694.
  Available as \href{https://arxiv.org/abs/hep-th/9205007}{\texttt{hep-th/9205007}}.
\end{enumerate}

and I'll be coming out with another in a while, co-authored with Javier
Muniain and Dardo Piriz. The importance of manifolds with boundary for
cutting-and-pasting constructions is also well-known in the theory of
``extended'' TQFTs (topological quantum field theories). These cutting
and pasting operations should allow one to describe extended TQFTs in n
dimensions purely algebraically using ``higher-dimensional algebra''. So
part of the plan here is to understand better the relation between
quantum gravity, TQFTs, and higher-dimensional algebra. Along these
lines, a very interesting new paper has come out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
   Louis Crane and David Yetter,  ``On algebraic structures implicit in topological 
   quantum field theories'',  available as
  \href{https://arxiv.org/abs/hep-th/9412025}{\texttt{hep-th/9412025}}.
\end{enumerate}
\noindent
This makes more precise some of Louis Crane's ideas on
``categorification''. Nice TQFTs in 3 dimensions have a lot to do with
Hopf algebras (like quantum groups), or alternatively, their categories
of representations, which are certain braided monoidal categories. In
this paper it's shown that nice TQFTs in 4 dimensions have a lot to do
with Hopf categories, or alternatively, their categories of
representations, which are certain braided monoidal \(2\)-categories.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  V. M. Kharlamov and V. G. Turaev, ``On the definition of 2-category of 
  2-knots'', \emph{Les Rencontres Physiciens-Math\'ematiciens de Strasbourg-RCP25}
  \textbf{45} (1993), 151-166.  Available as \href{http://www.numdam.org/item/RCP25_1993__45__151_0/}{\texttt{http://www.numdam.org/item/RCP25$\underline{\;}$1993$\underline{\;\;}$45$\underline{\;\;}$151$\underline{\;}$0/}}.
\end{enumerate}
\noindent
This preprint, which I obtained through my network of spies,
\emph{seems} to be implicitly claiming that the work of Fischer
describing 2d surfaces in \(\mathbb{R}^4\) via on braided monoidal
\(2\)-categories (see \protect\hyperlink{week12}{``Week 12''}) is a bit
wrong, but they don't come out and say quite what if anything is really
wrong.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
   Greg
  Kuperberg, ``Non-involutory Hopf algebras and 3-manifold invariants'', available
  as \href{https://arxiv.org/abs/q-alg/9712047}{\texttt{q-alg/9712047}}.
\end{enumerate}
\noindent
I noted the existence of a draft of this paper, and related work, in
\protect\hyperlink{week38}{``Week 38''}. Let me quote:

\begin{quote}
Abstract: We present a definition of an invariant \(\#(M,H)\), defined
for every finite-dimensional Hopf algebra (or Hopf superalgebra or Hopf
object) \(H\) and for every closed, framed 3-manifold \(M\). When \(H\)
is a quantized universal envloping algebra, \(\#(M,H)\) is closely
related to well-known quantum link invariants such as the HOMFLY
polynomial, but it is not a topological quantum field theory.
\end{quote}

Okay, now for some miscellaneous interesting things\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  J. Lambek, ``If Hamilton had prevailed: quaternions in physics'', 
in \emph{Mathematical Conversations}, Springer, Berlin, pp.\ 259--274.
\end{enumerate}
\noindent
Lambek is mainly known for work in category theory, but he has a strong
side-interest in mathematical physics. This paper is, first of all, a
``nostalgic account of how certain key results in modern theoretical
physics (prior to World War II) can be expressed concisely in the
labguage of quaternions, thus suggesting how they might have been
discovered if Hamilton's views had prevailed.'' But there is a very
interesting new thing, too: a way in which the group
\(\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)\) shows up
naturally when considering Dirac's equation a la quaternions. This group
is the gauge group of the Standard Model! Lambek modestly says that
there does not appear to be any significance to this coincidence\ldots{}
but it \emph{would} be nice, wouldn't it?

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  Nina Byers, ``The life and times of Emmy Noether; contributions of E. 
  Noether to particle physics'', available as
  \href{https://arxiv.org/abs/hep-th/9411110}{\texttt{hep-th/9411110}}.

  Bert Schroer, ``Reminiscences about many pitfalls and some successes of QFT within
  the last three decades'', available as
  \href{https://arxiv.org/abs/hep-th/9410085}{\texttt{hep-th/9410085}}.

  Roman Jackiw, ``My encounters --- as a physicist --- with mathematics'', available as
  \href{https://arxiv.org/abs/hep-th/9410151}{\texttt{hep-th/9410151}}.
\end{enumerate}

These are some interesting historical/biographical pieces.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
   Karl Svozil, ``Speedup in quantum computation is associated with attenuation of
  processing probability'', available as
  \href{https://arxiv.org/abs/hep-th/9412046}{\texttt{hep-th/9412046}}.
\end{enumerate}
\noindent
The subject of quantum computation has become more lively recently. I
haven't had time to look at this paper, but quoting the abstract:

\begin{quote}
Quantum coherence allows the computation of an arbitrary number of
distinct computational paths in parallel. Based on quantum parallelism
it has been conjectured that exponential or even larger speedups of
computations are possible. Here it is shown that, although in principle
correct, any speedup is accompanied by an associated attenuation of
detection rates. Thus, on the average, no effective speedup is obtained
relative to classical (nondeterministic) devices.
\end{quote}



\hypertarget{week47}{%
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Hi. I know I'm supposed to be taking a break from ``This Week's Finds,''
but it's a habit that's hard to quit. I just want to briefly mention a
couple of new electronic venues for mathematics and physics. First,
there are a couple new preprint servers along the lines of
\texttt{hep-th}:

\begin{itemize}
\tightlist
\item
  Nuclear Experiment (\texttt{nucl-ex@xxx.lanl.gov}), started 12/94
\item
  Quantum Physics (\texttt{quant-ph@xxx.lanl.gov}), started 12/94
\end{itemize}
\noindent
To check these out, send email with subject header ``help'' and no
message body to the address listed, or use more slick modern method.

There are also a bunch of math preprint servers I have been neglecting
to mention. The newest one is devoted to ``quantum algebra'' (quantum
groups and the like) and knot theory! Here are some:

\begin{itemize}
\tightlist
\item
  Algebraic Geometry (\texttt{alg-geom@eprints.math.duke.edu}), started
  2/92
\item
  Functional Analysis (\texttt{funct-an@xxx.lanl.gov}), started 4/92
\item
  Differential Geometry and Global Analysis (\texttt{dg-ga@msri.org}),
  started 6/94
\item
  Automorphic Forms (\texttt{auto-fms@msri.org}), started 6/94
\item
  Complex Dynamics and Hyperbolic Geometry (\texttt{cd-hg@msri.org}),
  started 6/94
\item
  Quantum Algebra (Including Knot Theory)
  (\texttt{q-alg@eprints.math.duke.edu}), started 12/94
\end{itemize}

Also, there is a new electronic journal on the theory and applications
of category theory. This is a subject dear to my heart since much of the
most interesting work on topological quantum field theories uses
category theory in an interesting way, so I hope mathematicians and
mathematical physicists interested in category theory turn to this
journal:

\begin{verbatim}
               ANNOUNCEMENT AND CALL FOR PAPERS
 
       This is to announce a new refereed electronic journal
 
 
            THEORY AND APPLICATIONS OF CATEGORIES
 
 
The Editors, who are listed below, invite submission of articles 
for publication in the first volume (1995) of the journal.   
The Editorial Policy of the journal, basic information about 
subscribing and some information for authors follows. 
More details are available from the journal's WWW server at
 
URL http://www.tac.mta.ca/tac/
 
or by anonymous ftp from
 
ftp.tac.mta.ca
 
in the directory pub/tac.
 
 
EDITORIAL POLICY
 
The journal Theory and Applications of Categories will disseminate articles 
that significantly advance the study of categorical algebra or methods, or 
that make significant new contributions to mathematical science using 
categorical methods. The scope of the journal includes: all areas of 
pure category theory, including higher dimensional categories; applications 
of category theory to algebra, geometry and topology and other areas of 
mathematics; applications of category theory to computer science, physics 
and other mathematical sciences; contributions to scientific knowledge 
that make use of categorical methods.
 
Articles appearing in the journal have been carefully and critically 
refereed under the responsibility of members of the Editorial Board.
Only papers judged to be both significant and excellent are accepted for 
publication. 
 
The method of distribution of the journal is via the Internet tools 
WWW/gopher/ftp. The journal is archived electronically and in printed 
paper format. 
 
 
 
SUBSCRIPTION INFORMATION
 
Individual subscribers receive (by e-mail) abstracts of articles 
as they are published. Full text of published articles is available 
in .dvi and Postscript format. Details will be e-mailed to new 
subscribers and are available by WWW/gopher/ftp. To subscribe, 
send e-mail to tac@mta.ca including a full name and postal address. 
For institutional subscription, send enquiries to the Managing Editor, 
Robert Rosebrugh, <rrosebrugh@mta.ca>
 
 
 
 
INFORMATION FOR AUTHORS
 
The typesetting language of the journal is TeX, and LaTeX is the 
preferred flavour. TeX source of articles for publication should 
be submitted by e-mail directly to an appropriate Editor. 
Please obtain detailed information on submission format and 
style files by WWW or anonymous ftp from the sites listed above.
You may also write to tac@mta.ca to receive details by e-mail.
 
 
EDITORIAL BOARD
 
John Baez, University of California, Riverside
baez@math.ucr.edu
 
Michael Barr, McGill University
barr@triples.math.mcgill.ca
 
Lawrence Breen, Universite de Paris 13
breen@math.univ-paris.fr
 
Ronald Brown, University of North Wales 
r.brown@bangor.ac.ik
 
Jean-Luc Brylinski, Pennsylvania State University
jlb@math.psu.edu
 
Aurelio Carboni, University of Genoa
carboni@vmimat.mat.unimi.it
 
G. Max Kelly, University of Sydney
kelly_m@maths.su.oz.au
 
Anders Kock, University of Aarhus
kock@mi.aau.dk
 
F. William Lawvere, State University of New York at Buffalo
mthfwl@ubvms.cc.buffalo.edu
 
Jean-Louis Loday, Universite de Strasbourg
loday@math.u-strasbg.fr
 
Ieke Moerdijk, University of Utrecht
moerdijk@math.ruu.nl
 
Susan Niefield, Union College
niefiels@gar.union.edu
 
Robert Pare, Dalhousie University
pare@cs.dal.ca
 
Andrew Pitts, University of Cambridge
ap@cl.cam.ac.uk
 
Robert Rosebrugh, Mount Allison University
rrosebrugh@mta.ca
 
Jiri Rosicky, Masaryk University
rosicky@math.muni.cz
 
James Stasheff, University of North Carolina
jds@charlie.math.unc.edu
 
Ross Street, Macquarie University 
street@macadam.mpce.mq.edu.au
 
Walter Tholen, York University
tholen@vm1.yorku.ca
 
R. W. Thomason, Universite de Paris 7
thomason@mathp7.jussieu.fr
 
Myles Tierney, Rutgers University
tierney@math.rutgers.edu
 
Robert F. C. Walters, University of Sydney
walters_b@maths.su.oz.au
 
R. J. Wood, Dalhousie University
rjwood@cs.da.ca
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There are a few things I've bumped into that I feel I should let folks
know about, so here's a special issue from Munich, where the Weissbier
is very good. (And not at all white, but that's another subject.)

One of the most exciting aspects of mathematics over the last few years
--- in my utterly biased opinion --- has been how topological quantum
field theories have revealed the existence of deep connections between
\(3\)-dimensional topology, complex analysis, and algebra, particularly
the algebra of quantum groups.

The most interesting topological quantum field theory in this game is
Chern--Simons theory. This a field theory in 3 dimensions, and the reason
it's called ``topological'' is that you don't need any metric or other
geometrical structure on your 3d spacetime manifold for this theory to
make sense. Thus it admits \emph{all} coordinate transformations (or
more precisely, all diffeomorphisms) as symmetries. In particular, this
means that the quantity folks like to compute whenever they see a
quantum field theory --- the partition function, which you get by doing
a path integral a la Feynman --- is an invariant of \(3\)-dimensional
manifold you happen to have taken as ``spacetime''.

Now computing path integrals is often a very dubious and tricky
business. They are integrals over the space of all possible histories of
the classical fields corresponding to your quantum field theory. This is
a big fat infinite-dimensional space, of the sort to which ordinary
integration theory doesn't really apply. If you aren't very careful,
path integrals often give infinite answers. So one very nice thing is
that, suitably interpreted, the path integrals in Chern--Simons theory
actually make rigorous sense!

A key advance here was Atiyah's axioms for topological quantum field
theories (or TQFTs). These axioms formalize exactly what properties
you'd hope path integrals would have in the case of a
diffeomorphism-invariant theory. If, by no matter what devilish tricks,
one can get a theory that satisfies these axioms, it's in many ways just
as good if one had figured out how to make sense of the path integrals
by honest labor, because all the manipulations one would normally want
to do are then permitted. The marvelous thing about Chern--Simons theory
is that one can show the TQFT axioms hold starting from some beautiful
algebraic structures called quantum groups. Corresponding to every
``semisimple Lie group'' --- examples being the groups
\(\mathrm{SU}(n)\) of unitary complex nxn matrices with determinant
\(1\) --- there is a quantum group, which is not really a group, but a
so-called ``quasitriangular Hopf algebra.'' Amusingly these quantum
groups really depend on Planck's constant \(\hbar\), and reduce to the
ordinary groups in the ``classical limit'' \(\hbar \to 0\)!

Now, where these quantum groups come from has always been a bit of a
puzzle. They can be rigorously shown to exist, that's for sure. There
are also many good algebraic reasons why they ``should'' exist. But it
is still a bit remarkable that they have the exactly the properties
needed to get Chern--Simons theory to be a TQFT. So people have tried in
many ways to turn the tables on them, and get \emph{them} from the
\emph{path integrals}. Lots of these approaches have succeeded, but most
of them involve a few subtleties here and there, so mathematicians, who
only feel happy when everything is *blindingly obvious* (to them, that
is, not you), have continued to seek the most beautiful, elegant way of
getting at them.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Daniel Freed, ``Quantum groups from path integrals'', available as
  \href{https://arxiv.org/abs/q-alg/9501025}{\texttt{q-alg/9501025}}.
\end{enumerate}

This is a nice expository treatment of the work of Free and Quinn on
topological quantum field theories, particularly Chern--Simons theory
with finite gauge group. In this case, the path integral reduces to a
finite sum and one really can get the quantum group from the path
integral very beautifully. But there are some differences in this case
of finite gauge group. For example, the resulting ``finite quantum
group'' does \emph{not} depend on \(\hbar\); it's just the ``quantum
double'' of the group algebra of the group. For more on what this has to
do with marvelous algebraic things like \(n\)-categories, the reader
should check out the paper by Freed cited in
\protect\hyperlink{week12}{``Week 12''}, which has subsequently been
published:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Daniel Freed, ``Higher algebraic structures and quantization'',
  \emph{Commun.\ Math.\ Phys.} \textbf{159} (1994), 343--398.
\end{enumerate}
\noindent
and also

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Daniel Freed and
  Frank Quinn, ``Chern--Simons theory with finite gauge group'', 
  \emph{Commun.\ Math.\ Phys.} \textbf{156} (1993), 435--472.
\end{enumerate}

Now in addition to the path-integral approach to quantum field theory
there is another, the so-called Hamiltonian approach, which is very much
like the approach people usually learn in a first course on quantum
mechanics: if you know the wavefunction of your system at \(t = 0\), the
Hamiltonian tells you how it evolves in time from then on. Now this has
special subtleties in diffeomorphism-invariant theories. When there is
no unique best coordinate system, there's no unique best notion of
``time evolution''. This leads to the so-called ``problem of time'',
very important in quantum gravity, but rather easier to deal with in toy
models like Chern--Simons theory.

Now if we take a \(3\)-dimensional spacetime and look at the \(t = 0\)
slice, we will with some luck get a \(2\)-dimensional manifold, such as
a sphere, torus, or more general \(n\)-holed doughnut. This is where the
complex analysis comes in, because the complex plane is
\(2\)-dimensional, and we can cover these surfaces with coordinate
systems that look locally like the complex plane, making them into
``Riemann surfaces'' upon which we can merrily proceed with complex
analysis. In particular, the phase space of classical Chern--Simons
theory is something of which complex analysts have long been enamored,
namely the ``moduli space of flat bundles'' over our Riemann surface.
(Let me reassure physicists that this ``flat'' business is merely a
weird way of saying that in Chern--Simons theory the analog of the
magnetic field vanishes.)

Now starting from the description of the classical phase space for
Chern--Simons theory one should be able to get ahold of the quantum
theory by some ``quantization'' business just as one does in elementary
quantum mechanics, where the ``classical phase space'' is the space of
\(p\)'s and \(q\)'s, and to quantize one merely decrees that these no
longer commute: 
\[pq-qp = -i \hbar.\] 
So one should be able to get ahold
of quantum groups this way too: starting with the ``moduli space of flat
bundles'' and ``quantizing'' it. I had long why nobody did this in the
way which seemed most tempting and plausible to me. To lapse into jargon
for a bit here, since the quantum group is obtained from the group by
deformation quantization, where the Poisson structure of the group
itself is described by some ``classical \(r\)-matrices'', and since
Chern--Simons theory is in some sense obtained by quantizing the moduli
space, where the Poisson structure was explicitly described by Goldman,
it seemed natural to me that somehow the classical r-matrices should be
\emph{derivable} from Goldman's formulas. But after a few wimpy tries at
figuring it out, with not much success, I gave up. Luckily it turns out
someone else succeeded nicely, as I found out in a talk by Alekseev here
at the Mathematisches Institut of the Universit\"at M\"unchen:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
   V. V. Fock and A. A. Rosly, ``Poisson structures on moduli of flat connections 
   on Riemann surfaces and $r$-matrix'', 
   \href{https://arxiv.org/abs/math/9802054}{\texttt{math/9802054}}.
\end{enumerate}
\noindent
They figured out a beautiful formula relating the classical \(r\)-matrices
and the Poisson structure on moduli space. Using this, Alekseev, Grosse,
and Schomerus were able to get at quantum groups quite directly from
deformation quantization of moduli space, though there are a few
important points left to nail down:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Yu. Alekseev, H. Grosse, and V. Schomerus, 
  ``Combinatorial quantization of the Hamiltonian Chern--Simons theory, I \& II''.
  Available as 
  \href{https://arxiv.org/abs/hep-th/9403066}{\texttt{hep-th/9403066}}
  and
  \href{https://arxiv.org/abs/hep-th/9408097}{\texttt{hep-th/9408097}}.
\end{enumerate}
\noindent
In fact Schomerus told me about this while I was in Cambridge Mass. over
Christmas, but somehow I didn't pick up on the coolest thing about it,
that it gets the quantum groups quite naturally from Chern--Simons
theory, via the relation between the Poisson brackets on moduli space
and the classical \(r\)-matrices.

Let's see. This is getting technical so I'll give in and get technical.
One other paper that I found out about while here studies rather similar
issues, but from the viewpoint of geometric quantization rather than
deformation quantization. Axelrod, Della Pietra and Witten did some very
fundamental work on geometric quantization of Chern--Simons theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
   Scott Axelrod,
  Steve Della Pietra and Edward Witten,  ``Geometric quantization of 
  Chern--Simons gauge theory'',\emph{Jour. Diff. Geom.} \textbf{33}
  (1991), 787--902.  Also available as \href{https://projecteuclid.org/euclid.jdg/1214446565}{\texttt{https://projecteuclid.org/euclid.jdg/1214446565}}.
\end{enumerate}
\noindent
but this only treated the case of Riemann surfaces, not the Riemann
surfaces with punctures that you need to think about when sticking
\emph{knots} in your 3-manifold. Martin Schottenloher, one of the
professors, here, gave me a nice review of the work of one of his
students on the case with punctures:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Martin Schottenloher, ``Metaplectic quantization of the moduli space of flat and parabolic
  bundles (after Peter Scheinhost)'', in \emph{Public. I. R. M. A.
  Strasbourg}, \textbf{45} (1993), 43--70.  Also available as  \hfill \break
  \href{http://www.numdam.org/item/RCP25_1993__45__43_0/}{\texttt{http://www.numdam.org/item/RCP25$\underline{\;}$1993$\underline{\;\;}$45$\underline{\;\;}$43$\underline{\;}$0/}}.
\end{enumerate}
\noindent
This uses a lot of complex geometry that's beyond my ken, but one very
exciting remark penetrated my thick skull, namely that you really need
to take into account the so-called ``metaplectic correction'', as one
usually does in geometric quantization, and that in the case of no
punctures, this has the sole effect of accomplishing the mysterious
``level shift'' \((k \to k + N)\) that pervades \(\mathrm{SU}(N)\)
Chern--Simons theory. (Of course, I bet this must be what's going on for
other gauge groups too.) Also, when there are punctures, you apparently
really need the metaplectic correction to get the right answers from
geometric quantization; the ad hoc level shift ain't enough.

Well, I have some other things, but this issue seems more or less
devoted to Chern--Simons theory so far, and only Chern--Simons freaks are
likely to have read this far, so I'll put off the rest for later.
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For the last year or so I've been really getting interested in
\(n\)-categories as a possible tool for unifying a lot of strands in
mathematics and physics. What's an \(n\)-category? Well, in a sense
that's the big question! Roughly speaking, it's a structure where there
are a bunch of ``objects'', and for any pair of objects \(x,y\) a bunch
of ``morphisms'' from \(x\) to \(y\), written \(f\colon x \to y\), and
for any pair of morphisms \(f, g\colon x \to y\) a bunch of
``2-morphisms'' from \(f\) to \(g\), written
\(F\colon f \Rightarrow g\), and for any pair of \(2\)-morphisms
\(F, G\colon f \Rightarrow g\) a bunch of ``3-morphisms'' from \(F\) to
\(G\), \ldots{} and so on, up to \(n\)-morphisms. Ordinary categories,
or \(1\)-categories, have been studied since the 1940s or so, when they
were invented by Eilenberg and Mac Lane. Anyone wanting to get going on
those could try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Saunders Mac Lane, \emph{Categories for the Working Mathematician},
  Springer, Berlin, 1988.
\end{enumerate}

Roughly, categories give a general framework for dealing with situations
where you have ``things'' and ``ways to go between things'', like sets
and functions, vector spaces and linear maps, points in a space and
paths between points, etc. That's a pretty broad territory!
\(n\)-categories show up when you also have ``ways to go between ways'',
``ways to go between ways to go between ways'', etc. That may seem a
little weird at first. But in fact they show up in a lot of places if
you look for them. Perhaps the most obvious place is topology. If you
think of a point in a space as an object, and a path between two points
as a morphism: \[x\xrightarrow{\quad f\quad}g\] you are easily tempted
to think of a ``path of paths'' as a \(2\)-morphism. Here a ``path of
paths'' is just a continuous 1-parameter family of paths from x to y,
which you can think of as tracing out a \(2\)-dimensional surface, as
follows: \[\includegraphics[scale=0.3]{../images/Fnatftog.pdf}\] And one
can keep on going and look at ``paths of paths of paths'', etc. In fact,
people in homotopy theory do this all the time.

There is another example, equally primordial, which is a bit more
``inbred'' in flavor. In other words, if you already know and love
\(n\)-categories, there is a wonderful example of an \((n+1)\)-category
which you should know and love too! Now this isn't so bad, actually,
because a 0-category is basically just a \emph{set}, namely the set of
objects. Since everyone knows and loves sets, everyone can start here!
Okay, there is a wonderful \(1\)-category called Set, the category of
all sets. This has sets as its objects and functions between sets as its
morphisms. So now that you know an example of a \(1\)-category, you know
and love \(1\)-categories, right? Well, it turns out there is this
wonderful thing called Cat, the \(2\)-category of all \(1\)-categories.
(Usually people restrict to ``small'' \(1\)-categories, which have a
mere \emph{set} of objects, so that set theorists don't start freaking
out at a certain point.) To understand why Cat is a \(2\)-category is a
bit of work, but as objects it has categories, as morphisms it has the
usual sort of morphisms between categories, so-called ``functors'', and
as \(2\)-morphisms it has the usual sort of things that go between
functors, so-called ``natural transformations''. These are the bread and
butter of category theory; just take my word for it if you haven't
studied them yet! Okay, so Cat is a \(2\)-category, so now you know and
love \(2\)-categories, right? (Well, I haven't even told you the
definitions, but just nod your head.) Guess what: there is this
wonderful thing called 2Cat, the \(3\)-category of all \(2\)-categories!
And so on.

So in short, the detailed theory of \(n\)-categories at each level
automatically leads one to get interested in \((n+1)\)-categories. Now
for the bad news: so far, people have only figured out the right
definition of \(n\)-category for \(n = 0, 1, 2, 3\). By the ``right''
definition I mean the ultimate, most general definition, which should be
the most useful in many ways. So far people only know about ``strict''
\(n\)-categories for all \(n\), which one can think of as a special case
of the ultimate ones; the ultimate \(1\)-categories are just categories,
the ultimate \(2\)-categories are often called bicategories (see the
reference to Benabou in \protect\hyperlink{week35}{``Week 35''}), and
ultimate \(3\)-categories are usually called tricategories (see the
reference to the paper by Gordon, Power and Street) in
\protect\hyperlink{week29}{``Week 29''}. Tricategories were just defined
last year! They have a whole lot to do with knots, Chern--Simons theory,
and other \(3\)-dimensional phenomena, as one might expect. If we could
understand the ultimate \(4\)-categories --- tetracategories? --- it
would probably help us with some of the riddles of topology and physics
in 4 dimensions. (Indeed, what little we \emph{do} understand is already
helping a bit.)

So anyway, I have been trying to learn about these things, and had the
good luck to meet James Dolan via the net, who has helped me immensely,
since he eats, lives and breathes category theory, and he is now at
Riverside hard at work figuring out the ultimate definition of
\(n\)-categories for all \(n\). (Although when he reads this, he will
not be hard at work; he will be goofing off, reading the news.)

He and I have have written one paper so far espousing our philosophy
concerning \(n\)-categories, topology, and physics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
   John Baez and James Dolan, 
  ``Higher-dimensional algebra and topological quantum field theory'', 
  \emph{Jour. Math. Phys.} \textbf{36} (1995), 6073--6105.
  Also available as
  \href{http://arxiv.org/abs/q-alg/9503002}{\texttt{q-alg/9503002}}.
\end{enumerate}

One of the main themes of this paper is what I sometimes jokingly call
the ``periodic table''. Say you have an \((n+k)\)-category with only one
object, one morphism, one \(2\)-morphism, \ldots{} and only one
\((k-1)\)-morphism. Then all the interest lies in the \(k\)-morphisms,
the \((k+1)\)-morphisms, and so on up to the \((k+n)\)-morphisms. So
there are \(n\) interesting levels of morphism, and we can actually
think of our \((n+k)\)-category as an \(n\)-category of a special sort.
Let's call this kind a ``\(k\)-tuply monoidal \(n\)-category''. Now we
can make a chart of these:

\newpage
\begin{longtable}[]{@{}llll@{}}
\caption*{\(k\)-tuply monoidal \(n\)-categories}\tabularnewline
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endfirsthead
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=0\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
sets\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=1\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=2\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
commutative monoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=3\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
symmetric monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
weakly involutory monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=4\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
strongly involutory monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=5\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

First, I should emphasize that some parts of the chart as I've drawn it
here are a bit conjectural; since we don't know what the most general
7-categories are like, for example, we don't really know for sure what
5-tuply monoidal \(2\)-categories are like. The exact status of all the
entries on the table is made more clear in the paper. For now, let me
just say, first, that these various flavors of \(n\)-categories turn out
to be of great interest in topology --- some have already been used a
lot in topological quantum field theory and knot theory, other less, so
far, but they all seem to have lot to do with generalizations of knot
theory to different dimensions. Second, it seems that the \(n\)th column
``stabilizes'' by the time you get down to the \((n+2)\)nd row. This
very interesting pattern turns out also to have a lot to do with knots
and their generalizations, and also to a subject called stable homotopy
theory.

Now it also appears that there is a nice recipe for hopping down the
columns. (Again, we only understand this \emph{perfectly} in certain
cases, but the pattern seems pretty clear.) In other words, there's a
nice recipe to get a (k+1)-tuply monoidal \(n\)-category from a
\(k\)-tuply monoidal one. It goes like this. Hang on to your seat. You
start with a \(k\)-tuply monoidal \(n\)-category \(\mathcal{C}\). It's a
special sort of \((n+k)\)-category, so its an object in
\((n+k)\mathsf{Cat}\). But \((n+k)\mathsf{Cat}\), remember, is an
\((n+k+1)\)-category. Now look at the largest sub-\((n+k+1)\)-category
of \((n+k)\mathsf{Cat}\) which has \(\mathcal{C}\) as its only object,
\(1_{\mathcal{C}}\) (the identity of \(\mathcal{C}\)) as its only
morphism, \(1_{1_{\mathcal{C}}}\) as its only \(2\)-morphism,
\(1_{1_{1_{\mathcal{C}}}}\) as its only \(3\)-morphism, and so on, up to
\(1_{1_{1_{\scriptsize\ldots}}}\) as its only \(k\)-morphism. Let's call
this \(\mathcal{C}'\). If one keeps count, this should be a
\((k+1)\)-tuply monoidal \(n\)-category. That's how it goes.

Now say we do this to an example. Say we do it to the category
\(\mathcal{C}\) of all representations of a finite group \(G\). This is
in fact a monoidal category, so the result \(\mathcal{C}'\) is a braided
monoidal category. It is, in fact, just the category of representations
of the ``quantum double'' of \(G\), which is an example of what one
might call a ``finite quantum group''. These play a big role in the
study of Chern--Simons theory with finite gauge group (see the papers by
Freed and Quinn in \protect\hyperlink{week48}{``Week 48''}). One can
also get the other quantum groups with the aid of this ``quantum
double'' trick. A good description of this case appears in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Christian
  Kassel and Vladimir Turaev,  ``Double construction for monoidal categories'',
  \textsl{Acta Mathematica} \textbf{175} (1995), 1--48.  Also available as
  \href{https://projecteuclid.org/euclid.acta/1485890865}{\texttt{https://projecteuclid.org/euclid.acta/1485890865}}.
\end{enumerate}

So this is rather remarkable: starting from a finite group, and all this
\(n\)-categorical abstract nonsense, out pops precisely the raw
ingredients for a perfectly respectable \(3\)-dimensional topological
quantum field theory! Understanding \emph{why} this kind of thing works
is part of the aim of Dolan's and my paper, though there are some
important pieces of the puzzle that we don't get around to mentioning
there.

Right now I'm busily working out the details of how to get braided
monoidal \(2\)-categories from monoidal \(2\)-categories by the same
trick, with the aid of Martin Neuchl and Frank Halanke here. These
should have a lot to do with \(4\)-dimensional topological quantum field
theories (see e.g. the paper by Crane and Yetter cited in
\protect\hyperlink{week46}{``Week 46''}). And here I can't resist
mentioning a very nice paper by Neuchl and Schauenburg,

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Martin Neuchl and Peter Schauenburg, ``Reconstruction in braided categories 
  and a notion of commutative bialgebra'',  \emph{Jour.\ Pure and Applied 
  Algebra} \textbf{124} (1998), 241--259.
\end{enumerate}

Let me conclude by describing this. I always let myself get a bit more
technical at the end of each issue, so I'll do that now. The
relationship between Hopf algebras and monoidal categories is given by
``Tannaka--Krein reconstruction theorems'', which give conditions under
which a monoidal category is equivalent to the category of
representations of a Hopf algebra, and actually constructs the Hopf
algebra for you. In physics people use related but fancier
``Doplicher--Haag--Roberts'' theorems to reconstruct the gauge group of a
quantum field theory. This paper starts with the beautiful Tannaka--Krein
theorem in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Peter Schauenburg, ``Tannaka duality for arbitrary Hopf algebras'', 
  \emph{Algebra-Berichte} \textbf{66} (1992).
\end{enumerate}

Leaving out a bunch of technical conditions that make the theorem
actually \emph{true}, it says roughly that when you have a braided monoidal
category \(\mathcal{B}\), a category \(\mathcal{C}\), and a functor
\(f\colon \mathcal{C} \to \mathcal{B}\), there is a coalgebra object
\(a\) in \(\mathcal{B}\), the universal one for which \(f\) factors
through the forgetful functor from \(a\mathsf{Comod}\) (the category of
\(a\)-comodule objects in \(\mathcal{B}\)) to \(\mathcal{B}\). The point
is that the ordinary Tannaka--Krein theorem is a special case of this one
where \(\mathcal{B}\) is the category of vector spaces. The point of the
new paper is as follows. Suppose \(\mathcal{C}\) is actually braided
monoidal and \(f\) preserves the braiding and monoidal structure. Then
we expect \(a\) to actually be something like commutative bialgebra
object in \(\mathcal{B}\). The paper makes this precise. There are
actually some sneaky issues involved in doing so. In particular, the
``quantum double'' trick for categories makes an appearance here. I
guess I'll leave it at that!
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Your roving mathematical physics reporter is now in Milan, where (when
not busy eating various kinds of cheese) he is discussing \(BF\) theory
with his hosts, Paolo Cotta-Ramusino and Maurizio Martellini. This is
rather a long way to go to stumble on the October 1994 issue of the
\emph{Journal of Mathematical Physics}, but such is life. This issue is a
special issue on ``Topology and Physics'', a nexus dear to my heart, so
let me say a bit about some of the papers in it.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Edward Witten, ``Supersymmetric Yang--Mills theory on a four-manifold'',  
  \emph{Jour. Math. Phys.} \textbf{35} (1994), 5101--5135.
  Available as \href{https://arxiv.org/abs/hep-th/9403195}{\texttt{hep-th/9403195}}.
\end{enumerate}

This paper concerns the relation between supersymmetric Yang--Mills
theory and Donaldson theory, discovered by Seiberg and Witten, which not
too long ago hit the front page of various newspapers. (See
\protect\hyperlink{week44}{``Week 44''} and
\protect\hyperlink{week45}{``Week 45''} for my own yellow journalism on
the subject.) I don't have anything new to say about this stuff, of
which I am quite ignorant. If you are an expert on \(N = 2\)
supersymmetric Yang--Mills theory, hyper-K\"ahler manifolds, cosmic
strings and the renormalization group, the paper should be a piece of
cake. Seriously, he does seem to be making a serious effort to
communicate the ideas in simple terms to us mere mortals, so it's worth
looking at.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Louis Crane and Igor Frenkel, ``Four-dimensional topological quantum
  field theory, Hopf categories, and the canonical bases'', \emph{Jour.
  Math. Phys.} \textbf{35} (1994), 5136--5154. Also available as
  \href{https://arxiv.org/abs/hep-th/9405183}{\texttt{hep-th/9405183}}.
\end{enumerate}

I discussed this paper a wee bit in \protect\hyperlink{week38}{``Week
38''}. Now you can actually see the pictures. As we begin to understand
\(n\)-categories (see \protect\hyperlink{week49}{``Week 49''}) our
concept of symmetry gets deeper and deeper. This isn't surprising. When
all we knew about was 0-categories --- that is, sets! --- our concept of
symmetry revolved around the notion of a ``group''. This is a set \(G\)
where you can multiply elements in an associative way, with an identity
element 1 such that \[1g = g1 = g\] for all elements \(g\) of \(G\), and
where every element \(g\) has an inverse \(g^{-1}\) with
\[gg^{-1} = g{^-1}g = 1.\] For example, the group of rotations in
\(n\)-dimensional Euclidean space. When we started understanding
\(1\)-categories --- that is, categories! --- the real idea behind
groups and symmetry could be more clearly expressed. Sets have elements,
and they are either equal or not --- no two ways about it. Categories
have ``objects'', and even though two objects aren't equal, they can
still be ``isomorphic''. An object can be isomorphic to itself in lots
of different ways: these are its symmetries, and the symmetries form a
group. But this is really just the tip of a still mysterious iceberg.

For example, in a \(2\)-category, even though two objects aren't equal,
or even isomorphic, they can be ``equivalent'', or maybe I should say
``2-equivalent''. This is a still more general notion of ``sameness''. I
won't try to define it just now, but I'll just note that it arises from
the fact that in a \(2\)-category one can ask whether two morphisms are
isomorphic! (For people who followed \protect\hyperlink{week49}{``Week
49''} and know some category theory, let me note that the standard
notion of equivalence of categories is a good example of this
``equivalence'' business.)

As we climb up the \(n\)-categorical ladder, this keeps going. We get
ever more subtle refinements on the notion of ``sameness'', hence ever
subtler notions of symmetry. It's all rather mind-boggling at first, but
not really very hard once you get the hang of it, and since there's lots
of evidence that \(n\)-dimensional topological quantum field theories
are related to \(n\)-categories, I think these subtler notions of
symmetry are going to be quite interesting for physics.

And now, to wax technical for a bit (skip this paragraph if the last one
made you dizzy), it's beginning to seem that the symmetry groups
physicists know and love have glorious reincarnations, or avatars if one
prefers, at these higher \(n\)-categorical levels. Take your favorite
group --- mine is \(\mathrm{SU}(2)\), which describes 3d rotational
symmetry hence angular momentum in quantum mechanics. Its category of
representations isn't just any old category, it's a symmetric monoidal
category! See the chart in \protect\hyperlink{week49}{``Week 49''} if
you forget what this is. Now, there are more general things than groups
whose categories of representations are symmetric monoidal categories
--- for example, cocommutative Hopf algebras. And there are other kinds
of Hopf algebras --- ``quasitriangular'' ones, often known as ``quantum
groups'' --- whose categories of representations are \emph{braided}
monoidal categories. The cool thing is that \(\mathrm{SU}(2)\) has an
avatar called ``quantum \(\mathrm{SU}(2)\)'' which is one of these
quantum groups. Again, eyeball the chart in
\protect\hyperlink{week49}{``Week 49''}. Symmetric monoidal categories
are a special kind of \(4\)-categories, which is why they show up so
much in 4d physics, while braided monoidal categories are a special kind
of \(3\)-categories, which is why they (and quantum groups) show up in
3d physics. For example, quantum \(\mathrm{SU}(2)\) shows up in the
study of 3d quantum gravity (see \protect\hyperlink{week16}{``Week
16''}). Now the even cooler thing is that while a quaistriangular Hopf
algebra is a set with a bunch of operations, there is a souped-up
gadget, a ``quasitriangular Hopf category'', which is a \emph{category}
with an analogous bunch of operations, and these have a \emph{category}
of representations, but not just any old \(2\)-category, but in fact a
\emph{braided monoidal \(2\)-category}. If you again eyeball the chart,
you'll see this is a special kind of \(4\)-category, so it should be
related to 4d topology and --- this is the big hope --- 4d physics. Now
the \emph{really} cool thing, which is what Crane and Frenkel show here,
is that \(\mathrm{SU}(2)\) has yet another avatar which is one of these
quasitriangular Hopf categories.

Regardless of whether it has anything to do with physics, this business
about how symmetry groups have avatars living on all sorts of rungs of
the \(n\)-categorical ladder is such beautiful math that I'm sure it's
trying to tell us something. Right now I'm trying to figure out just
what.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Raoul Bott and Clifford Taubes, ``On the self-linking of knots'',
  \emph{Jour. Math. Phys.} \textbf{35} (1994), 5247--5287.
\end{enumerate}
\noindent
I'd need to look at this a few more times before I could say anything
intelligent about it, but it looks to be a very exciting way of
understanding what the heck is really going on as far as Vassiliev
invariants, Feynman diagrams in Chern--Simons theory, and so on are
concerned --- especially if you wanted to generalize it all to higher
dimensions.

Alas, I'm getting worn out, so let me simply \emph{list} a few more
papers, which are every bit as fun as the previous ones\ldots{} no
disrespect intended\ldots{} I just have to call it quits soon. As
always, it should be clear that what I write about and what I don't is
purely a matter of whim, caprice, chance, and my own ignorance.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Christopher King and Ambar Sengupta, ``An explicit description of the
  symplectic struture of moduli spaces of flat connections'',
  \emph{Jour. Math. Phys.} \textbf{35} (1994), 5338--5353.

  Christopher King and Ambar Sengupta, ``The semiclassical limit of the
  two-dimensional quantum Yang--Mills model'', \emph{Jour. Math. Phys.}
  \textbf{35} (1994), 5354--5363.
\item
  D. J. Thouless, ``Topological interpretations of quantum Hall
  conductance'', \emph{Jour. Math. Phys.} \textbf{35} (1994),
  5362--5372.
\item
  J. Bellisard, A. van Elst, and H. Schulz-Baldes, ``The noncommutative
  geometry of the quantum Hall effect'', \emph{Jour. Math. Phys.}
  \textbf{35} (1994), 5373--5451.
\item
  Steve Carlip and R. Cosgrove, ``Topology change in (2+1)-dimensional
  gravity'', \emph{Jour. Math. Phys.} \textbf{35} (1994), 5477--5493.
\end{enumerate}
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