Proof sketch of S-vK Thm (Theorem 70).

Let \((X,x_0) \) be a pointed space w/ open sets \(U,V \subseteq X \) such that \(U \cup V = X \), \(U \cap V \) contains \(x_0 \) and is path-connected. Then we have a pushout:

\[
\begin{array}{ccc}
\pi_1(U \cap V, x_0) & \xrightarrow{\pi_1(i_1)} & \pi_1(U, x_0) \\
\downarrow & & \downarrow \\
\pi_1(v \cap U, x_0) & \xrightarrow{\pi_1(i_2)} & \pi_1(V, x_0) \\
\downarrow & & \downarrow \\
\pi_1(X, x_0)
\end{array}
\]

where

- \(i_1 : (U \cap V, x_0) \hookrightarrow (U, x_0) \)
- \(i_2 : (U \cap V, x_0) \hookrightarrow (V, x_0) \)
- \(j_1 : (U, x_0) \hookrightarrow (X, x_0) \)
- \(j_2 : (V, x_0) \hookrightarrow (X, x_0) \)

are inclusions.

Munkres proves only the special case where \(U, V \) are path-connected, so we'll sketch that case using his notation. (Read over the proof in Munkres) The general theorem reduces to this special case.
To show that the above diamond is a pushout, i.e., given any commutative diamond

there exists a unique (hom)omorphism

such that this diagram commutes:
To show ϕ is unique is easy. We know ϕ on $\text{im}(\pi_1(j_1))$ and $\text{im}(\pi_1(j_2))$ since the triangles commute. By the baby SevK Thm, these images generate the whole group $\pi_1(X,x_0)$ so ϕ is uniquely determined.

The hard part is showing ϕ exists; we'll outline the steps.

1) We define a function ρ that assigns to each loop f in either U or V an element of h:

$$\rho(f) = \begin{cases} \phi_1([f]_u) & \text{if } \text{im } f \subseteq U \\ \phi_2([f]_v) & \text{if } \text{im } f \subseteq V \end{cases}$$

where $[f]_u$ means "path homotopy class of f in U" $[f]$ with no subscript means "path homotopy class of f in X".

To check that ρ is well-defined, suppose $\text{im}(f) \subseteq U \cap V$:

$$\phi_1([f]_u) = \phi(\pi_1(j_1)[f]_u) \quad \text{since the left triangle commutes}$$

$$= \phi \circ \pi_1(j_1) \circ \pi_1(c_1)[f]_{U\cap V} \quad \text{since the top diamond commutes}$$

$$= \phi \circ \pi_1(j_2) \circ \pi_1(c_2)[f]$$

$$= \phi \circ \pi_1(j_2)[f]_v$$

$$= \phi_2([f]_v) \quad \text{since the right triangle commutes.}$$
Note ρ satisfies

a) $[f]_u = [g]_u$ or $[f]_v = [g]_v \Rightarrow \rho(f) = \rho(g)$

b) if $\text{im } f, \text{im } g \subseteq U$ or $\text{im } f, \text{im } g \subseteq V$, then $\rho(f*g) = \rho(f) \rho(g)$

2) We extend ρ to a function σ that assigns to each path f in either U or V an element of H.

Check that a) and b) still hold where now f, g are paths.

3) Extend σ to a function τ that assigns to every path $f \in X$ an element of H.

Check

$\tau(f)$ if $[f] = [g]$ for any paths f, g in X, then $\tau(f) = \tau(g)$

$b')$ for all paths f, g in X, $\tau(f*g) = \tau(f) \tau(g)$ if the composite $f*g$ is defined.

This is the really hard part. From this point on, the proof is easy.
If \(f \) is a based loop in \(X \), let \(\phi([f]) = \tau(f) \).

Condition \(a') \) implies that \(\phi \) is well-defined; \(b') \) implies that \(\phi \) is a homomorphism. We just need to check that \(\phi \) makes the triangles commute.

If \(f \) is a loop in \(U \), then

\[
\phi \circ \pi_1 (j_1) [f]_U = \phi[f] = \tau(f) = \rho(f)
\]

since \(\tau \) extends \(\rho \) and \(f \) is a loop in \(U \). But

\[
\rho(f) = \phi_1 [f]_U
\]

so the left-hand triangle commutes, and similarly for the right-hand triangle.

How we extend \(\rho \) (defined on loops either in \(U \) or in \(V \)) to \(\sigma \) (defined on paths either in \(U \) or in \(V \)):

![Diagram](image.png)

For every point \(x \in U \) we pick a path \(\alpha_x : x_0 \to x \), and similarly for \(V \). We can do this, because we assume \(U \) \(V \) are path-connected. Then define \(\sigma(f) = \rho(\alpha_x \ast f \ast \overline{\alpha_x}) \) if \(f \) is a path in \(U \) or \(V \) from \(x \) to \(y \).
Now we extend \(\sigma \) to \(\tau \) (defined on all paths in \(X \)):

Any path \(f \) in \(X \) can be written as \(f_1 \cdots f_n \) where each \(f_i \) lies entirely in \(U \) or \(V \), and then define

\[
\tau(f) = \sigma(f_1) \cdots \sigma(f_n)
\]

We need to check this is well-defined.