Math 205B - Topology

Dr. Baez

February 16, 2007

Christopher Walker

Exercise 58.3. (Pointed version.) Show that given a collection C of pointed spaces, the relation of homotopy equivalence is an equivalence relation on C.

Proof. Recall that two pointed spaces (X, x_0) and (Y, y_0) are homotopy equivalent if there exist maps $f: (X, x_0) \to Y$ and $g: (Y, y_0) \to (X, x_0)$ where $f \circ g \simeq 1_Y$ and $g \circ f \simeq 1_X$. Here the relation ' \simeq ' is the appropriate concept of 'homotopic' for pointed maps: that is, $h \simeq h'$ if that there exists a *pointed* homotopy from h to h'. We need to check that homotopy equivalence is reflexive, symmetric, and transitive.

- Reflexive for all $X \in \mathcal{C}$, $1_X \colon (X, x_0) \to (X, x_0)$ gives us that $1_X \circ 1_X = 1_X$, so X is homotopy equivalent to X.
- Symmetric Let $X, Y \in \mathcal{C}$. If X is homotopy equivalent to Y, then by definition of homotopy equivalence, Y is homotopy equivalent to X. This is because the definition is symmetrical.
- Transitive Let $X, Y, Z \in \mathcal{C}$ where X is homotopy equivalent to Y, and Y is homotopy equivalent to Z. This implies there exist $f: X \to Y$ and $g: Y \to X$ with $f \circ g \simeq 1_Y$ and $g \circ f \simeq 1_X$. Also, there exist $h: Y \to Z$ and $k: Z \to Y$ with $h \circ k \simeq 1_Z$ and $k \circ h \simeq 1_Y$. Now consider $h \circ f: X \to Z$ and $g \circ k: Z \to X$. For each step, we use the fact that composition preserves the relation \simeq . First

$$\begin{array}{ll} h \circ f \circ g \circ k & \simeq h \circ 1_Y \circ k \\ & \simeq h \circ k \\ & \simeq 1_Z \end{array}$$

Similarly we have the other direction.

$$\begin{array}{rcl} g \circ k \circ h \circ f &\simeq g \circ 1_Y \circ f \\ &\simeq g \circ f \\ &1_X \end{array}$$

Thus X is homotopy equivalent to Z.

Therefore homotopy equivalence is an equivalence relation.

Exercise 58.6. Show that a retract of a contractible space is contractible

Proof. Let A be a retract of X, and let X be contractible. This means 1_X is homotopic to a constant map, say $f(x) = x_0$. Let $H: X \times I \to X$ be the homotopy from 1_X to f with H(x,0) = x and $H(x,1) = f(x) = x_0$. If $r: X \to A$ is the retraction of X to A, then we can consider the homotopy $r \circ H|_A: A \times I \to A$. This is continuous since it is the composition of continuous maps. Also $r \circ H|_A(x,0) = r(x) = x$, since $x \in A$, and $r \circ H|_A(x,1) = r(f(x)) = r(x_0)$. This gives us that 1_A is homotopic to the constant map $g(x) = r(x_0)$, and so A is contractible.

Exercise 59.3. (a) Show that \mathbb{R}^1 and \mathbb{R}^n are not homeomorphic if n > 1.

(b) Show that \mathbb{R}^2 and \mathbb{R}^n are not homeomorphic if n > 2.

Proof.

- (a) We will assume that exist a map $h: \mathbb{R}^1 \to \mathbb{R}^n$ that is a homeomorphism. We will then consider what happens If we remove 0 in \mathbb{R}^1 and its image h(0) from \mathbb{R}^n . $\mathbb{R}^1 0$ is a disconnected space, but $\mathbb{R}^n h(0)$ is connected. Removal of a point and its image always preserves homeomorphism, thus $\mathbb{R}^1 0$ and $\mathbb{R}^n h(0)$ are homeomorphic. But connectedness is invariant under homeomorphism, so we have a contradiction.
- (b) We will use a similar technique for this part. Assume that there exist a map $h: \mathbb{R}^2 \to \mathbb{R}^n$ that is a homeomorphism. We will again remove the origin from \mathbb{R}^2 and the image h(0,0) from \mathbb{R}^n . Removal of a point and its image always preserves homeomorphism, thus $\mathbb{R}^1 (0,0)$ and $\mathbb{R}^n \{h(0,0)\}$ are homeomorphic. We now have that $\mathbb{R}^2 \{(0,0)\}$ is homeomorphic to S^1 , and $\mathbb{R}^n \{h(0,0)\}$ is homeomorphic to S^{n-1} . S^1 is not simply connected, however S^{n-1} is simply connected for n > 2. Thus since simply connectedness is invariant under homeomorphism, then $\mathbb{R}^1 (0,0)$ and $\mathbb{R}^n \{h(0,0)\}$ are not homeomorphic, a contradiction.