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Exercise 54.7. Generalize the proof of Theorem 54.5 to show that the fundamental
group of the torus is isomorphic to the group Z x Z.

Proof. Recall that a covering map of S* by R is the map p : R — S given by p(z) =
e?™®  The torus is the set T = S' x S!. By Theorem 53.3 we have that the map
pxp:RxR — S x S!is a covering map, since p is a covering map. Let eq =
(0,0) € R x R and let by = p(eg). This gives us that p~'(b) is the set Z x Z. Since
R is simply connected, then R x R is simply connected, and we have a bijective lifting
correspondence
¢:m (St x St by) — Z x 7.
We now prove that ¢ is a homomorphism. Let [f], [g] € m1(S* x S*,by) and let f and
g by their liftings to paths in R x R begininning at (0,0). If we let (a,b) = f(1) and
(¢,d) = g(1), then by definition ¢([f]) = (a,b) and ¢([g]) = (¢,d). Now consider the
path ¢ of R x R given by .
9(s) = (a,b) + g(s).

The path § is a lifting of § since for all (z1,25) € R x R we have:

(p x p)((a;0) + (z1,22)) = (pla+z1),p(b+ x2))
= (p(z1), p(x2))
= (p x p)((z1,72))

and g is a path beginning at (a,b). This means the product f % ¢ is defined, and it is
a lifting of f * g that begins at (0,0). This path ends at g(1) = (a + ¢, b+ d). We can

then show that ¢ preserves the group operation:

o(LfT+1g]) = o([f *g])
=(a+cb+d)

= (a,0) + (¢, d)
— o(1/]) + 6([g)

and so ¢ is a homomorphism. Since ¢ is also bijective, then

7T1(Sl X Sl,bo) =7 X 7.



Exercise 55.4. Suppose that you are given the fact that for each n, there is no
retraction 7 : B"™t — S™. Prove the following:

(a) The identity map ¢ : S™ — S™ is not nulhomotopic.
(b) The inclusion map j : S™ — R*™! — 0 is not nulhomotopic.

(c) Every non-vanishing vector field on B"™! point directly outward at some point
of S™, and directly inward at some point of S™.

(d) Every continuous map f : B"™!' — B"! has a fixed point.

Proof.

(a) First, the fact that there is no retraction r : B™™' — S™ tells us that there
is no extension of ¢ to a map B""! — S". Now assume ¢ is nulhomotopic.

Let H : S x I — S™ be a homotopy between : and a constant map c. Let
7: 8" x I — B! be the map

m(x,t) = (1 —t)z.

7 18 a quotient map since it is continuous, surjective, and closed. Also, 7 has the
property that S™ x {1} goes to zero, and 7 is injective on the rest of the domain.
Since H is also constant on S™ x {1} then it induces, through =, a continuous map
f: B™! — S™ that is an extension of ¢ (a contradiction). Thus ¢ is not nulhomotopic.

(b) Assume the inclusion map j is nulhomotopic. — If we consider the map
r : R — 0 — S™ given by the vector function r(x) = o> this is a retrac-
tion since for y € S™ we have ||y|| = 1. We thus have that the inclusion map ¢ from
part (a) is given by ¢ = r o j. Since j is nulhomotopic there exists a constant map
c: 8" — R —0 such that j ~ ¢. This gives us by Exercise 51.1 that . = roj ~roc,
but r o ¢ is a constant map, so ¢ is nulhomotopic (a contradiction to part (a)). Thus j

is not nulhomotopic.

(c) We have a vector field on B"™' given by ordered pairs (x,v(z)) where v is
a continuous map v : B""! — R"™!. To say that this vector field is non-vanishing im-
plies v(x) # 0 for all z € B™*!. This tells us that we actually have v : B! — R —0.
Now since the identity map on B"*! is nulhomotopic and R"*! — 0 is path connected,
then by Exercise 51.3 the set of homotopy class of maps from B"*! — R"*! — 0
contain a single element. This means that all of these maps are nulhomotopic, and in
particular v is nulhomotopic. So we get that the restriction of v to S™ (say w) is also
nulhomotopic.



We will now proceed by contradiction. Assume that v(x) does not point directly
inward at any point x € S™. We will show that this gives us that w is homotopic to
the inclusion map j : S® — R™"!. Consider the straight line homotopy define by:

F(x,t) =tx+ (1 — t)w(z),

For all x € S™. We need that F(z,t) # 0 for any value of ¢ to verify this homotopy is
continuous. F(z,0) # 0 since w(z) # 0 for all . also F(z,1) = x # 0 since 0 ¢ S™.
Now if F(x,t) = 0 for some 0 < ¢t < 1 then tx + (1 — t)w(z) = 0. From here we
get w(z) = 5, or w(z) is a negative scalar multiple of x, and so it points directly
inward at = (a contradiction). So F(x,t) # 0 for any ¢ € I, but this implies that j
is homotopic to w, which in turn makes j nulhomotopic, a contradiction to part (b)
above. Thus there is a point x € S™ for which v(z) points directly inward.

Now we consider the vector field (z, —v(z)). —v(z) gives a non-vanishing vector
field, and so by the proof above there is a point € S™ where —v(z) point directly
inward, so there is a point = € S™ for which v(z) points directly outward.

(d) We will also prove this by contradiction. Assume there is no fixed point
for the given f : B — B"" or f(z) # x for all z € B""'. Thus we can define
a map v(x) = f(z) — x which is continuous since f is continuous, and gives a
non-vanishing vector field (z,v(z)). By (c) we have that there is a point y € S™ for
which v(x) points directly outward, or f(y) — y = ay for some positive scalar a € R.
But this means f(y) = (1 + a)y, and so f(y) ¢ B"™! since 1 + « > 0, a contradiction.
Therefore there is at least one point x € B"™! with f(z) = .
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