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Exercise 54.7. Generalize the proof of Theorem 54.5 to show that the fundamental
group of the torus is isomorphic to the group Z× Z.

Proof. Recall that a covering map of S1 by R is the map p : R → S1 given by p(x) =
e2πix. The torus is the set T = S1 × S1. By Theorem 53.3 we have that the map
p × p : R × R → S1 × S1 is a covering map, since p is a covering map. Let e0 =
(0, 0) ∈ R × R and let b0 = p(e0). This gives us that p−1(b0) is the set Z × Z. Since
R is simply connected, then R×R is simply connected, and we have a bijective lifting
correspondence

φ : π1(S1 × S1, b0)→ Z× Z.
We now prove that φ is a homomorphism. Let [f ], [g] ∈ π1(S1 × S1, b0) and let f̃ and
g̃ by their liftings to paths in R × R begininning at (0, 0). If we let (a, b) = f̃(1) and
(c, d) = g̃(1), then by definition φ([f ]) = (a, b) and φ([g]) = (c, d). Now consider the
path ˜̃g of R× R given by

˜̃g(s) = (a, b) + g̃(s).

The path ˜̃g is a lifting of g̃ since for all (x1, x2) ∈ R× R we have:

(p× p)((a, b) + (x1, x2)) = (p(a+ x1), p(b+ x2))
= (p(x1), p(x2))
= (p× p)((x1, x2))

and ˜̃g is a path beginning at (a, b). This means the product f̃ ∗ ˜̃g is defined, and it is
a lifting of f ∗ g that begins at (0, 0). This path ends at ˜̃g(1) = (a+ c, b+ d). We can
then show that φ preserves the group operation:

φ([f ] ∗ [g]) = φ([f ∗ g])
= (a+ c, b + d)
= (a, b) + (c, d)
= φ([f ]) + φ([g])

and so φ is a homomorphism. Since φ is also bijective, then

π1(S1 × S1, b0) ∼= Z× Z.
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Exercise 55.4. Suppose that you are given the fact that for each n, there is no
retraction r : Bn+1 → Sn. Prove the following:

(a) The identity map ι : Sn → Sn is not nulhomotopic.

(b) The inclusion map j : Sn → Rn+1 − 0 is not nulhomotopic.

(c) Every non-vanishing vector field on Bn+1 point directly outward at some point
of Sn, and directly inward at some point of Sn.

(d) Every continuous map f : Bn+1 → Bn+1 has a fixed point.

Proof.

(a) First, the fact that there is no retraction r : Bn+1 → Sn tells us that there
is no extension of ι to a map Bn+1 → Sn. Now assume ι is nulhomotopic.
Let H : Sn × I → Sn be a homotopy between ι and a constant map c. Let
π : Sn × I → Bn+1 be the map

π(x, t) = (1− t)x.

π is a quotient map since it is continuous, surjective, and closed. Also, π has the
property that Sn × {1} goes to zero, and π is injective on the rest of the domain.
Since H is also constant on Sn × {1} then it induces, through π, a continuous map
f : Bn+1 → Sn that is an extension of ι (a contradiction). Thus ι is not nulhomotopic.

(b) Assume the inclusion map j is nulhomotopic. If we consider the map
r : Rn+1 − 0 → Sn given by the vector function r(x) = x

‖x‖ , this is a retrac-

tion since for y ∈ Sn we have ‖y‖ = 1. We thus have that the inclusion map ι from
part (a) is given by ι = r ◦ j. Since j is nulhomotopic there exists a constant map
c : Sn → Rn+1−0 such that j ' c. This gives us by Exercise 51.1 that ι = r ◦ j ' r ◦ c,
but r ◦ c is a constant map, so ι is nulhomotopic (a contradiction to part (a)). Thus j
is not nulhomotopic.

(c) We have a vector field on Bn+1 given by ordered pairs (x, v(x)) where v is
a continuous map v : Bn+1 → Rn+1. To say that this vector field is non-vanishing im-
plies v(x) 6= 0 for all x ∈ Bn+1. This tells us that we actually have v : Bn+1 → Rn+1−0.
Now since the identity map on Bn+1 is nulhomotopic and Rn+1 − 0 is path connected,
then by Exercise 51.3 the set of homotopy class of maps from Bn+1 → Rn+1 − 0
contain a single element. This means that all of these maps are nulhomotopic, and in
particular v is nulhomotopic. So we get that the restriction of v to Sn (say w) is also
nulhomotopic.
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We will now proceed by contradiction. Assume that v(x) does not point directly
inward at any point x ∈ Sn. We will show that this gives us that w is homotopic to
the inclusion map j : Sn → Rn+1. Consider the straight line homotopy define by:

F (x, t) = tx + (1− t)w(x),

For all x ∈ Sn. We need that F (x, t) 6= 0 for any value of t to verify this homotopy is
continuous. F (x, 0) 6= 0 since w(x) 6= 0 for all x. also F (x, 1) = x 6= 0 since 0 /∈ Sn.
Now if F (x, t) = 0 for some 0 < t < 1 then tx + (1 − t)w(x) = 0. From here we
get w(x) = t

t−1
x, or w(x) is a negative scalar multiple of x, and so it points directly

inward at x (a contradiction). So F (x, t) 6= 0 for any t ∈ I, but this implies that j
is homotopic to w, which in turn makes j nulhomotopic, a contradiction to part (b)
above. Thus there is a point x ∈ Sn for which v(x) points directly inward.

Now we consider the vector field (x,−v(x)). −v(x) gives a non-vanishing vector
field, and so by the proof above there is a point x ∈ Sn where −v(x) point directly
inward, so there is a point x ∈ Sn for which v(x) points directly outward.

(d) We will also prove this by contradiction. Assume there is no fixed point
for the given f : Bn+1 → Bn+1, or f(x) 6= x for all x ∈ Bn+1. Thus we can define
a map v(x) = f(x) − x which is continuous since f is continuous, and gives a
non-vanishing vector field (x, v(x)). By (c) we have that there is a point y ∈ Sn for
which v(x) points directly outward, or f(y)− y = αy for some positive scalar α ∈ R.
But this means f(y) = (1 + α)y, and so f(y) /∈ Bn+1 since 1 + α > 0, a contradiction.
Therefore there is at least one point x ∈ Bn+1 with f(x) = x.
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