Math 205B - Topology

Dr. Baez

## March 16, 2007

## Christopher Walker

**Exercise 73.1.** Find spaces whose fundamental group is isomorphic to the following groups.

(a)  $\mathbb{Z}_n \times \mathbb{Z}_m$ . (b)  $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$ . (c)  $\mathbb{Z}_n * \mathbb{Z}_m$ (d)  $\mathbb{Z}_{n_1} * \mathbb{Z}_{n_2} * \cdots * \mathbb{Z}_{n_k}$ .

*Proof.* First we would like a space with fundamental group  $\mathbb{Z}_n$  for each  $n \in \mathbb{Z}^+$ . We can obtain this as follows. Begin with an *n*-gon, and identify all the sides in the same direction. we picture this below for a triangle. also included is the break down for our open sets U and V.



From this we get that  $\pi_1(U, x_0)$  is trivial,  $\pi_2(U \bigcap V, x_0) \cong \mathbb{Z}$  and  $\pi_1(V, x_0) \cong \mathbb{Z}$ . when we track the image of  $1_{\mathbb{Z}}$  around the commutative diagram, we see that our normal

subgroup N from the Seifert-van Kampen Theorem is generated by  $a^n$ . Thus we have a group presentation for  $\pi_1(X, x_0) = \{a \mid a^n = 1\}$ , and this is isomorphic to  $\mathbb{Z}_n$ . Of particular interest are the cases when n = 1 and n = 2. The argument made here is true for both of these cases, but conceptually we don't usually consider what a 2-gon or 1-gon looks like. Topologically this is not a problem since we do not require the edges to be "straight". We can now construct all the requested spaces.

- (a) For all  $n \in \mathbb{Z}^+$ , Define  $X_n$  to be the quotient space obtain from an *n*-gon as described above. Thus  $\pi_1(X_n, *) \cong \mathbb{Z}_n$ . Now by Theorem 60.1 we have that  $\pi_1(X_n \times X_m, *) \cong \pi(X_n, *) \times \pi_1(X_m, *) \cong \mathbb{Z}_n \times \mathbb{Z}_m$ , so we have the space we need.
- (b) Using the fact that the product operation on spaces and groups is associative, we see by induction on the number of spaces that  $\pi_1(X_{n_1} \times \cdots \times X_{n_k}, *) \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$ .
- (c) We know that the  $\pi_1$  as a functor preserves colimits of well-pointed space. In the category  $Top_*$  the colimit of two spaces is the wedge product " $\vee$ ". In the category Grp we have that the colimit of two groups is the free product "\*". Thus for  $X_n$  as we described before  $\pi_1(X_n \vee X_m, x_0) \cong \pi_1(X_n, x_0) * \pi_1(X_m, x_0) \cong \mathbb{Z}_n * \mathbb{Z}_m$ .
- (d) As before the wedge product in  $Top_*$  and the free product in Grp is associative. When can then use induction to get that  $\pi_1(X_{n_1} \vee X_{n_2} \cdots \vee X_{n_k}, x_0) \cong \mathbb{Z}_{n_1} * \mathbb{Z}_{n_2} * \cdots * \mathbb{Z}_{n_k}$ .

**Exercise 74.2.** Consider the space X obtained from the seven sided polygon by identifying the sides as labeled in the picture.



Show that the fundamental group of X is the free product of two cyclic groups.

Proof. We approach this problem the same way as with all our quotient spaces of polygons. As usual  $\pi_1(U, x_0) \cong \{1\}$  and  $\pi_1(U \cap V, x_0) \cong \mathbb{Z}$ . Since there are two different edge labels, then  $\pi_1(V, x_0) \cong \mathbb{Z} * \mathbb{Z}$ . To find our normal subgroup N from the Seifert-van Kampen Theorem, we check what the generating loop of  $\pi_1(U \cap V, x_0)$  does in V. with the labelling provided we get that N is generated by the element  $b^{-1}a^{-1}abaaa = a^3$ . When we take the quotient group  $\mathbb{Z} * \mathbb{Z}/N$  we see that N only affects the first generator a of  $\mathbb{Z} * \mathbb{Z}$ , and it has no bearing on the second generator b or the relationship between the two generators. Thus  $\mathbb{Z} * \mathbb{Z}/N \cong \mathbb{Z}_3 * \mathbb{Z}$ , and so it is the free product of two cyclic groups.