MATH 205B FINAL EXAM

Definitions — give precise definitions for these terms.

- 1. Covering map.
- 2. Pushout.
- 3. Homotopy equivalence.
- 4. Retract.

Proofs, Examples and Counterexamples — Settle each question with a proof, an example, or a counterexample.

5. Let $S^1 \subset S^2$ be the 'equator' of the 2-sphere:

Is this subspace S^1 a retract of S^2 or not?

6. Let the Klein bottle K be the quotient space of the square formed by identifying edges as shown:

Let $A \subseteq K$ be the subspace given by the edge labelled A. (A is homeomorphic to a circle.) Is A a retract of K?

7. Consider the situation in problem 8. Is the circle A a deformation retract of K?

8. Is every subspace of a contractible space contractible?

Calculations — do the calculations, with just enough detail so I can see what you are doing.

9. Compute the fundamental group of S^2 with three points removed.

10. The Möbius strip ${\cal M}$ is obtained as a quotient space of the square by identifying two edges as shown:

Compute the fundamental group of the Möbius strip.

11. Compute the fundamental group of the wedge product $(S^1, *) \lor (\mathbb{R}P^2, *)$.

Proof — Prove the following result.

12. Let X be a space. Suppose $\gamma: [0,1] \to X$ is a path from $x \in X$ to $y \in X$. Let $\overline{\gamma}$ be the reverse path:

$$\overline{\gamma}(t) = \gamma(1-t) \qquad t \in [0,1].$$

Show that $\gamma * \overline{\gamma}$ is path homotopic to the constant path at x.