
Groupoidification

John Baez
joint with James Dolan, Todd Trimble,
Alex Hoffnung, and Christopher Walker

Department of Mathematics
University of California, Riverside

January 7, 2009
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A span from the groupoid X to the groupoid Y is a diagram

Sq

yyssssss p

%%KKKKKK

Y X

where S is another groupoid, and p and q are functors.



A span of finite sets gives a matrix of natural numbers:



Using ‘groupoid cardinality’, a well-behaved span of groupoids
gives a matrix of nonnegative real numbers:



We define the cardinality of a groupoid X to be:

|X | =
∑

[x]

1

|Aut(x)|

Here [x ] ranges over all isomorphism classes of objects in X .
|Aut(x)| is the order of the automorphism group of x ∈ X .

When this sum converges, we call X tame.
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Here [x ] ranges over all isomorphism classes of objects in X .
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For example, the groupoid of finite sets has cardinality

∞∑

n=0

1

|Sn|
=
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n!
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So: a sufficiently well-behaved span of groupoids
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, using groupoid
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So: a sufficiently well-behaved span of groupoids

Sq

yyssssss p

%%KKKKKK

Y X

can be viewed as a matrix of tame groupoids — and then turned
into a matrix of nonnegative real numbers, S

˜
, using groupoid

cardinality.

BUT: the really good recipe for doing this involves a fudge factor
you might not expect! We need this to get

TS
˜

= T
˜

S
˜

where TS is the composite of two spans.



We compose spans of groupoids using ‘weak pullback’. Given spans

T

yyrrrrrr
%%LLLLLL S

yyssssss
%%KKKKKK

Z Y X

we can form a weak pullback in the middle:

TS

xxqqqqqq
&&MMMMMM

T

yyrrrrrr
&&MMMMMMM S

xxqqqqqqq
%%KKKKKK

Z Y X

and get the composite span:

TS

xxqqqqqq
&&MMMMMM

Z X



Given functors between groupoids

T g

%%LLLLLL S
f

yyssssss

Y

we define their weak pullback to be

TS

xxqqqqqq
&&MMMMMM

T g

&&MMMMMMM S
f

xxqqqqqqq

Y

where TS is the groupoid whose objects are triples consisting of
s ∈ S , t ∈ T and α : f (s)

∼→ g(t).



Theorem

Any groupoid X gives a vector space called its
degroupoidification:

X
˜

= CX

where X is the set of isomorphism classes of objects in X . Any
‘tame’ span of groupoids

Sq

yyssssss p

%%KKKKKK

Y X

gives a linear operator called its degroupoidification:

S
˜

: X
˜
→ Y
˜

in such a way that

TS
˜

= T
˜

S
˜

1X
˜

= 1X
˜



So, degroupoidification is a systematic process.



So, degroupoidification is a systematic process.

It’s really a functor from the tricategory of:

groupoids,

tame spans,

maps of spans,

maps of maps of spans.

to the category of:

vector spaces,

linear operators.



Groupoidification is an attempt to reverse this process.

As with any form of categorification, this ‘reverse’ is not
systematic. The idea is to take interesting pieces of linear algebra
and reveal their combinatorial origin.

What can we groupoidify so far?



We can groupoidify the space of states of a quantum harmonic
oscillator:

C[[z1, . . . , zn]] ∼= E n

˜
where E n is the groupoid of n-tuples of finite sets.
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∂
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We can groupoidify the space of states of a quantum harmonic
oscillator:

C[[z1, . . . , zn]] ∼= E n

˜
where E n is the groupoid of n-tuples of finite sets.

This lets us groupoidify:

annihilation and creation operators:

ai =
∂

∂zi
a∗i = multiplication by zi

field operators
φi = ai + a∗i

and their normal-ordered powers

the whole machinery of Feynman diagrams!



For any simply-laced Dynkin diagram D, we can groupoidify the
q-deformed Borel subalgebra Uqb when q is a prime power:

Uqb ∼= Rep(Q)
˜

Here Q is a quiver corresponding to D, and Rep(Q) is the groupoid
of representations of Q on finite-dimensional Fq-vector spaces.

This is based on Ringel’s work on Hall algebras.



For any Dynkin diagram D, we can groupoidify the Hecke algebra
H(D, q) when q is a prime power:

H(D, q) ∼= (X × X )//G
˜

Here G is the simple algebraic group over Fq corresponding to D.
Choosing a Borel subgroup B ⊂ G , we obtain the complete flag
variety X = G/B .

(X × X )//G is the ‘weak quotient’ of X × X by G : a groupoid
where two pairs of flags become isomorphic when there is an
element of G mapping one to the other.



This is the beginning of a long story. For more, type

Groupoidification Made Easy

into Google or the arXiv.



This is the beginning of a long story. For more, type
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Also: listen to Alex Hoffnung’s talk, coming up next!


