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Abstract. The Kepler problem concerns a point particle in an attractive inverse
square force. After a brief review of the classical and quantum versions of this
problem, focused on their hidden SU(2)×SU(2) symmetry, we discuss the quantum
Kepler problem for a spin- 12 particle. We show that the Hilbert space H of bound
states for this problem is unitarily equivalent, as a representation of SU(2)×SU(2),
to the Hilbert space of solutions of the Weyl equation on the spacetime R×S3. This
equation describes a massless chiral spin-12 particle. We then form the fermionic
Fock space on H and show this is unitarily equivalent to the Hilbert space of a
massless chiral spin- 12 free quantum field on R × S3, again as representations of
SU(2)× SU(2). By modifying the Hamiltonian of this free field theory, we obtain
the well-known ‘Madelung rules’. These give a reasonable approximation to the
observed filling of subshells as we consider elements with more and more electrons,
and match the rough overall structure of the periodic table.

1. Introduction

On January 6, 1680 Robert Hooke wrote to Isaac Newton, suggesting that he look
into an inverse square force law for gravity:

But my supposition is that the Attraction always is in a duplicate
proportion to the Distance from the Center Reciprocall [...]

Ever since, the mathematics of the so-called Kepler problem—the motion of a par-
ticle in a central force proportional to the inverse square of distance—has revealed
more and more interesting features. Quantizing the Kepler problem was instrumen-
tal in testing quantum mechanics against the hydrogen atom, and it turns out this
problem has a hidden symmetry under rotations in 4-dimensional space. In fact,
wavefunctions for bound states of the hydrogen can be described as functions on the
3-sphere, S3.

Here we consider second quantization for the Kepler problem. In second quantiza-
tion, a state in Fock space describes a collection of particles. Thus, we can use it to
describe multi-electron atoms. This sets up a surprising relation between chemistry
and quantum field theory: specifically, the massless spin-1

2
field on the spacetime

R × S3. While the interactions between electrons are not accounted for in this ap-
proach, we can at least give a Hamiltonian for the massless spin-1

2
field that yields

some well-known rules describing the structure of the periodic table of elements.
We start with a brief review. The history of the inverse square law goes back at

least to Kepler’s discovery that the planets move in elliptical orbits, and in some
sense even earlier to Apollonius of Perga’s Conics. But let us start with Newton.
We make no pretensions to completeness in this summary.

Newton discovered that the three kinds of orbits for a particle in an inverse square
force—bound, unbound, and right on the brink between bound and unbound—are
the three types of conic section: ellipse, hyperbola and parabola. To modern eyes,
the fact that the major axis of an elliptical orbit remains unchanged with the passage
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of time hints at extra conserved quantities besides the obvious ones. Indeed, if we
work in units where the inverse square force law says

q̈ = − q

q3
, (1)

and if we define momentum by p = q̇, then not only are energy

E = 1
2
p2 − 1

q
(2)

and angular momentum

L = q× p (3)

conserved, but also the vector

e = p× L− q

q
. (4)

This vector always points in the direction of the orbit’s perihelion, and its magnitude
e equals the eccentricity of the orbit.

This extra conserved quantity was named the ‘Runge–Lenz vector’ after Lenz [24]
used it in 1924 to study the hydrogen atom, citing Runge’s [34] popular textbook
from five years earlier. But Runge never claimed any originality: he attributed
this vector to Gibbs. Now many people call it the ‘Laplace–Runge–Lenz vector’,
honoring Laplace’s [22] discussion of it in 1799. But in fact this vector goes back at
least to Jakob Hermann [19], who wrote about it in 1710, triggering further work
by Johann Bernoulli [6] in the same year. Perhaps it would be wise to call e simply
the ‘eccentricity vector’.

The power of this vector becomes apparent when we take its dot product with
the particle’s position q. A little manipulation gives

e · q = L2 − q. (5)

Combined with the fact that q moves in the plane perpendicular to L, this equation
describes a conic of eccentricity e. We can also take the dot product of e with itself
and show, using only vector identities and the formulas above, that

e2 = 1 + 2L2E. (6)

This gives three cases:

• E < 0: in this case e < 1 and the orbit is an ellipse (perhaps a circle).
• E = 0: in this case e = 1 and the orbit is a parabola.
• E > 0: in this case e > 1 and the orbit is a hyperbola.

This paper focuses solely on the first case.
In 1847 Hamilton [18] discovered another remarkable feature of the inverse square

force law, whose full significance became clear only later: the momentum p moves in
a circle. This can seen using the conservation of L and e. Taking the inner product
of

q

q
= p× L− e (7)

with itself, which is 1, and doing some manipulations using the fact that L is per-
pendicular to both p and e, we can show(

p− L× e

L2

)2

=
1

L2
. (8)
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Thus, p stays on a circle centered at the point (L× e)/L2.
We now know that in classical mechanics, conserved quantities come from sym-

metries. In the Kepler problem, conservation of energy comes from time translation
symmetry, while conservation of the angular momentum comes from rotation sym-
metry. Which extra symmetries give conservation of the eccentricity vector?

A systematic approach to this question uses Poisson brackets. If we use the sign
convention where {qk, pℓ} = δjk, some calculations give

{Lk, Lℓ} = ϵjkℓLℓ
{ek, Lℓ} = ϵjkℓeℓ
{ek, eℓ} = −2EϵjkℓLℓ

(9)

and of course

{E,Lk} = {E, ek} = 0 (10)

since L and e are conserved. The factor of −2E above is annoying, but on the region
of phase space where E < 0—that is, the space of bound states, where the particle
carries out an elliptical orbit—we can define a vector

M =
e√
−2E

(11)

and obtain

{Lk, Lℓ} = ϵjkℓLℓ
{Lj,Mk} = ϵjkℓMℓ

{Mj,Mk} = ϵjkℓMℓ.

(12)

This gives a Lie algebra isomorphic to so(3)⊕ so(3), as becomes clear if we set

A = 1
2
(L+M), B = 1

2
(L−M) (13)

and check that

{Aj, Ak} = ϵjkℓAℓ
{Bj, Bk} = ϵjkℓBℓ

{Aj, Bk} = 0.

(14)

But so(3)⊕so(3) ∼= so(4), so conservation of the eccentricity vector must come from
a hidden so(4) symmetry. And indeed, the group SO(4) acts on the bound states of
the Kepler problem in a way that commutes with time evolution!

It seems that the first geometrical explanation of this symmetry was found in
the quantum-mechanical context. In 1926, even before Schrödinger came up with
his famous equation, Pauli [32] used conservation of angular momentum and the
eccentricity to determine the spectrum of hydrogen. In 1935, Fock [15] explained
this symmetry by setting up an equivalence between hydrogen atom bound states
and functions on the 3-sphere [15]. In the following year, Bargmann [3] connected
Pauli and Fock’s work using group representation theory. But it seems the first global
discussion of this symmetry in the classical context was given by Bacry, Ruegg, and
Souriau [1] in 1966, leading to important work by Souriau [35] and Moser [29] in the
early 1970s. Since then, much more has been done.

The key to understanding the SO(4) symmetry for bound states of the Kepler
problem turns out to be Hamilton’s result about momentum moving in circles.
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Hamilton’s circles, defined by Equation (8), are not arbitrary circles in R3. Us-
ing the inverse of stereographic projection, we can map R3 to the unit 3-sphere:

f : R3 → S3 ⊂ R4

p 7→
(
p2 − 1

p2 + 1
,

2p

p2 + 1

)
.

(15)

This map sends Hamilton’s circles in R3 to great circles in S3. Furthermore, this
construction gives all the great circles in S3 except those that go through the points
(±1, 0, 0, 0). These missing great circles correspond to periodic orbits where a par-
ticle starts with momentum zero, falls straight to the origin, and bounces back the
way it came. We can embed the phase space of bound states of the Kepler problem,
as a symplectic manifold, into T ∗S3 in such a way that these additional orbits be-
come legitimate trajectories in this larger phase space. Neglecting these additional
orbits caused trouble for Bohr and Sommerfeld in their early work on quantizing the
hydrogen atom [4]. For a clear modern treatment of Hamilton’s circles, see Milnor
[30] and Egan [14].

Note that points of S3 correspond not to positions but to momenta in the Kepler
problem. As time passes, these points move along great circles in S3. How is their
dynamics related to geodesic motion on the 3-sphere? We can understand this as
follows. From Equation (6) and the definition of M it follows that

L2 +M2 = − 1

2E
, (16)

and using the fact that L ·M = 0, an easy calculation gives

E = − 1

8A2
= − 1

8B2
. (17)

In the 3-sphere picture, the observables Aj become functions on T ∗S3. These func-
tions are just the components of momentum for a particle on S3, defined using a
standard basis of right-invariant vector fields on S3 ∼= SU(2). Similarly, the observ-
ables Bj are the components of momentum using a standard basis of left-invariant
vector fields. It follows that

K = 8A2 = 8B2 (18)

is the Hamiltonian for a nonrelativistic free particle on S3 with an appropriately
chosen mass. Such a particle moves around a great circle on S3 at constant speed.
Since the Kepler Hamiltonian E is the negative reciprocal of K, particles governed
by this Hamiltonian move along the same trajectories—but typically not at constant
speed.

BothK and the Kepler Hamiltonian E = −1/K are well-defined smooth functions
on the symplectic manifold that Souriau [35] dubbed the ‘Kepler manifold’:

T+S3 = {(x, p) : x ∈ S3, p ∈ TxS
3, p ̸= 0}. (19)

We can also think of T+S3 as a space of light rays in the ‘Einstein universe’: the
manifold R×S3 with Lorentzian metric dt2−ds2, where ds2 is the usual metric on the
unit sphere. Here a ‘light ray’ is a null geodesic equipped with a choice of covariantly
constant tangent vector field, its ‘4-velocity’. The corresponding cotangent vector
field describes the energy-momentum of the light ray. This extra information reflects
the fact that massless particles can have different energy and momentum even if they
trace out the same path in spacetime. To describe a light ray using a point in T+S3,
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we let x ∈ S3 be the light ray’s position at time zero, while the null cotangent vector
p+∥p∥dt describes the light ray’s energy-momentum at time zero. In this way T+S3

serves as a phase space for a classical free massless spin-0 particle in the Einstein
universe. The Hamiltonian for such a particle is

√
K.

In what follows we start with the quantum Kepler problem described in terms of
the 3-sphere, and then carry out second quantization to treat multi-electron atoms,
also bringing the electron’s spin into the picture. These two novel features are
linked: only by treating electrons as identical spin-1

2
particles can we obtain the

usual picture where, thanks to the Pauli exclusion principle, at most two electrons
occupy each orbital.

We begin in Section 2 by reviewing Fock’s S3 description of bound states of the
hydrogen atom. This treatment ignores the electron’s spin, which we introduce in
Section 3. In Section 4 we introduce spin and express the Hamiltonian for bound
states of the hydrogen atom with spin-1

2
electron in terms of the Dirac operator

on S3. We also give a quaternionic description of these bound states. In Section
5 we reinterpret these bound states as states of a massless chiral spin-1

2
particle

in the Einstein universe. In Section 6 we apply second quantization, showing how
states of multi-electron atoms correspond to states of a massless chiral spin-1

2
free

quantum field on the Einstein universe. Finally, in Section 7 we describe a modified
Hamiltonian for this quantum field that makes its energy eigenstates line up with
the structure of the periodic table, at least approximately.

1.1. Note on units. Throughout this paper when discussing the hydrogen atom
we work in units with

ℏ = e = 4πϵ0 = µ = 1

where

• ℏ is Planck’s constant,
• −e is the charge of the electron,
• ϵ0 is the permittivity of the vacuum,
• µ = me/(me +mp) is the reduced mass of the electron.

This allows us to hide all these fundamental constants and write the classical Hamil-
tonian for the hydrogen atom as in Equation (17). For a nucleus with atomic number
N we instead set Ne = 1.

1.2. Acknowledgements. I thank my Ph.D. advisor, Irving Segal, for teaching me
the ways of mathematical physics and introducing me to the conformal geometry of
the Einstein universe. I also thank Greg Egan and Paul Schwahn for help with this
project.

2. The hydrogen atom — ignoring spin

As already mentioned, there are various ways to quantize the Kepler problem and
obtain a description of the hydrogen atom’s bound states as wavefunctions on the
3-sphere. Here we take a less systematic but quicker approach. We start with the
space of wavefunctions on the 3-sphere, L2(S3), and describe operators on this space
arising from rotational symmetries. Combining these with standard facts about the
hydrogen atom—which we take as known, rather than derive—we set up a unitary
equivalence between L2(S3) and the space of hydrogen atom bound states, and show
the hydrogen atom Hamiltonian has SO(4) symmetry. Everything in this section is
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essentially a review of known material. Here we ignore the electron’s spin, which we
introduce in the next section.

We identify the 3-sphere with the Lie group SU(2). The group SU(2) acts on itself
in three important ways, which combine to give the mathematics we need:

• left multiplication by g: g maps h to gh,
• right multiplication by g−1: g maps h to hg−1,
• conjugation by g: g maps h to ghg−1

Left and right multiplication commute, so they combine to give a left action of
SU(2)×SU(2) on SU(2). We thus obtain a unitary representation R of SU(2)×SU(2)
on L2(SU(2)), given by

(R(g1, g2)ψ)(g) = ψ(g−1
1 gg2). (20)

In what follows we denote SU(2) as S3 when we regard it as the unit sphere in R4,
acted on by SU(2) × SU(2) as above. The Peter–Weyl theorem lets us decompose
L2(S3) into finite-dimensional irreducible unitary representations of SU(2)× SU(2):

L2(S3) ∼=
⊕
j

Vj ⊗ Vj. (21)

Here j = 0, 1
2
, 1, 3

2
, . . . and Vj is the spin-j representation of SU(2), which is the

irreducible unitary representation of dimension 2j + 1.
The representation of SU(2)×SU(2) on L2(S3) is generated by self-adjoint opera-

tors that correspond to familiar observables for bound states of the hydrogen atom.
The complexification of su(2)⊕ su(2) has self-adjoint elements

Aj = (1
2
σj, 0), Bj = (0, 1

2
σj) (22)

where σj are the Pauli matrices. We also use Aj and Bj to denote the corresponding
self-adjoint operators on L2(S3). They obey the following commutation relations,
which are the quantum-mechanical analogues of the Poisson brackets in Equation
(14):

[Aj, Ak] = iϵjkℓAℓ
[Bj, Bk] = iϵjkℓBℓ

[Aj, Bk] = 0.

(23)

Geometrically speaking, the skew-adjoint operators −iAj acts on L2(S3) as differ-
entiation by vector fields on S3 ∼= SU(2) that generate left translations, while the
operators−iBj act by differentiation by vector fields that generate right translations.
We also use −iAj and −iBj to stand for these vector fields. Since left-invariant-
vector fields generate right translations and vice versa, the vector fields −iAj are
right-invariant, while the −iBj are left-invariant.

As well known, we have

ϕ ∈ Vj ⊗ Vj =⇒ A2ϕ = B2ϕ = j(j + 1)ϕ. (24)

This implies that A2 = B2 on all of L2(S3). We can define an operator on L2(S3)
that corresponds to the Hamiltonian for bound states of the hydrogen atom, namely

H0 = − 1

8(A2 + 1
4
)

= − 1

8(B2 + 1
4
)
. (25)

This is the quantum analogue of the classical Hamiltonian in Equation (17). We
discuss the curious appearance of the number 1

4
here in Subsection 2.1, but we can
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easily see why it is needed. On the subspace Vj ⊗ Vj, the operator 4A2 + 1 acts as
multiplication by

4j(j + 1) + 1 = 4j2 + 4j + 1 = (2j + 1)2.

In atomic physics it is traditional to work with the dimension of Vj,

n = 2j + 1, (26)

rather than j itself. Thus, we have

ϕ ∈ Vj ⊗ Vj =⇒ H0ϕ = − 1

2n2
ϕ, (27)

and as j ranges over all allowed values j = 0, 1
2
, 1, . . . , n ranges over all positive

integers. These are precisely the usual energy eigenvalues for the hydrogen atom,
expressed in the units chosen in Subsection 1.1.

We have not yet brought in the action of SU(2) on S3 by conjugation. This gives
yet another unitary representation of SU(2) on L2(S3). To conjugate by g we both
left multiply by g and right multiply by g−1. Thus, the conjugation representation
of SU(2) on L2(S3) has self-adjoint generators

Lj = Aj +Bj (28)

and these obey
[Lj, Lk] = iϵjkℓLℓ. (29)

These operators Lj are the components of the angular momentum of the hydrogen,
as we can see from the classical picture in Equation With respect to the conjugation
representation, the subspace Vj⊗Vj ⊂ L2(S3) decomposes according to the Clebsch–
Gordan rules:

Vj ⊗ Vj ∼=
2j⊕
ℓ=0

Vℓ (30)

where ℓ takes integer values going from 0 to 2j = n− 1. Thus, with respect to the
conjugation representation, we can decompose L2(S3) into irreducible representa-
tions of SU(2) by combining Equations (21) and (30), obtaining

L2(S3) ∼=
∞⊕
n=1

n−1⊕
ℓ=0

Vℓ. (31)

The summand Vℓ has a basis of eigenvectors for L3 with eigenvalues taking integer
values m ranging from −ℓ to ℓ. Thus L2(S3) has an orthonormal basis of states
|n, ℓ,m⟩ where:

• n ranges over positive integers;
• ℓ ranges from 0 to n− 1 in integer steps;
• m ranges from −ℓ to ℓ in integer steps.

From the calculations thus far we have

A2|n, ℓ,m⟩ = B2|n, ℓ,m⟩ = 1
4
(n2 − 1)|n, ℓ,m⟩

H0|n, ℓ,m⟩ = − 1

2n2
|n, ℓ,m⟩

L2|n, ℓ,m⟩ = ℓ(ℓ+ 1) |n, ℓ,m⟩
L3|n, ℓ,m⟩ = m |n, ℓ,m⟩.

(32)

The last three relations are familiar from work on the hydrogen atom. In this context
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• n is the ‘principal quantum number’,
• ℓ is the ‘azimuthal quantum number’,
• m is the ‘magnetic quantum number’.

The operator H0 corresponds to the Hamiltonian of the hydrogen atom, with the
electron treated as spinless, and the states |n, ℓ,m⟩ are a well-known basis of the
hydrogen atom’s bound states.

2.1. Digression on the Duflo isomorphism. Why is there an extra 1
4
in the

quantum Hamiltonian

H = − 1

8(A2 + 1
4
)

= − 1

8(B2 + 1
4
)

not present in the classical case? From a pragmatic viewpoint, we need this to match
the spectrum obtained in the usual approach to quantizing the Kepler problem,
which agrees with experiment. We also need some term like this to avoid dividing
by zero. But there is yet another explanation: it arises from the Duflo isomorphism.

Suppose G is a connected Lie group with Lie algebra g. The Poincaré–Birkoff–
Witt theorem gives a natural linear map from the polynomial algebra S(g) to the
universal enveloping algebra U(g). This map is an isomorphism of vector spaces,
but clearly not of algebras: S(g) is commutative while U(g) is not. This map is
compatible with the natural representation of G on these spaces, so it restricts to a
vector space isomorphism

F : S(g)G → U(g)G (33)

where the superscript indicates the G-invariant subspace. Both S(g)G and U(g)G

are commutative algebras, and indeed U(g)G is the center of U(g). However, F is
not an algebra homomorphism. Nonetheless, Duflo [13] proved that in some cases
we can compose F with a linear map

E : S(g)G → S(g)G (34)

to get an algebra isomorphism

F ◦ E : S(g)G → U(g)G.

Later Kontsevich [20] showed that this works for all finite-dimensional Lie algebras.
Calaque and Rossi have written a useful pedagogical account [8].

The map E is defined as follows. First, for any x ∈ g we have a linear map

adx : g → g
y 7→ [x, y]

(35)

Second, note that linear functionals on g are vectors in g∗, so they give constant vec-
tor fields on g∗. More generally, polynomial functions on g give constant-coefficient
differential operators on g∗. These differential operators act on S(g), since this can
be identified with the algebra of polynomial functions on g∗. Even more generally,
entire functions on g such as

J̃(x) = det

(
eadx/2 − e−adx/2

adx

)
(36)

act as operators on S(g), since we can expand them as Taylor series, and only finitely
many terms give a nonzero result when applied to any particular element of S(g).
Since J̃ is G-invariant, the operator on S(g) coming from this particular function
restricts to an operator on S(g)G, which is the desired linear map E : S(g)G → S(g)G.
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In the case g = sl(2,C), the algebra S(g)g is generated by the element J2
1 +J

2
2 +J

2
3

where Jj =
i
2
σj. Applying E to this element we obtain

J̃2 = J2
1 + J2

2 + J2
3 + 1

4
. (37)

This explains the extra 1
4
in the hydrogen atom Hamiltonian [33].

Examining the details of the map E, one can see that the value 1
4
arises from the

fact that
ex/2 − e−x/2

x
= 1 +

x2

24
+ · · · (38)

together with the fact that each of the three elements J2
j has trace 2 in the adjoint

representation, giving a correction of

3× 2× 1
24

= 1
4
.

In fact, the appearance of the number 24 in Equation (38) is closely connected to
role of that number in conformal field theory, the theory of modular forms, topology,
and other subjects. Thus, the 1

4
in the hydrogen atom Hamiltonian is part of a much

larger story.

3. The hydrogen atom — with spin

Next we include the electron’s spin in our treatment of the hydrogen atom. To
do this, we merely tensor the Hilbert space of the previous section, L2(S3), with a
copy of C2 describing the electron’s spin. The resulting space L2(S3) ⊗ C2 is the
Hilbert space of bound states of a spinor-valued version of the Schrödinger equation
for the hydrogen atom. This is simplification of a more careful treatment using the
Dirac equation: it neglects all spin-dependent terms in Hamiltonian, such as spin-
orbit interactions. These spin-dependent terms give corrections that go to zero in
the limit where the speed of light approaches infinity. In this sense, we are giving
a nonrelativistic treatment of the hydrogen atom, but taking into account the fact
that the electron is a spin-1

2
particle.

The Hilbert space L2(S3) ⊗ C2 becomes a unitary representation of SU(2) in
three important ways. The first two come from the actions of SU(2) on L2(S3) by
left and right translation, as described in the previous section. The third comes
from the natural action of SU(2) on C2. All three of these actions of SU(2) on
L2(S3) ⊗ C2 commute with each other. We thus get a unitary representation of
SU(2)× SU(2)× SU(2) on L2(S3)⊗ C2.

It is useful to spell this out at the Lie algebra level. In the previous section we
introduced self-adjoint operators Aj and Bj on L

2(S3) with commutation relations
given in Equation (23). These are the self-adjoint generators of the left and right
translation actions of SU(2), respectively. We now tensor these operators with the
identity on C2 and obtain operators on L2(S3) ⊗ C2, which by abuse of notation
we denote with the same names: Aj and Bj. We also introduce ‘spin angular
momentum’ operators

Sj = 1⊗ 1
2
σj (39)

on L2(S3)⊗ C2. These obey the following commutation relations:

[Aj, Ak] = iϵjkℓAℓ [Aj, Bk] = 0

[Bj, Bk] = iϵjkℓBℓ [Aj, Sk] = 0

[Sj, Sk] = iϵjkℓSℓ [Bj, Sk] = 0.

(40)
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We define ‘orbital angular momentum’ operators

Lj = Aj +Bj (41)

which are just those of the previous section tensored with the identity on C2. These
obey

[Lj, Lk] = iϵjkℓLℓ
[Sj, Sk] = iϵjkℓSℓ
[Lj, Sk] = 0.

(42)

We also define ‘total angular momentum’ operators

Jj = Lj + Sj (43)

which obey
[Jj, Jk] = iϵjkℓJℓ. (44)

Finally, we define a Hamiltonian for the hydrogen atom

H = − 1

8(A2 + 1
4
)

= − 1

8(B2 + 1
4
)

(45)

which commutes with all the operators Aj, Bj, Sj and thus also Lj and Jj. We have

H = H0 ⊗ 1 (46)

where H0 is the Hamiltonian for the hydrogen atom with a spin-0 electron, as in
Equation (25). The spectrum of H is the same as that of H0; only the multiplicity
of each eigenvalue has doubled.

From the direct sum decomposition in Equation (31) we obtain

L2(S3)⊗ C2 ∼=
∞⊕
n=1

n−1⊕
ℓ=0

Vℓ ⊗ C2. (47)

The basis |n, ℓ,m⟩ of L2(S3) tensored with the standard basis of C2 gives an or-
thonormal basis |n, ℓ,m, s⟩ of L2(S3)⊗ C2 where:

• the principal quantum number n ranges over positive integers;
• the azimuthal quantum number ℓ ranges from 0 to n− 1 in integer steps;
• the magnetic quantum number m ranges from −ℓ to ℓ in integer steps;
• the spin quantum number s is +1

2
or −1

2
.

Extending Equation (32) to this situation we see

A2|n, ℓ,m, s⟩ = B2|n, ℓ,m, s⟩ = 1
4
(n2 − 1)|n, ℓ,m, s⟩

H|n, ℓ,m, s⟩ = − 1

2n2
|n, ℓ,m, s⟩

L2|n, ℓ,m, s⟩ = ℓ(ℓ+ 1)|n, ℓ,m, s⟩
L3|n, ℓ,m, s⟩ = m|n, ℓ,m, s⟩
S2|n, ℓ,m, s⟩ = 3

4
|n, ℓ,m, s⟩

S3|n, ℓ,m, s⟩ = s|n, ℓ,m, s⟩.

(48)

Combining this with the textbook treatment of the hydrogen atom, it follows that
L2(S3)⊗C2 is indeed unitarily equivalent to the subspace of L2(R3)⊗C2 consisting
of bound states of the spinor-valued Schrödinger equation

i
∂ψ

∂t
= −1

2
∇2ψ − 1

r
ψ (49)
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with the operators H,Lj and Sj having these definitions:

H = −1

2
∇2 − 1

r

Lj = −iϵjkℓxk
∂

∂xℓ
Sj = 1

2
σj.

(50)

In short, the operator defined in Equation (45) is unitarily equivalent to the Hamil-
tonian on bound states of the hydrogen atom defined above.

4. Spinors on the 3-sphere

In preparation for relating the hydrogen atom to quantum field theory on R×S3,
we now bring out the geometrical content of the previous section. In Section 2 we
studied the operator A2 = B2 on L2(S3). Now we shall see that this operator is
proportional to the Laplacian on the unit 3-sphere. We can think of elements of
L2(S3)⊗C2 as spinor fields on S3 if we trivialize the spinor bundle using the action
of SU(2) as right translations on S3 ∼= SU(2). Kronheimer [21] discussed the Dirac
operator /∂ on these spinor fields. We recall this here and show that the hydrogen
atom Hamiltonian, thought of as an operator on L2(S3)⊗ C2, is

H = − 1

2(/∂ − 1
2
)2
.

We also determine the eigenvalues of the Dirac operator on the 3-sphere.
We begin with the Laplacian on the 3-sphere. Recall from Section 2 that −iBj is

a basis of left-invariant vector fields on S3. Each vector field −iBj gives a tangent
vector at the identity of SU(2), namely − i

2
σj ∈ su(2). What is the length of this

vector if we give SU(2) the usual Riemannian metric on the unit 3-sphere? Expo-
nentiating this vector we get exp(− i

2
σjt), which is the identity precisely when t is

an integer times 4π. Since a great circle on the unit sphere has circumference 2π,
this vector must have length 1

2
. It follows that the vector fields

Xj = −2iBj (51)

have unit length everywhere, and one can check that they form an orthonormal basis
of vector fields on S3. We thus define the (positive definite) Laplacian on S3 to be
the differential operator

∆ = −
3∑
i=1

X2
j = 4B2. (52)

Combining Equations (24) and (52), we see that ∆ acts as multiplication by
4j(j + 1) on the subspace Vj ⊗ Vj ⊂ L2(S3). Setting n = 2j + 1 as usual,

4j(j + 1) = 4j2 + 4j = n2 − 1

so
ϕ ∈ Vj ⊗ Vj =⇒ ∆ϕ = (n2 − 1)ϕ (53)

and the eigenvalues of the Laplacian on L2(S3) are n2 − 1 where n ranges over all
positive integers.

Tensoring ∆ with the identity we obtain a differential operator on L2(S3) ⊗ C2,
which by abuse of notation we again call ∆. This has the same spectrum as the
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Laplacian on L2(S3). Equations (45) and (52) then give this formula for the Hamil-
tonian of the hydrogen atom as an operator on L2(S3)⊗ C2:

H = − 1

2(∆ + 1)
. (54)

Next we turn to the Dirac operator [23]. Up to isomorphism there is only one
choice of spin structure on S3. We can trivialize the tangent bundle of S3 ∼= SU(2)
using left translations. This lets us identify the oriented orthonormal frame bundle
of S3 with the trivial bundle S3×SO(3) → S3. This gives a way to identify the spin
bundle on S3 with the trivial bundle S3 × SU(2) → S3. This in turn lets us identify
spinor fields on S3 with C2-valued functions.

There are at least two important connections on the tangent bundle of S3. One
is the Cartan connection: a vector field is covariantly constant with respect to this
connection if and only if it is invariant under left translations on S3 ∼= SU(2). The
other is the Levi–Civita connection, which is the unique torsion-free connection for
which parallel translation preserves the metric. Parallel translation with respect to
the Cartan connection also preserves the metric, but the Cartan connection is flat
and has torsion, while the Levi–Civita connection is curved and torsion-free.

Each of these connections lifts uniquely to a connection on the spin bundle and
then gives a Dirac-like operator. The Cartan connection gives covariant derivative
operators ∇c

j on L
2(S3)⊗ C2 with

∇c
j = Xj ⊗ 1 (55)

while the Levi–Civita connection gives covariant derivative operators ∇j with

∇j = Xj ⊗ 1 + 1⊗ i
2
σj. (56)

We can define a self-adjoint version of the Dirac operator /∂ on L2(S3) ⊗ C2 using
the Levi–Civita connection:

/∂ = (1⊗ (−iσj))∇j, (57)

where as usual we sum over repeated indices. On the other hand, Kronheimer [21]
defined a Dirac-like operator D using the Cartan connection:

D = (1⊗ (−iσj))∇c
j. (58)

An easy calculation shows how /∂ and D are related:

/∂ = (1⊗ (−iσj))∇j

= (1⊗ (−iσj))
(
∇c
j + 1⊗ i

2
σj
)

= D + 3
2

(59)

where we use σ2
j = 1 and the 3-dimensionality of space.

Let us compute D2. Using the identities

σjσk = δjk + iϵjkℓσℓ, ϵjkℓXjXk = 2Xℓ, D = Xj ⊗ (−iσj), (60)

we obtain
D2 = −XjXk ⊗ σjσk

= −XjXk ⊗ (δjk + iϵjkℓσℓ)

= −XjXj ⊗ 1 − 2iXℓ ⊗ σℓ
= ∆− 2D.

(61)
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It follows that ∆ = D(D + 2), so

∆ + 1 = (D + 1)2 = (/∂ − 1
2
)2. (62)

Combining this fact with Equation (54) we can express the hydrogen atom Hamil-
tonian in terms of the Dirac operator on the 3-sphere:

H = − 1

2(/∂ − 1
2
)2
. (63)

Next let us study the eigenvectors and eigenvalues of the Dirac operator. From
Equation (21) we have

L2(S3)⊗ C2 ∼=
⊕
j

Vj ⊗ Vj ⊗ C2 (64)

where j = 0, 1
2
, 1, 3

2
, . . . and Vj is the spin-j representation of SU(2). Since /∂ maps

each finite-dimensional subspace Vj ⊗ Vj ⊗ C2 to itself and is self-adjoint on these
subspaces, each of these subspaces has an orthonormal basis of eigenvectors. Suppose
ψ ∈ Vj ⊗ Vj ⊗ C2 has

/∂ψ = λψ.

Then by Equations (53) and (62) we have

(λ− 1
2
)2ψ = (/∂ − 1

2
)2ψ = (∆ + 1)ψ = n2ψ

where n = 2j + 1, so λ− 1
2
= ±n. Thus, the only eigenvalues of /∂ on the subspace

Vj ⊗ Vj ⊗ C2 are ±n+ 1
2
, or in other words

ψ ∈ Vj ⊗ Vj ⊗ C2 =⇒ /∂ψ = λψ for λ = ±(2j + 1) + 1
2
. (65)

We could go further and explicitly diagonalize the Dirac operator on S3; for details
see Di Cosmo and Zampini [12]. Instead we summarize two results from Kronheimer
[21] which do more to clarify the overall picture.

First, Kronheimer shows that the spectrum of /∂ is symmetric about the origin.
To do this he identifies C2 with the quaternions, and thus L2(S3)⊗C2 with a space
of quaternion-valued functions on the 3-sphere; then quaternionic conjugation gives
a conjugate-linear operator

† : L2(S3)⊗ C2 → L2(S3)⊗ C2 (66)

with †2 = 1. He then proves a result about the operator D that implies

/∂ψ = λψ ⇐⇒ /∂ψ† = −λψ†. (67)

Second, he proves a result about the operator D that implies that the eigenspace

Fλ = {ψ ∈ L2(S3)⊗ C2 : /∂ψ = λψ} (68)

has dimension
dimFλ = (λ+ 1

2
)(λ− 1

2
) (69)

when λ ∈ Z + 1
2
and zero otherwise. Thus every number in Z + 1

2
is an eigenvalue

of /∂ except ±1
2
. Since Equation (65) implies that

Vj ⊗ Vj ⊗ C2 = F
n+

1
2
⊕ F

−n+1
2

(70)

where n = 2j + 1, this additional result implies that these two summands have
dimensions n(n+ 1) and n(n− 1), respectively. Their total dimension is 2n2, as we
already knew.
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4.1. Digression on quaternions. The Hilbert space of bound states for the hy-
drogen atom, which we have been treating as L2(S3) ⊗ C2, also has an elegant
quaternionic description. We can identify S3 with the unit sphere in the quater-
nions, and C2 with the quaternions H themselves. Indeed we can identify C2 with
H in such a way that multiplication by −iσ1,−iσ2 and −iσ3 correspond to left
multiplication by the quaternions i, j and k, respectively, while multiplication by
i corresponds to right multiplication by the quaternion i. In this way we identify
L2(S3)⊗ C2 with L2(S3)⊗H, or equivalently with the space of functions

ψ : S3 → H

such that ∫
S3

|ψ(q)|2 <∞.

As we shall see, a dense subspace of functions of this sort extend to functions ψ : H−
{0} → H that obey a quaternionic analogue of the Cauchy–Riemann equation. This
lets us apply ideas from quaternionic analysis [16, 36].

For any open set O ⊆ H, a function ψ : O → H is said to be ‘regular’ if it is
differentiable in the usual real sense and the quaternionic Cauchy–Riemann equation
holds:

∂ψ

∂q0
+ i

∂ψ

∂q1
+ j

∂ψ

∂q2
+ k

∂ψ

∂q3
= 0. (71)

Here q0, . . . , q3 are real coordinates on H for which any quaternion q is of the form

q = q0 + q1i+ q2j + q3k. (72)

Sudbery shows [36, Thm. 1] that any regular function is infinitely differentiable in
the usual real sense, in fact real-analytic.

Let Uk be the space of regular functions on H − {0} that are homogeneous of
degree k ∈ Z:

ψ(αq) = αkf(q) ∀q ∈ H− {0}, α ∈ R− {0}. (73)

Clearly any function ψ ∈ Uk is determined by its restriction to the unit sphere
S3 ⊂ H. In the proof of his Thm. 7, Sudbery shows something less obvious: the
restriction is an eigenfunction of the Dirac-like operator D defined in Equation (58).
To do this, he writes the quaternionic Cauchy–Riemann operator

∂ =
∂

∂q0
+ i

∂

∂q1
+ j

∂

∂q2
+ k

∂

∂q3
(74)

in something like polar coordinates, involving a radial derivative but also the op-
erator D. The radial derivative of the homogeneous function ψ equals kψ when
restricted to S3. Using this fact and ∂ψ = 0, he computes D(ψ|S3) and shows that

ψ ∈ Uk =⇒ D(ψ|S3) = k ψ|S3 (75)

(although he uses different notation). Since /∂ = D + 3
2
, this implies that functions

in Uk restrict to eigenfunctions of /∂ with eigenvalue k + 3
2
. However, in Thm. 7

Sudbery also shows that treating Uk as a complex vector space,

dim(Uk) = (k + 1)(k + 2) (76)

which by Equation (69) is exactly the dimension of the eigenspace of /∂ with eigen-
value k + 3

2
.
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We thus obtain an isomorphism between Uk and the eigenspace of the operator
/∂ on L2(S3) ⊗ C2 with eigenvalue k + 3

2
. Thus, we get a correspondence between

hydrogen atom bound states that are finite linear combinations of energy eigen-
states and regular functions ψ : H − {0} → H that are finite linear combinations
of homogeneous ones. For infinite linear combinations, the analysis question arises:
which infinite sums of homogeneous regular functions ψ : H− {0} → H converge to
well-defined regular functions?

It is worth adding that Frenkel and Libine have also studied bound states of the
hydrogen atom using quaternionic analysis [16, Sec. 2.9], giving an explicit transform
sending homogeneous harmonic functions ψ : H − {0} → C to functions in L2(R3)
that are eigenvectors of the hydrogen atom Hamiltonian −1

2
∇2− 1

r
. Their treatment

does not incorporate the spin of the electron, but it could be adapted to do so, by
working with regular functions ψ : H−{0} → H (which are automatically harmonic).

5. The Weyl equation on the Einstein universe

The ‘Einstein universe’ is a name for the manifold R×S3 with Lorentzian metric
dt2−ds2, where dt2 is the usual Riemannian metric on R and ds2 is the Riemannian
metric on the unit sphere. The Einstein universe has a lot of symmetry: the group
R× SO(4) acts as isometries, and the universal cover of SO(2, 4) acts as conformal
transformations. The former group is the one relevant here, since it acts on the
bound states of the hydrogen atom, but it is worth noting that the latter, larger
group acts as ‘dynamical symmetries’ of the Kepler problem [11, 17]: that is, as
unitary operators on L2(S3)⊗ C2 that do not all commute with the Hamiltonian.

The Weyl equation is a variant of the Dirac equation that describes massless spin-
1
2
particles that are chiral, i.e., have an inherent handedness. We can trivialize the

bundle of Weyl spinors over the Einstein universe, using right translations on the
group R × SU(2) ∼= R × S3 to identify every fiber of this bundle with the vector
space C2. Using this trivialization we can write the left-handed Weyl equation as

∂ψ

∂t
= −i/∂ψ (77)

where ψ : R × S3 → C2 and /∂ is as defined in the previous section. The Weyl
equation also comes in a right-handed form differing by a sign, ∂ψ

∂t
= i/∂ψ. We choose

henceforth to work with the left-handed form; this is an arbitrary convention.
We now recall how the relativistic quantum mechanics of a single left-handed

massless spin-1
2
particle works on the Einstein universe [31]. We take L2(S3)⊗C2 as

the Hilbert space and /∂ as the Hamiltonian. Since /∂ is self-adjoint, this Hamiltonian
generates a 1-parameter group of unitary operators

U(t) = exp(−it/∂). (78)

Given any ψ0 ∈ L2(S3)⊗C2, if we let ψt = U(t)ψ0 and define a function ψ : R×S3 →
C2 by

ψ(t, x) = ψt(x), (79)

then this function will be a distributional solution of the left-handed Weyl equation.
As seen in Equation (54), the hydrogen atom Hamiltonian H is a function of the

Hamiltonian /∂ for the Weyl equation:

H = − 1

2(/∂ − 1
2
)2
. (80)
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Thus, not only the Hilbert space but also the dynamics of the bound states of the
hydrogen atom can be expressed in terms those for the Weyl equation on the Einstein
universe. However, not all the symmetries we have found for the Hamiltonian H
are symmetries of /∂: this is possible because while H is a function of /∂, /∂ is not a
function of H. Let us make this precise.

In Section 3 we made L2(S3)⊗C2 into a unitary representation of SU(2) in three
commuting ways: via left translations, via right translations, and via the spin-1

2

representation on C2. The self-adjoint generators of these three representations are
Aj, Bj and Sj, respectively. With the help of Equation (59) we can write the Dirac
operator in terms of these:

/∂ = D + 3
2

= iXj ⊗ σj +
3
2

= 4BjSj +
3
2
.

(81)

Using this and the commutation relations listed in Equation (40), we see /∂ com-
mutes with the operators Aj. It does not commute with Bj or Sj separately, but it
commutes with Bj + Sj, since

[Bj + Sj, BkSk] = [Bj, Bk]Sk +Bk[Sj, Sk]

= iϵjkℓBℓSk + iϵjkℓBkSℓ
= 0.

(82)

It follows that /∂ commutes with the unitary representation ρ of SU(2) × SU(2)
on L2(S3) ⊗ C2 whose self-adjoint generators are Aj and Bj + Sk. Explicitly, this
representation is given by

(ρ(g1, g2)ψ)(g) = g2ψ(g
−1
1 gg2). (83)

Geometrically, this representation arises from the natural way to lift the left and
right translation actions of SU(2) on S3 to the spinor bundle of S3. The asymmetry
between left and right here may seem puzzling, but it arose because we arbitrarily
chose to trivialize the spinor bundle of S3 using the action of SU(2) as left transla-
tions. Thus, the action of (g1, 1) ∈ SU(2) × SU(2) on ψ ∈ L2(S3) ⊗ C2 merely left
translates ψ, while the action of (1, g2) not only right translates ψ but acts on its
value by g2. We can notice this at the Lie algebra level by noting that the operators
Aj, which generate left translations, annihilate all the constant spinor-valued func-
tions on S3, which are the elements ψ ∈ V0 ⊗ V0 ⊗ C2, while the operators Bj + Sj
do not.

Summarizing, this is what we have seen so far. Made into representations of
SU(2) × SU(2) as above, the Hilbert space of bound states of hydrogen atom and
the Hilbert space for the left-handed Weyl equation on the Einstein universe are
unitarily equivalent. Moreover, we can express the Hamiltonian for the hydrogen
atom in terms of that for the left-handed Weyl equation.

All this is fine mathematics, but there is a physical problem, noticed already by
Dirac in a related context: the spectrum of /∂ is unbounded below, giving states of ar-
bitraily large negative energy. One widely accepted solution [2, Sec. 6.5] is to modify
the complex structure on the Hilbert space, multiplying it by −1 on the negative-
frequency solutions of the Weyl equation: that is, the subspace of L2(S3) ⊗ C2

spanned by eigenvectors /∂ψ = λψ with λ < 0. This is an updated version of Dirac’s
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original idea of treating antiparticles as ‘holes in the sea of negative-energy parti-
cles,’ or the later idea of switching annihilation and creation operators for negative-
frequency solutions. While typically introduced along with second quantization, the
idea of modifying the complex structure also make sense in the relativistic quantum
mechanics of a single particle, which is the context here.

To modify the complex structure on L2(S3)⊗ C2, we use the functional calculus
to define an operator

S =
/∂

|/∂|
(84)

on this Hilbert space. This is 1 on eigenvectors of /∂ with positive eigenvalue and
−1 on those with negative eigenvalue; we have seen that 0 is not an eigenvalue of /∂,
so S is well-defined. If we then define an operator

j = iS, (85)

since S is both unitary and self-adjoint, it follows that j is both unitary (jj∗ =
j∗j = 1) and skew-adjoint (j∗ = −j), and thus a complex structure (j2 = −1). We
henceforth use H to stand for L2(S3)⊗ C2 made into a complex Hilbert space with
the same norm and this new complex structure j.

The operators /∂ and |/∂| are still complex-linear on H, despite the new complex
structure, since they commute with i and S, and thus j. The operator /∂ is still self-
adjoint on H, since it has an orthonormal basis of eigenvectors with real eigenvalues.
The operator |/∂| is not only self-adjoint but positive definite on H, since

/∂ψ = λψ =⇒ |/∂|ψ = |λ|ψ. (86)

In fact the operator |/∂| generates U(t) as a one-parameter unitary group on H,
because

exp(jt|/∂|) = exp(it/∂) = U(t). (87)

Thus negative energy states have been eliminated, without changing the time evo-
lution operators U(t) at all, by changing the Hamiltonian from /∂ to |/∂| and simul-
taneously changing the complex structure from i to j.

Since all the operators ρ(g1, g2) on L
2(S3)⊗C2 given by Equation (83) commute

with /∂, they also commute with S and thus with the new complex structure j = iS.
Thus ρ, which began life as a unitary representation of SU(2)×SU(2) on L2(S3)⊗C2,
gives a complex-linear representation of this group on H, which we call ρH. This
representation ρH is unitary, since the norm on H is the same as that on L2(S3)⊗C2,
and any norm-preserving invertible linear operator on a Hilbert space is unitary.

Furthermore, the representation ρH is unitarily equivalent to ρ. This is a nontrivial
fact, because the unitary equivalence between them is not the identity operator.
Indeed the map

I : L2(S3)⊗ C2 → H
ψ 7→ ψ

(88)

is not even complex linear: it is complex linear on the +1 eigenspace of S but
conjugate-linear on the −1 eigenspace. To correct for this, we use a conjugate-linear
map

C : L2(S3)⊗ C2 → L2(S3)⊗ C2

(Cψ)(g) = ϵ ψ(g)
(89)
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where we regard ψ as a C2-valued function on S3, let ψ denote its componentwise
complex conjugate, and multiply ψ by

ϵ =

(
0 1
−1 0

)
. (90)

The reason the map C is important is that

C(gψ) = gC(ψ) (91)

for all g ∈ SU(2) and ψ ∈ L2(S3) ⊗ C2. Checking this is a standard calculation,
which we carry out in Appendix A, but conceptually it says that C is an equivalence
between the spin-1

2
representation of SU(2) and its conjugate representation. The

desired unitary equivalence between ρ and ρH is then the map

F : L2(S3)⊗ C2 → H

F = I(p+ + Cp−)
(92)

where p+, p− : L
2(S3) ⊗ C2 → L2(S3) ⊗ C2 are the projections of ψ to the +1 and

−1 eigenspaces of S, respectively. We include I here because in the proof of the
following theorem we need to keep careful track of the difference between L2(S3)⊗C2

and H.

Theorem 1. The operator F : L2(S3) ⊗ C2 → H is a unitary equivalence between
the representation ρ of SU(2)× SU(2) on L2(S3)⊗C2 and the representation ρH of
this group on H, and F /∂ = /∂F on the domain of /∂.

Proof. Since the proof is rather lengthy, we defer it to Appendix A. □

Since changing the complex structure on a Hilbert space can be a bit bewildering,
let us summarize the results. We have a unitary equivalence between the Hilbert
space L2(S3) ⊗ C2 of bound states of the hydrogen atom and the Hilbert space H
of solutions of the left-handed Weyl equation on R × S3 equipped with a complex
structure that makes its Hamiltonian positive. The group SU(2)×SU(2) has equiv-
alent unitary representations on these two Hilbert spaces. The Dirac operator /∂
acts on both L2(S3)⊗C2 and H in an manner compatible with their unitary equiv-
alence. Finally, both the hydrogen atom Hamiltonian and the Hamiltonian for the
left-handed Weyl equation can be expressed in terms of the Dirac operator: the
former is

H = − 1

2(/∂ − 1
2
)2

while the latter is just |/∂|.

5.1. Digression on the conformal group. The 15-dimensional Lie group S̃O(2, 4)
acts as conformal transformations on the Einstein universe. This action maps null

geodesics to null geodesics, and using this we can define an action of S̃O(2, 4) as
symplectic transformations of the Kepler manifold T+S3. In fact the Kepler manifold
is isomorphic to a coadjoint orbit of this group. Applying geometric quantization to

the Kepler manifold we can obtain an irreducible unitary representation of S̃O(2, 4)
on the Hilbert space L2(S3). This process is subtle and has been carried out in
quite a number of ways [7, 10, 17, 28], perhaps because none is fully satisfying in all
respects. For expository accounts we recommend the books by Cordani [11] and by
Guillemin and Sternberg [17].
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As mentioned in Section 1, we can think of the Kepler manifold as the classical
phase space for a free massless spin-0 particle in the Einstein universe. Thus it is
not surprising that upon geometric quantization it should give the Hilbert space of
states of a massless spin-0 particle in this spacetime. Indeed, the complex Hilbert
space L2(S3), which describes bound states of hydrogen ignoring the electron’s spin,
also serves to describe initial data for solutions of the conformally invariant real
Klein–Gordon equation

∂2ϕ

∂t2
= −(∆ + 1)ϕ (93)

where ϕ : R × S3 → R. The extra +1 is necessary for conformal invariance, and
we have also seen it in the Hamiltonian for the hydrogen atom when we ignore the
electron’s spin, in Equation (54). As noted by Barut and Kleinert [5] and others,

the representation of S̃O(2, 4) on L2(S3) also can be used to describe ‘dynamical
symmetries’ of bound states of hydrogen with a spinless electron. We saw how this

works for the spatial rotation subgroup SU(2)× SU(2) ⊂ S̃O(2, 4) in Section 2.

The group S̃O(2, 4) also has has two irreducible unitary representations on the
space H, which describe right- and left-handed spin-1

2
particles on the Einstein uni-

verse. These have been studied by many authors; for example Mack and Todorov
[26] gave three equivalent constructions of these representations, and Mack [25] later
gave a complete classification of the irreducible positive-energy unitary representa-

tions of S̃O(2, 4), which include all three representations just mentioned. It would

be interesting to obtain the two spin-1
2
representations of S̃O(2, 4) on H by geometri-

cally quantizing some phase space(s) for a classical spinning massless particle in the
Einstein universe. However, as mentioned, there is still work left to do on clarifying

geometric quantization for the spin-0 representation of S̃O(2, 4) on L2(S3).

6. Second quantization

We now ‘second quantize’ the bound states of the hydrogen atom with spin, or
equivalently the left-handed Weyl equation on the Einstein universe. Physically this
means that we construct a Hilbert space for arbitrary finite collections of electrons
orbiting the nucleus, or arbitrary finite collections of massless left-handed spin-1

2
particles in the Einstein universe, while implementing the Pauli exclusion principle.

To do this, we first recall how to build the fermionic Fock space on an arbitrary
Hilbert space H. We start with the exterior algebra

ΛH =
∞⊕
n=0

ΛnH (94)

and give it the inner product such that if ej is any orthonormal basis for H, the
wedge products ei1 ∧ · · ·∧ ein with i1 < · · · < in form an orthonormal basis for ΛnH,
and the different subspaces ΛnH are orthogonal. Completing ΛH with respect to
the norm coming from this inner product, we obtain a Hilbert space we call ΛH.

If H is the Hilbert space for a single particle of some sort, ΛnH is the Hilbert
space of states of a collection of n particles of this sort, treated as fermions, and ΛH
is the Hilbert space for arbitrary finite collections of such fermions. We call ΛH the
‘fermionic Fock space’ on H, and ΛnH the ‘n-particle subspace’.
To define observables on the Fock space, recall how any self-adjoint operator on

H gives rise to one on ΛH. First, any unitary operator U : H → H gives rise to a
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unitary operator Λ(U) : ΛH → ΛH, determined by the property that

Λ(U)(ψ1 ∧ · · · ∧ ψn) = U(ψ1) ∧ · · · ∧ U(ψn) (95)

for any vectors ψi ∈ H. Note that

Λ(UV ) = Λ(U)Λ(V ). (96)

Let U(H) be the group of unitary operators on H , and U(ΛH) the group of
unitary operators on Λ(H). If G is any topological group, any strongly continuous
unitary representation R : G → U(H) gives rise to a strongly continuous represen-
tation ΛR : G→ U(ΛH), defined by

(ΛR)(g) = Λ(R(g)). (97)

In particular, any self-adjoint operator A on H gives a strongly continuous one-
parameter unitary group exp(itA) onH, and thus a strongly contiuous one-parameter
unitary group Λ(exp(itA)) on ΛH. Stone’s theorem says the latter is generated by
a unique self-adjoint operator on ΛH, which we call dΛ(A). We thus have

exp(itdΛ(A)) = Λ(exp(itA)) (98)

for all t ∈ R. If the vectors ψ1, . . . , ψn are in the domain of A, we can differentiate
both sides of the above formula applied to ψ1 ∧ · · · ∧ ψn and set t = 0, obtaining

dΛ(A)(ψ1 ∧ · · · ∧ ψn) =
n∑
i=1

ψ1 ∧ · · · ∧ Aψi ∧ · · · ∧ ψn. (99)

In particular if all ψi are eigenvectors of A, then their wedge product is an eigenvector
of dΛ(A):

Aψi = λiψi =⇒ dΛ(A)(ψ1 ∧ · · · ∧ ψn) = (λ1 + · · ·+ λn)(ψ1 ∧ · · · ∧ ψn). (100)

We can apply all this mathematics by taking H to be the Hilbert space of bound
states of a hydrogen atom:

H = L2(S3)⊗ C2 (101)

Then ΛH is the Hilbert space for an arbitrary finite collection of electrons occupying
such states. In particular, if H is the hydrogen atom Hamiltonian, then dΛ(H)
restricted to n-particle subspace ΛnH is the Hamiltonian for an idealized atom
with n noninteracting electrons. Since in fact electrons do interact, the lowest-
energy eigenstate in the n-particle space gives a very crude approximation to the
nth element in the periodic table. To do better we must modify the Hamiltonian.
We discuss this in the next section.

Alternatively we can start with H, the Hilbert space of a single left-handed mass-
less spin-1

2
partice in the Einstein universe. We have seen that the Hamiltonian

for such a particle is |/∂|. Then ΛH is the Hilbert space for an arbitrary collec-
tion of left-handed massless spin-1

2
particles, treated as fermions. If these particles

are noninteracting, their Hamiltonian is dΛ(|/∂|), and we have a free quantum field
theory.

A unitary map between Hilbert spaces, for example the unitary operator F : H →
H of Theorem 1, induces a unitary operator between their fermionic Fock spaces

Λ(F ) : ΛH → ΛH

Λ(F )(ψ1 ∧ · · · ∧ ψn) = Fψ1 ∧ · · · ∧ Fψn
(102)
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for all ψ1, . . . , ψn ∈ H. Thus, an equivalence between two theories at the single-
particle level induces an equivalence between their second quantized versions.

Theorem 2. The map Λ(F ) : ΛH → ΛH is a unitary equivalence between the
representation Λ(ρ) of the group SU(2) × SU(2) on the fermionic Fock space ΛH
for bound states of the hydrogen atom Hamiltonian and the representation Λ(ρH) of
this group on the fermionic Fock space ΛH for left-handed massless spin-1

2
particles

on the Einstein universe. That is,

Λ(F )Λ(ρ(g1, g2)) = Λ(ρH(g1, g2))Λ(F )

for all (g1, g2) ∈ SU(2)× SU(2). Moreover

Λ(F )dΛ(/∂) = dΛ(/∂)Λ(F )

on the domain of dΛ(/∂).

Proof. We defer the proof to Appendix A. □

7. Multi-electron atoms — the Madelung rules

We have seen that in the nonrelativistic limit, the hydrogen atom with spin has the
Hilbert space of bound states H = L2(S3)⊗C2. In atomic physics, the eigenspaces
of the Hamiltonian H on H are called ‘shells’, while the joint eigenspaces of the
operators H and the angular momentum squared, L2, are called ‘subshells’. We
denote the shells as

Hn = {ψ ∈ H : Hψ = − 1

2n2
ψ} (103)

and the subshells as

Hn,ℓ = {ψ ∈ Hn : L2ψ = ℓ(ℓ+ 1)ψ}. (104)

The shells are direct sums of subshells as follows:

Hn =
n−1⊕
ℓ=0

Hn,ℓ (105)

and the direct sum of all the shells is H:

H =
∞⊕
n=1

Hn. (106)

The dimension of the subshell Hn,ℓ is 2(2ℓ+ 1), so the dimension of the shell Hn is

2(1 + 3 + 5 + · · ·+ (2n− 1)) = 2n2.

The ‘Aufbau principle’ is an approximate way to describe the ground state of an
N -electron atom as a state ϕ in the N -particle subspace of the Fock space ΛH. To
do this, we choose a Hamiltonian HFock on ΛH and decree that ϕ must minimize
the expected energy ⟨ϕ,HFock ϕ⟩ among all unit vectors in the N -particle subspace.
However, we choose the Hamiltonian HFock in a very simplistic way. We ignore the
details of electron-electron interactions. Instead, we simply assign an energy En,ℓ to
each subshell, let Hsingle be the unique Hamiltonian on H such that

ψ ∈ Hn,ℓ =⇒ Hsingleψ = En,ℓ ψ, (107)

and then we let
HFock = dΛ(Hsingle). (108)
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Thus, HFock has a basis of eigenvectors that are wedge products of single-particle
states lying in various subshells. Explicitly, if ϕ = ψ1 ∧ · · · ∧ ψN where ψi ∈ Hni,ℓi ,
we have

HFock ϕ = (En1,ℓ1 + · · ·+ EnN ,ℓN )ϕ. (109)

Thus, we can minimize ⟨ϕ,HFock ϕ⟩ among unit vectors in the N -particle subspace
by choosing N distinct basis vectors ψi = |ni, ℓi,mi, si⟩ in a way that minimizes the
total energy En1,ℓ1 + · · ·+ EnN ,ℓN .
If we follow this recipe taking Hsingle to be the hydrogen atom Hamiltonian H, we

get results that do not closely match the observed periodic table of elements. With
this choice, En,ℓ = −1/2n2, which depends only on the shell, not the subshell. Thus,
this choice makes no prediction about the order in which subshells are filled.

For the recipe to give results that more closely match the periodic table, we need
to choose the energies En,ℓ in a more clever way. In 1936, Madelung [27] argued for
these rules:

• subshells are filled in order of increasing value of n+ ℓ;
• for subshells with the same value of n + ℓ, subshells are filled in order of
decreasing ℓ (or equivalently, increasing n).

In reality this nice pattern is broken by quite a few elements, but here we only
consider a simple model in which the Madelung rules hold. The pattern of subshell
filling then looks like this:

Figure 1: The Madelung rules, from [9].
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The above chart uses some old but still popular notation from spectroscopy:

• ℓ = 0: s
• ℓ = 1: p
• ℓ = 2: d
• ℓ = 3: f

For example, the subshell H3,2 is denoted 3d, while H5,3 is denoted 5f .
In 1945, Wiswesser [37] noted that the Madelung rules follow from the recipe we

outlined if we choose En,ℓ = n + ℓ− ℓ
ℓ+1

. There are many other functions of n and
ℓ that achieve the same effect. For example, we can also obtain the Madelung rules
if we take

En,ℓ = 2n+ (2ℓ+ 1) + (2ℓ+ 1)−1, (110)

and this formula is more convenient for us. In Figures 2 and 3 we show how this
rule plays out.

The Madelung rules do not always hold. As mentioned, the first exception is
element 24, chromium. The Madelung rules predict that chromium has 2 electrons
in the 4s subshell and 4 electron in the 3d, while in fact it has 1 in the 4s and 5 in the
3d. Nonetheless the general structure of the periodic table seems to be in reasonably
good accord with the Madelung rules for all the elements studied chemically so far,
though relativistic effects may end this for very heavy elements.

Thus it is of some interest, if only as a curiosity, to define a Hamiltonian on the
Hilbert space H that takes the eigenvalue En,ℓ in the subshell Hn,ℓ. These energies
are not at all close to the actual energies of the various multi-electron atoms, and any
monotone function of En,ℓ would also give the Madelung rules—but this particular
Hamiltonian is fairly simple.

Recall from Equation (48) that

A2|n, ℓ,m⟩ = j(j + 1)|n, ℓ,m, s⟩ = 1
4
(n2 − 1)|n, ℓ,m, s⟩

L2|n, ℓ,m⟩ = ℓ(ℓ+ 1)|n, ℓ,m, s⟩.
where n = 2j + 1 as usual. The Duflo isomorphism, as discussed in Section 2.1,
makes it natural to define operators

Ã2 = A2 + 1
4
, L̃2 = L2 + 1

4
. (111)

If we then define Ã and L̃ to be the square roots of these operators, we have

Ã|n, ℓ,m⟩ = 1
2
n|n, ℓ,m⟩

L̃|n, ℓ,m⟩ = (ℓ+ 1
2
)|n, ℓ,m⟩

(112)

and thus by Equation (110)

(2Ã+ 2L̃+ (2L̃)−1)|n, ℓ,m, s⟩ = En,ℓ|n, ℓ,m, s⟩. (113)

This suggests taking our single-particle Hamiltonian to be

Hsingle = 2Ã+ 2L̃+ (2L̃)−1. (114)

If we then define a Hamiltonian on the Fock space ΛH by

HFock = dΛ(Hsingle) (115)

and create an orthonormal basis ψi of eigenvectors of HFock, listed in order of in-
creasing eigenvalue, these eigenvectors correspond to the elements with subshells
filled as predicted by the Madelung rules. The one exception is the state ψ0 with
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no electrons, sometimes called ‘element zero’ and identified with the neutron. For
example:

ψ1 = |1, 0, 0, 1
2
⟩ hydrogen

ψ2 = |1, 0, 0, 1
2
⟩ ∧ |1, 0, 0,−1

2
⟩ helium

ψ3 = |1, 0, 0, 1
2
⟩ ∧ |1, 0, 0,−1

2
⟩ ∧ |2, 0, 0, 1

2
⟩ lithium

ψ4 = |1, 0, 0, 1
2
⟩ ∧ |1, 0, 0,−1

2
⟩ ∧ |2, 0, 0, 1

2
⟩ ∧ |2, 0, 0,−1

2
⟩ beryllium

ψ5 = |1, 0, 0, 1
2
⟩ ∧ |1, 0, 0,−1

2
⟩ ∧ |2, 0, 0, 1

2
⟩ ∧ |2, 0, 0,−1

2
⟩ ∧ |2, 1, 1, 1

2
⟩ boron

Here the assignments of magnetic quantum numbers m and spins s are not deter-
mined by the rules we have laid out. These are governed, at least approximately, by
‘Hund’s rules’:

• every m state in a subshell is singly occupied before any is doubly occupied;
• all of the electrons in singly occupied orbitals have the same spin.

We could go further and attempt to choose a simple Hamiltonian for which the
principle of energy mimization also gives Hund’s rules. However, we prefer to stop
here, leaving the reader with the challenge of finding a better-behaved quantum
field theory on the Einstein universe whose Hamiltonian gives the Madelung rules,
or perhaps better understanding the Hamiltonian we have given here.
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8
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116
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9
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n = 1
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n = 4

n = 5
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64
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65
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66

Dy

Dysprosium

67
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68
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69
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70
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89
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90
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92
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94
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95
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96
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97
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98

Cf
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99
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100
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101

Md
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No
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s subshells: ℓ = 0

d subshells: ℓ = 1

p subshells: ℓ = 2

f subshells: ℓ = 3

Figure 2: Periodic table illustrating the Madelung rules.



SECOND QUANTIZATION FOR THE KEPLER PROBLEM 25

atomic numbers subshell n + ℓ n ℓ En,ℓ

1–2 1s 1 1 0 4

3–4 2s 2 2 0 6

5–10 2p 3 2 1 71
3

11–12 3s 3 3 0 8

13–18 3p 4 3 1 91
3

19–20 4s 4 4 0 10

21–30 3d 5 3 2 111
5

31–36 4p 5 4 1 111
3

37–38 5s 5 5 0 12

39–48 4d 6 4 2 131
5

49–54 5p 6 5 1 131
3

55–56 6s 6 6 0 14

57–70 4f 7 4 3 151
7

71–80 5d 7 5 2 151
5

81–86 6p 7 6 1 151
3

87–88 7s 7 7 0 16

89–102 5f 8 5 3 171
7

103–112 6d 8 6 2 171
5

113–118 7p 8 7 1 171
3

119–120 8s 8 8 0 18

Figure 3: The Madelung rules for elements 1 to 120, and the energies En,ℓ.
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Appendix A. Proofs

Here we give the proofs of Theorems 1 and 2.

Theorem 1. The operator F : L2(S3) ⊗ C2 → H is a unitary equivalence between
the representation ρ of SU(2)× SU(2) on L2(S3)⊗C2 and the representation ρH of
this group on H, and F /∂ = /∂F on the domain of /∂.

Proof. First we prove that /∂ commutes with F on the domain of /∂. For this, note
that

F = I(p+ + Cp−)

where
p+, p− : L

2(S3)⊗ C2 → L2(S3)⊗ C2

are the self-adjoint projections to the +1 and −1 eigenspaces of S = /∂/|/∂|, and I is
the identity operator regarded as a map from L2(S3)⊗ C2 to H, which is the same
space with a different complex structure. Clearly /∂ commutes with I and with p+
and p−. To show that /∂ commutes with F , it thus suffices to show that /∂ commutes
with C.

For this, recall that

C : L2(S3)⊗ C2 → L2(S3)⊗ C2

is defined by
(Cψ)(g) = ϵ ψ(g)

where ψ is the componentwise complex conjugate of ψ : S3 → C2 and

ϵ =

(
0 1
−1 0

)
.

Since /∂ = iXj ⊗ σj +
3
2
by Equation (81), to show /∂ commutes with C it is enough

to show that iXj ⊗ σj commutes with C. For brevity we write Xj for Xj ⊗ 1 and
σj for 1⊗ σj; these operators commute so we can write iXj ⊗ σj as iσjXj. Thus, to
show /∂ commutes with C it suffices to show

ϵ iσjXjψ = iσjXjϵψ (116)

for all square-integrable ψ : S3 → C2, where the derivative is in the distributional
sense.

It is easy to check that
−ϵ σj = σj ϵ

for j = 1, 2, 3. This implies Equation (91) and it also implies Equation (116), as
desired:

ϵ iσjXjψ = iσj ϵXjψ

= iσj ϵXjψ

= iσjXj ϵ ψ.

Next we prove that F is complex linear. For this we show that jF = Fi as
operators from L2(S3)⊗ C2 to H, or, using the definition of F ,

jI(p+ + Cp−) = I(ip+ + Cip−).

Since j equals i on the +1 eigenspace of S and −i on the −1 eigenspace, we have

jIp± = ±Iip±.
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Using this fact and the conjugate-linearity of C, we obtain

jI(p+ + Cp−) = I(ip+ − iCp−)
= I(ip+ + Cip−)

as desired.
Next we prove that F is unitary. Since C commutes with /∂ and thus S = /∂/|/∂|,

it follows that C and therefore F preserve the +1 and −1 eigenspaces of S. To show
F is unitary, it thus suffices to show it is unitary as an operator on each of these
subspaces. Since F is the identity on the +1 eigenspace of S, we just need to show
it is unitary when restricted to the −1 eigenspace of S, where it equals IC. For this,
first note that IC preserves the norm on the −1 eigenspace of S: given a vector ψ−
in this subspace we have

∥ICψ−∥2 =
∫
S3

〈
ϵψ−(g), ϵψ−(g)

〉
dg =

∫
S3

⟨ψ−(g), ψ−(g)⟩ dg = ∥ψ−∥2.

Second, note that IC is invertible: indeed, C is its own inverse and I is invertible
since it is the identity on the underlying sets of the vector spaces it goes between.

Finally we prove that F is an equivalence of SU(2)× SU(2) representations. For
this it suffices to show

Fρ(g1, g2)ψ = ρH(g1, g2)Fψ

for all ψ ∈ L2(S3) ⊗ C2. Indeed, it suffices to check this equation for ψ+ = p+ψ
and ψ− = p−ψ separately. First, recall from Section 5 that the operators ρ(g1, g2)
commute with /∂, so they preserve the eigenspaces of S = /∂/|/∂|, and thus

ρ(g1, g2)ψ± = (ρ(g1, g2)ψ)±.

Second, note that the definition of ρH says

Iρ(g1, g2) = ρH(g1, g2)I.

For ψ+ we thus have

Fρ(g1, g2)(ψ+) = F ((ρ(g1, g2)ψ)+)

= I((ρ(g1, g2)ψ)+)

= ρH(g1, g2)(I(ψ+))

= ρH(g1, g2)F (ψ+).

For ψ− the calculation is a bit longer:

Fρ(g1, g2)(ψ−) = F ((ρ(g1, g2)ψ)−)

= IC((ρ(g1, g2)ψ)−)

= IC((ρ(g1, g2)(ψ−))

= I(ρ(g1, g2)(C(ψ−))

= (ρ(g1, g2)(IC(ψ−))

= ρH(g1, g2)(F (ψ−)).

Here the fourth equation uses the fact that C commutes with the operators ρ(g1, g2).
To see this, note that for any ψ ∈ L2(S3)⊗ C2,

C(ρ(g1, g2)ψ)(g) = ϵ g2ψ(g
−1
1 gg2)

= g2ϵ ψ(g
−1
1 gg2)

= (ρ(g1, g2)(Cψ))(g)
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where in the second step we use Equation (91). □

Theorem 2. The map Λ(F ) : ΛH → ΛH is a unitary equivalence between the
representation Λ(ρ) of the group SU(2) × SU(2) on the fermionic Fock space ΛH
for bound states of the hydrogen atom Hamiltonian and the representation Λ(ρH) of
this group on the fermionic Fock space ΛH for left-handed massless spin-1

2
particles

on the Einstein universe. That is,

Λ(F )Λ(ρ(g1, g2)) = Λ(ρH(g1, g2))Λ(F )

for all (g1, g2) ∈ SU(2)× SU(2). Moreover

Λ(F )dΛ(/∂) = dΛ(/∂)Λ(F )

on the domain of dΛ(/∂).

Proof. If V : H1 → H2 and U : H2 → H3 are any unitary operators between Hilbert
spaces, we have

Λ(UV )(ϕ1 ∧ · · · ∧ ϕn) = UV ϕ1 ∧ · · · ∧ UV ϕn
= Λ(U)(V ϕ1 ∧ · · · ∧ V ϕn)
= Λ(U)Λ(V )(ϕ1 ∧ · · · ∧ ϕn)

for all ϕ1, . . . ϕn ∈ H1. Since linear combinations of wedge products ϕ1 ∧ · · · ∧ ϕn
are dense in Λ(H1), and all the operators involved are continuous, we conclude that
Λ(UV ) = Λ(U)Λ(V ). Similarly Λ(1) = 1, and thus Λ(U)−1 = Λ(U−1).

Using this together with Theorem 1, it follows that

Λ(F )Λ(ρ(g1, g2))Λ(F )−1 = Λ(Fρ(g1, g2)F
−1)

= Λ(ρH(g1, g))

and thus
Λ(F )Λ(ρ(g1, g2)) = Λ(ρH(g1, g2))Λ(F )

for all g ∈ SU(2)× SU(2), as was to be shown.
By Theorem 1 we also have /∂ = F /∂F−1, where we must beware that /∂ on the left

is a self-adjoint operator on H while /∂ on the right is a self-adjoint operator on H.
Since F is unitary, this implies that for any t ∈ R we have

exp(it/∂) = F exp(it/∂)F−1

and thus
Λ(exp(it/∂)) = Λ(F exp(it/∂)F−1)

= Λ(F )Λ(exp(it/∂))Λ(F )−1

= Λ(F ) exp(itdΛ(/∂))Λ(F )−1

where in the last step we use Equation (98). Differentiating with respect to t and
setting t = 0, we get

dΛ(/∂) = Λ(F )dΛ(/∂)Λ(F )−1

on the domain of dΛ(/∂), and thus

Λ(F )dΛ(/∂) = dΛ(/∂)Λ(F )

as was to be shown. □
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