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Čech Cohomology for Bundles

If G is a topological group and M is a topological space,
we can describe a principal G-bundle P → M using a
Čech cocycle. This consists of an open cover U =
{Ui} of M together with transition functions

gij : Ui ∩ Uj → G

such that
•

• •

gij(x)
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gik(x)
//

commutes for all x ∈ Ui ∩ Uj ∩ Uk.



Two Čech cocycles define isomorphic bundles iff they are
cohomologous, meaning there are functions

fi : Ui → G

such that

•

•

•

•
fi(x)

��

gij(x)
//

fj(x)

��

g′ij(x)
//

commutes for all x ∈ Ui ∩ Uj.



The set of cohomology classes of Čech cocycles is called
Ȟ(U , G). Taking the inverse limit as we refine the open
cover, we obtain the (first) Čech cohomology of M
with coefficients in G:

Ȟ(M,G) = lim←−
U
Ȟ(U , G)

There is a bijection between Ȟ(M,G) and the set of
isomorphism classes of principal G-bundles over M .



A Famous Old Theorem

Here is the result we’d like to categorify — a result first
due to Milnor but polished by Steenrod, Segal, Milgram
and May:

Thm. Let G be a well-pointed topological group. Let
BG, the classifying space of G, be the geometric
realization of the nerve of G. Then for any paracompact
Hausdorff space M , there is a bijection

[M,BG] ∼= Ȟ(M,G)

(A topological group G is well-pointed if 1 ∈ G has a
neighborhood of which it is a deformation retract.)



Topological 2-Groups

Defn. A 2-group is a category with a group of objects
and a group of morphisms, such that all the category
operations are group homomorphisms.

We draw the objects like this:

•
g

))•
and the morphisms like this:

•
g

##

g′
;;f
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We can multiply objects: •
g

))•
g′

))•

multiply morphisms: •
g1

##

g′1

;;f1
��

•
g2

##

g′2

;;f2
��

•

and compose morphisms: •

g

��g′
//

f
��

g′′
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f ′
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•



All three operations have a unit and inverses. All three
are associative, so these are well-defined:

• ))• ))• ))•
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Finally, the interchange law holds:

• ��
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BB
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//��
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•

is well-defined.



Defn. A topological 2-group is a 2-group with a
topological group of objects and a topological group of
morphisms, for which all the 2-group operations are
continuous.

Two examples important in string theory:

•Any abelian topological group A gives a topological
2-group A[1] with one object and A as morphisms.

•Any simply-connected compact simple Lie group G
gives a topological 2-group String(G).



Čech Cohomology for 2-Bundles

The Basic Idea: a Čech cocycle with coefficients in a
topological 2-group G is a recipe for building a ‘principal
G-2-bundle’ over M using ‘transition functions’. Two
such 2-bundles will be ‘equivalent’ when their cocycles
are cohomologous.

We won’t define ‘2-bundles’ here: see Toby Bartels’ thesis
or the work of Baas, Bökstedt and Kro.

Instead, let’s go straight to Čech cohomology!



Let U = {Ui} be an open cover of a topological space
M , and let G be a topological 2-group

Defn. A Čech cocycle with coefficients in G consists
of the following data:

For each x ∈ Ui ∩ Uj, an object gij(x) in G depending
continuously on x.

For each x ∈ Ui ∩ Uj ∩ Uk, a morphism hijk(x) in G
depending continuously on x that fills in this triangle:

•

• •

gij(x)
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gik(x)
//

hijk(x)
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Finally, the hijk must make these tetrahedra commute:
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Defn. Two Čech cocycles (g, h) and (g′, h′) are
cohomologous if we have the following data:

For each x ∈ Ui, an object fi(x) of G depending
continuously on x.

For each x ∈ Ui∩Uj, a morphism kij(x) in G depending
continuously on x that fills in this square:

•

•

•

•

fi(x)

��

gij(x)
//

fj(x)

��

g′ij(x)
//

kij(x){� ����������

����������



Finally, the kij must make these prisms commute:

fkfi

fj

g′ik

gik

g′ij

gij

g′jk

gjk

h′ijk
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Defn. Let Ȟ(U ,G) be the set of cohomology classes
of Čech cocycles. We define the Čech cohomology
of M with coefficients in G to be the inverse limit as we
refine the cover:

Ȟ(M,G) = lim←−
U
Ȟ(U ,G)



Categorifying That Famous Old Theorem

Thm. Suppose G is a well-pointed topological 2-group
andM is a paracompact Hausdorff space admitting good
covers. Then there is a bijection

Ȟ(M,G) ∼= [M,B|G|]
where the topological group |G| is the geometric
realization of the nerve of G. So, we call B|G| the
classifying space of G.

(A topological 2-group G is well-pointed if both the
topological groups in its corresponding crossed module
are well-pointed. An open cover is good if each nonempty
finite intersection of open sets in the cover is contractible.)



A Corollary:
Bundles vs. 2-Bundles

Cor. There is a 1-1 correspondence between:

• equivalence classes of principal G-2-bundles over X

• elements of the Čech cohomology Ȟ(M,G)

• homotopy classes of maps f : X → B|G|
• elements of the Čech cohomology Ȟ(M, |G|)
• isomorphism classes of principal |G|-bundles over X .



Characteristic Classes
for String(G)-2-bundles

Now suppose G is a compact simply-connected simple
Lie group and String(G) is its string 2-group:

Thm. There is a short exact sequence of topological
groups

1 //K(Z, 2) //B|String(G)| p
//G // 1

where p is a fibration. This exhibits B|String(G)| as the
3-connected cover of G.



Matt Ando helped us show the following:

Cor. The homomorphism

B|String(G)| p→ G

gives an algebra homomorphism:

H∗(BG,R)
p∗−→ H∗(B|String(G)|,R)

This is onto, with kernel generated by the ‘second Chern
class’ c2 ∈ H4(BG,R).

So: the real characteristic classes of String(G)-2-bundles
are just like those of G-bundles, but with the second
Chern class killed!


