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The Big Idea

Using n-categories, instead of starting with a set of things:
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we can now start with a category of things and processes:
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or a 2-category of things, processes, and processes be-

tween processes:
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... and so on.
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I’ll illustrate this with examples from higher gauge the-

ory. This describes not only how particles transform as

they move along paths in spacetime:
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but also how strings transform as they trace out surfaces:
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... and so on. Where ordinary gauge theory uses groups,

which are special categories:

���
�

higher gauge theory uses 2-groups:
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�

which are special 2-categories. Where ordinary gauge
theory uses bundles, higher gauge theory uses 2-bundles.

Everything gets ‘categorified’ !

But first let’s back up a bit....
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The Fundamental Groupoid

Defining the fundamental group of a space X requires us
to pick a basepoint ∗ ∈ X. This is a bit ad hoc, and no
good when X has several components.

Sometimes it’s better to use the fundamental groupoid
of X. This is the category Π1(X) where:

• objects are points of X: •x

• morphisms are homotopy classes of paths in X:

x •

γ
((
• y

We compose homotopy classes of paths in the obvious

way. Composition is associative, and every point has an
identity path 1x : x → x.

In short: take the pictures seriously!
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Eilenberg–Mac Lane Spaces

Conversely, the nerve of a groupoid G is a simplicial set

with one vertex for each object:

• x

one edge for each morphism:

• •
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a triangle for each composable pair of morphisms:
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a tetrahedron for each composable triple:
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and so on! The geometric realization of this nerve is
a space whose fundamental groupoid is equivalent to G.

It’s also a homotopy 1-type: all its homotopy groups
above the 1st vanish. These facts characterize it — it’s
called the Eilenberg–Mac Lane space K(G, 1).

Using this idea, one can show:

Homotopy 1-types are ‘the same’ as groupoids!

For starters: the fundamental groupoid is a complete
invariant for homotopy 1-types.
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Grothendieck’s Dream

In a 600-page letter to Quillen, Grothendieck dreamt of a
grand generalization. Categories should be a special case
of n-categories. Say an n-category is an ‘n-groupoid’ if

every j-morphism (j < n) is invertible up to a (j + 1)-
morphism, and n-morphisms are invertible on the nose.

Every space X should have a ‘fundamental n-groupoid’,
Πn(X), where:

• objects are points of X: •

• morphisms are paths in X: • •//

• 2-morphisms are paths of paths in X: • •
��
DD��

• 3-morphisms are paths of paths of paths in X: • •
��
EE
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• etcetera...

and we take homotopy classes only at the nth level.

A space is a homotopy n-type if its homotopy groups

above the nth all vanish. Grothendieck dreamt that:

Homotopy n-types are ‘the same’ as n-groupoids!

In 2005, Denis-Charles Cisinski made this precise and
proved it using Batanin’s definition of n-category.

6



2-Categories

Try n = 2. A weak 2-category or bicategory has:

•x x • •
f

// • y •

f
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objects morphisms 2-morphisms

We can compose morphisms as usual:

x •

f
(( •y

g
((
• z

We can compose 2-morphisms both vertically and hor-

izontally:

• •//

f
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Vertical composition is associative and has left/right units.
The interchange law holds, meaning the two ways of

reading this agree:

• • •GG
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GG
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// //
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Composition of morphisms satisfies the usual laws up to

natural 2-isomorphisms: the associator:

af,g,h : (fg)h ⇒ f(gh)

and left and right unitors:

`f : 1f ⇒ f

rx : f1 ⇒ f

Finally, these must obey the pentagon identity:

(fg)(hi)

f(g(hi))

f((gh)i)(f(gh))i

((fg)h)i

af,g,hi

((PPPPPPPPPPPPP

1wag,h,i
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af,gh,i

//

af,gh1i

��/
//

//
//

//
//

afg,h,i
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and triangle identity:

(f1)g
af,1,g //

rf 1g ""FFFFFFFF
f(1g)

1f`g||xxxxxxxx

fg

A 2-category is strict if the associator and left/right
unitors are all identity 2-morphisms.
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Classifying Homotopy 2-Types

A 2-groupoid is a 2-category where 2-morphisms are in-
vertible and morphisms are invertible up to 2-morphisms.
Every space X has a fundamental 2-groupoid Π2(X),

where:

• objects are points of X: •x

• morphisms are paths in X:

x •

γ
((
• y

• 2-morphisms are homotopy classes of paths-of-paths
in X:

x •

γ1

��

γ2

@@
• yΣ

��

This is a complete invariant for homotopy 2-types, and

we can go back by taking the geometric realization of the
nerve.

So: to classify homotopy 2-types, classify 2-groupoids!
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Classifying 2-Groupoids

Just as a group is a groupoid with one object:

���
�

a 2-group is a 2-groupoid with one object:

���
�

We may also think of it as a category with multiplication
and inverses.

Every 2-groupoid is equivalent to a disjoint union of 2-
groups! Moreoever,

Theorem (Joyal–Street). 2-groups are classified up
to equivalence by isomorphism classes of (G, A, ρ, a)
consisting of:

• a group G,

• an abelian group A,

• an action ρ of G as automorphisms of A,

• an element [a] in the group cohomology H3(G, A).

If our 2-group comes from a pointed space X, then G =
π1(X) and A = π2(X).
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Lie 2-Algebras

Topology is more fun on manifolds: we can differentiate,
and do gauge theory. Combining this with n-categories
we get higher gauge theory.

For starters, we can define ‘Lie 2-groups’, and these have
‘Lie 2-algebras’. Very roughly, a Lie 2-algebra is a cate-

gory L with a vector space of objects, a vector space of
morphisms and a bracket functor:

[·, ·] : L × L → L

that satisfies the Jacobi identity up to a natural isomor-

phism, the Jacobiator:

Jx,y,z : [[x, y], z] → [x, [y, z]] + [[x, z], y],

which must satisfy a certain identity of its own.

Theorem. Lie 2-algebras are classified up to equivalence
by isomorphism classes of (g, a, ρ, J) consisting of:

• a Lie algebra g,

• an abelian Lie algebra a,

• an action ρ of g as derivations of a,

• an element [J ] in the Lie algebra cohomology H3(g, a).

Just like the classification of 2-groups!
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My Favorite Lie 2-Groups

Let’s use these classifications to get nice examples.

If g is a real simple Lie algebra, and a = R equipped
with the trivial action of g, then

H3(g, a) = R

with this nontrivial 3-cocycle:

ν : g ⊗ g ⊗ g → R

x ⊗ y ⊗ z 7→ 〈[x, y], z〉

So, every simple Lie algebra g has a 1-parameter defor-

mation gk in the world of Lie 2-algebras! Here k ∈ R

measures the nontriviality of the Jacobiator.

Do these Lie 2-algebras have corresponding Lie 2-groups?

Not in any easy sense — but morally speaking, yes!

And, they’re related to the math of string theory.
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Theorem. For any k ∈ Z, there is an infinite-dimensional
smooth 2-group PkG whose Lie 2-algebra Pkg is equiva-

lent to gk.

An object of PkG is a smooth path f : [0, 2π] → G start-

ing at the identity. A morphism from f1 to f2 is an
equivalence class of pairs (D, α) consisting of a disk D

going from f1 to f2 together with α ∈ U(1):

�

�

G

1

f1 f2D
+3

Any two such pairs (D1, α1) and (D2, α2) have a 3-ball
B whose boundary is D1 ∪ D2. The pairs are equivalent

when

exp

(
2πik

∫

B

ν

)
= α2/α1

where ν is the left-invariant closed 3-form on G with

ν(x, y, z) = 〈[x, y], z〉

and 〈·, ·〉 is the smallest invariant inner product on g such
that ν gives an integral cohomology class.

Theorem. The morphisms in PkG starting at the con-
stant path form the level-k central extension of the loop

group ΩG:

1 // U(1) // Ω̂kG
// ΩG // 1
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PkG and the String Group

The nerve of a smooth 2-group G is a simplicial smooth

group. When we take its geometric realization we get
a smooth group |G|.

Theorem. For any k ∈ Z, there is a short exact

sequence of smooth groups:

1 // LkG // PkG // G // 1

This gives a short exact sequence of smooth groups:

1 // |LkG| //

'
��

|PkG| // G // 1

K(Z, 2)

We have

π3(|PkG|) ∼= Z/kZ

and when k = ±1,

|PkG| ' Ĝ,

which is the topological group obtained by killing the
third homotopy group of G.

When G = Spin(n), Ĝ is called String(n):

String(n) → Spin(n) → SO(n) → O(n)

Next time we’ll start doing gauge theory with 2-groups
as ‘gauge groups’.

14


