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The Big Idea

Using n-categories, instead of starting with a set of things:

we can now start with a category of things and processes:

or a 2-category of things, processes, and processes be-
tween processes:

. and so on.



I'll illustrate this with examples from higher gauge the-
ory. This describes not only how particles transform as
they move along paths in spacetime:

@

but also how strings transform as they trace out surfaces:

. and so on. Where ordinary gauge theory uses groups,
which are special categories:

higher gauge theory uses 2-groups:

which are special 2-categories. Where ordinary gauge
theory uses bundles, higher gauge theory uses 2-bundles.
Everything gets ‘categorified’!

But first let’s back up a bit....



The Fundamental Groupoid

Defining the fundamental group of a space X requires us
to pick a basepoint x € X. This is a bit ad hoc, and no
good when X has several components.

Sometimes it’s better to use the fundamental groupoid
of X. This is the category II;(X) where:

e objects are points of X: ez
e morphisms are homotopy classes of paths in X:

g
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We compose homotopy classes of paths in the obvious
way. Composition is associative, and every point has an

identity path 1,: x — x.

In short: take the pictures seriously!



Eilenberg—Mac Lane Spaces

Conversely, the nerve of a groupoid G is a simplicial set
with one vertex for each object:

e

one edge for each morphism:

and so on! The geometric realization of this nerve is
a space whose fundamental groupoid is equivalent to G.
It’s also a homotopy 1-type: all its homotopy groups
above the 1st vanish. These facts characterize it — it’s
called the Eilenberg—Mac Lane space K(G,1).

Using this idea, one can show:
Homotopy 1-types are ‘the same’ as groupoids!

For starters: the fundamental groupoid is a complete
invariant for homotopy 1-types.
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Grothendieck’s Dream

In a 600-page letter to Quillen, Grothendieck dreamt of a
grand generalization. Categories should be a special case
of n-categories. Say an n-category is an ‘n-groupoid’ if
every j-morphism (j < m) is invertible up to a (j + 1)-
morphism, and n-morphisms are invertible on the nose.

Every space X should have a ‘fundamental n-groupoid’,
I1,,(X), where:

e objects are points of X: e

e morphisms are paths in X: e——e

e 2-morphisms are paths of paths in X: e °

N

e 3-morphisms are paths of paths of pathsin X: e <9> °

AT

e ctcetera...

and we take homotopy classes only at the nth level.

A space is a homotopy n-type if its homotopy groups
above the nth all vanish. Grothendieck dreamt that:

Homotopy n-types are ‘the same’ as n-groupoids!

In 2005, Denis-Charles Cisinski made this precise and
proved it using Batanin’s definition of n-category.



2-Categories

Try n = 2. A weak 2-category or bicategory has:

objects morphisms 2-morphisms
f
Lo e —>f [ XY o y/@ °
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We can compose morphisms as usual:

We can compose 2-morphisms both vertically and hor-
izontally:
f/

f
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Vertical composition is associative and has left /right units.
The interchange law holds, meaning the two ways of
reading this agree:
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Composition of morphisms satisfies the usual laws up to
natural 2-isomorphisms: the associator:

aggn: (fg)h = f(gh)

and left and right unitors:
ff: 1f=f
re: f1=f

Finally, these must obey the pentagon identity:
(fg)(hi)

((fg)h)i f(g(hi))

agghli /ﬂag.h,z

(flgh))i —5— [((gh)i)
and triangle identity:

(f1)g—2"— f(1g)

rilg /fég

f9g

A 2-category is strict if the associator and left/right
unitors are all identity 2-morphisms.



Classitying Homotopy 2-Types

A 2-groupoid is a 2-category where 2-morphisms are in-
vertible and morphisms are invertible up to 2-morphisms.
Every space X has a fundamental 2-groupoid I15(X),
where:

e objects are points of X: ez

e morphisms are paths in X:

Y
T
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e 2-morphisms are homotopy classes of paths-of-paths
in X:

2

This is a complete invariant for homotopy 2-types, and
we can go back by taking the geometric realization of the
nerve.

So: to classify homotopy 2-types, classify 2-groupoids!



Classifying 2-Groupoids

Just as a group is a groupoid with one object:

a 2-group is a 2-groupoid with one object:

We may also think of it as a category with multiplication
and inverses.

Every 2-groupoid is equivalent to a disjoint union of 2-
groups! Moreoever,

Theorem (Joyal-Street). 2-groups are classified up
to equivalence by isomorphism classes of (G, A, p,a)
consisting of:

e a group G,
e an abelian group A,
e an action p of G' as automorphisms of A,

e an eclement [a] in the group cohomology H3(G, A).

If our 2-group comes from a pointed space X, then G =
7T1(X) and A = 7T2(X).
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Lie 2-Algebras

Topology is more fun on manifolds: we can differentiate,
and do gauge theory. Combining this with n-categories
we get higher gauge theory.

For starters, we can define ‘Lie 2-groups’, and these have
‘Lie 2-algebras’. Very roughly, a Lie 2-algebra is a cate-
gory L with a vector space of objects, a vector space of
morphisms and a bracket functor:

[,:]: LxL—L

that satisfies the Jacobi identity up to a natural isomor-
phism, the Jacobiator:

Jxayaz: Hx,y]; Z] - [.CU, [3/, Z]] + [[x,z],y],

which must satisfy a certain identity of its own.

Theorem. Lie 2-algebras are classified up to equivalence
by isomorphism classes of (g, a, p, J) consisting of:

e a Lie algebra g,
e an abelian Lie algebra a,
e an action p of g as derivations of a,

e an element [J] in the Lie algebra cohomology H?(g, a).

Just like the classification of 2-groups!
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My Favorite Lie 2-Groups

Let’s use these classifications to get nice examples.

If g is a real simple Lie algebra, and a = R equipped
with the trivial action of g, then

H*(g,a) =R
with this nontrivial 3-cocycle:

riggog — R
TRy®z = ([,y],2)

So, every simple Lie algebra g has a 1-parameter defor-
mation @i n the world of Lie 2-algebras! Here k € R
measures the nontriviality of the Jacobiator.

Do these Lie 2-algebras have corresponding Lie 2-groups?
Not in any easy sense — but morally speaking, yes/

And, they’re related to the math of string theory.
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Theorem. For any k € Z, there is an infinite-dimensional
smooth 2-group PG whose Lie 2-algebra Pig is equiva-
lent to gy.

An object of PG is a smooth path f: [0, 27] — G start-
ing at the identity. A morphism from f; to fo is an
equivalence class of pairs (D, «) consisting of a disk D
going from fi to fy together with a € U(1):

1

‘¢

|

Any two such pairs (Dj,aq) and (D3, az) have a 3-ball
B whose boundary is D; U Ds. The pairs are equivalent

when
exp (2m’k:/ V> = as/o
B

where v is the left-invariant closed 3-form on G with

v(w,y,z) = ([z,y], 2)

and (-, -) is the smallest invariant inner product on g such
that v gives an integral cohomology class.

Theorem. The morphisms in PG starting at the con-
stant path form the level-k central extension of the loop
group QG:

1—U(1)—Q,G— QG —1
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PG and the String Group

The nerve of a smooth 2-group G is a simplicial smooth
group. When we take its geometric realization we get
a smooth group |G].

Theorem. For any k € Z, there is a short exact
sequence of smooth groups:

1 LG PG G 1

This gives a short exact sequence of smooth groups:

1 —|L1G| — PG| — G —1

|

K(Z,2)

We have
m3(|PrG|) = Z/KZ

and when k£ = +1,
PG|~ G,

which is the topological group obtained by killing the
third homotopy group of G.

When G = Spin(n), G is called String(n):
String(n) — Spin(n) — SO(n) — O(n)

Next time we’ll start doing gauge theory with 2-groups
as ‘gauge groups’.
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