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Campus de Luminy, 13288 Marseille, France.

(Dated: July 9, 2006)

Abstract

BF theory is a topological theory that can be seen as a natural generalization of 3-dimensional

gravity to arbitrary dimensions. Here we show that the coupling to point particles that is natural

in three dimensions generalizes in a direct way to BF theory in d dimensions coupled to (d − 3)-

branes. In the resulting model, the connection is flat except along the membrane world-sheet,

where it has a conical singularity whose strength is proportional to the membrane tension. As a

step towards canonically quantizing these models, we show that a basis of kinematical states is

given by ‘membrane spin networks’, which are spin networks equipped with extra data where their

edges end on a brane.
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Interest in the quantization of 2+1 gravity coupled to point particles has been revived in

the context of the spin foam [1] and loop quantum gravity [2] approaches to the nonpertur-

bative and background-independent quantization of gravity. On the one hand this simple

system provides a nontrivial example where the strict relation between the covariant and

canonical approaches can be demonstrated [3]. On the other hand intriguing relationships

with field theories with infinitely many degrees of freedom have been obtained [4].

The idea of generalizing this construction to higher dimensions is very appealing. We

will argue that in 3 +1 dimensions, the natural objects replacing point particles are strings.

This idea has already been studied in a companion paper [5], which treated these strings

merely as defects in the gauge field— i.e., places where it has a conical singularity. Here we

propose a specific dynamics for the theory and a strategy for quantizing it. More generally,

in d-dimensional spacetime we describe a way to couple (d − 3)-branes to BF theory.

To understand this, first recall that in three dimensions, Einstein’s equations force the

curvature to vanish at every point of spacetime. Therefore, except for global topological

excitations, three-dimensional pure gravity does not have local degrees of freedom. However,

it is precisely this local rigidity of Einstein’s gravity in three dimensions that makes it

easy to couple the theory to point particles. The presence of massive point particles in

three-dimensional gravity modifies the classical solutions by producing conical curvature

singularities along the particles’ world-lines. With this idea in mind, one can write an

action for a single particle coupled to gravity by introducing a source term to the standard

action in the first order formalism, namely:

S(A, e) =

∫

M

tr[e ∧ F (A)]) + m

∫

γ

tr[e v], (1)

where m is the mass of the particle, v is a fixed unit vector in the Lie algebra su(2), and γ

is the world-line of the particle. It is easy to see that the previous action leads to equations

of motion whose solutions are flat everywhere except for a conical singularity along γ, as

desired.

Unfortunately, this action suffers two drawbacks. First, it is no longer invariant under

the standard gauge symmetries of pure gravity. Second, there is no explicit dependence on

the particle degrees of freedom: one is describing the particle simply as a gauge defect along

γ. One can solve both problems in one stroke by adding degrees of freedom for the particles,

and choosing an action invariant under an appropriate extension of the gauge group of the

2



system. The result is the Sousa Gerbert action [6] for a spinless point particle of mass m

coupled to three-dimensional Riemannian gravity:

S(A, e, q, λ) =

∫

M

tr[e ∧ F (A)] + m

∫

γ

tr[(e + dAq) λvλ−1]. (2)

Here v is a fixed unit vector in su(2) as before, while the particle’s degrees of freedom are

described by an su(2)-valued function q and an SU(2)-valued function λ defined on the world-

line γ. The physical interpretation of q is a bit obscure, but we can think of it as ‘position

in an internal space’. In a similar way, p = mλvλ−1 represents the particle’s momentum,

which is treated as an independent variable in this first-order formulation.

This action is invariant under the gauge transformations

e 7→ geg−1

A 7→ gAg−1 + gdg−1

q 7→ gqg−1

λ 7→ gλ,

(3)

where g ∈ C∞(M , SU(2)) and

e 7→ e + dAη

q 7→ q − η,
(4)

where η ∈ C∞(M , su(2)). In addition to these gauge symmetries, the action is invariant

under λ 7→ λh where h ∈ C∞(γ, H) and H ⊂ SU(2) is the subgroup consisting of elements

g ∈ SU(2) that stabilize the vector v, meaning that gvg−1 = v. The action is also invariant

under reparametrization of the world-line γ.

A generalization of the naive action (1) to arbitrary dimensions can be constructed as

follows. Let G be a Lie group such that its Lie algebra g is equipped with an inner product

invariant under the adjoint action of G. Let M be a d-dimensional smooth oriented manifold

equipped with an oriented (d−2)-dimensional submanifold W , which we call the ‘membrane

world-sheet’. Let P be a principal G-bundle over M ; to simplify the discussion we shall

assume P is trivial, but this is not essential. One can define the action

S(A, B) =

∫

M

tr[B ∧ F (A)] + τ

∫

W

tr[B v] (5)

where τ is the membrane tension, B is a g-valued (d − 2)-form, A is a connection on P , v

is a fixed but arbitrary unit vector in g, and ‘tr’ stands for the invariant inner product in
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g. The first term is the standard BF theory action, while the second is a source term that

couples BF theory to the membrane world-sheet.

As with the action in equation (1), the above action is only gauge-invariant if we restrict

gauge transformations to be trivial on the membrane world-sheet. We can relax this condi-

tion by introducing appropriate degrees of freedom for the (d− 3)-brane whose world-sheet

is W . The resulting action is:

S(A, B, q, λ) =

∫

M

tr[B ∧ F (A)] + τ

∫

W

tr[(B + dAq) λvλ−1], (6)

where q is a g-valued (d − 3)-form on W and λ is a G-valued function on W .

This action is invariant under the gauge transformations:

B 7→ gBg−1

A 7→ gAg−1 + gdg−1

q 7→ gqg−1

λ 7→ gλ,

(7)

where g ∈ C∞(M , G) and

B 7→ B + dAη

q 7→ q − η,
(8)

where η is any g-valued (d − 3)-form. As in the particle case, the action is also invariant

under λ 7→ λh, where h ∈ C∞(W , H) and H ⊆ G is the subgroup stabilizing v, and under

reparametrization of the membrane world-sheet.

Perhaps the most intuitive equation of motion comes from varying the B field. This says

that the connection A is flat except at W :

F = −pδW , (9)

where p = τλvλ−1 and δW is the distributional 2-form (current) associated to the membrane

world-sheet. So, the membrane causes a conical singularity in the otherwise flat connection

A. The strength of this singularity is determined by the field p, which plays the role of

a ‘momentum density’ for the brane. Note that while the connection A is singular in the

directions transverse to W , it is smooth and indeed flat when restricted to W . Thus the

equation of motion obtained from varying q makes sense:

dAp = 0. (10)

This expresses conservation of momentum density.
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I. THE CANONICAL ANALYSIS FOR d = 4

In this section we work out the other equations of motion as part of a canonical analysis

of the action (6). But, in order to simplify the presentation, we restrict for the moment to

the case d = 4—that is, the coupling of a string to four-dimensional BF theory. In Section

III, we generalize the calculations to arbitrary dimensions.

For this canonical analysis, we assume the spacetime manifold is of the form M = Σ×R.

We choose local coordinates (t, xa) for which Σ is given as the hypersurface {t = 0}. By

definition, xa with a = 1, 2, 3 are local coordinates on Σ. We also choose local coordinates

(t, s) on the 2-dimensional world-sheet W , where s ∈ [0, 2π] is a coordinate along the one-

dimensional string formed by the intersection of W with Σ. We pick a basis ei of the Lie

algebra g, raise and lower Lie algebra indices using the inner product, and define structure

constants by [ei, ej] = ck
ijek.

Performing the standard Legendre transformation one obtains Ea
i = εabcBibc as the mo-

mentum canonically conjugate to Ai
a. Similarly, πa

i = τ ∂xa

∂s
tr[eiλvλ−1] is the momentum

canonically conjugate to qi
a. This is a version of the p field mentioned in the previous sec-

tion. There are also certain fields σi defined on the string, which are essentially1 the momenta

conjugate to λ. These phase space variables satisfy the following primary constraints:

σi = 0 (11)

πa
i = τ

∂xa

∂s
tr[eiλvλ−1] (12)

Daπ
a
i = 0 (13)

1 The field λ takes values in the group G, so if we think of it as a kind of ‘position’ variable, position-

momentum pairs lie in T ∗G. Each basis element ei of g gives a left-invariant vector field on G and thus a

function σi on T ∗G, which describes one component of the ‘momentum’. The usual symplectic structure

on T ∗G gives

{σi, σj} = ck
ijσk ,

but recalling that λ and thus its conjugate momentum is actually a function of the coordinate s on the

string world-sheet, we expect

{σi(s), σj(s
′)} = ck

ijσk(s)δ(1)(s − s′)

and indeed this holds, in analogy to Sousa Gerbert’s [6] calculation for the three-dimensional case.
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DaE
a
i =

∫

S

ck
ijq

j
aπ

a
k δ(3)(x − xS (s)) (14)

εabcFibc(x) = −

∫

S

πa
i δ(3)(x − xS (s)). (15)

Here S ⊂ Σ denotes the one-dimensional curve representing the string, parametrized by

xS (s). Equation (11) expresses the fact that no time derivatives of λ appear in the action.

Equation (12) relates the conjugate momentum π to the field λ. The constraint (13) implies

that the momentum πa
i is covariantly constant along the string. This constraint is redundant,

since it could be obtained by taking the covariant derivative of (15) and applying the Bianchi

identity. However, this argument requires some regularization due to the presence of the δ

distribution on the right. The constraint (14) is the modified Gauss law of BF theory due

to the presence of the string.

Finally, (15) is the modified curvature constraint containing the dynamical information

of the theory. This constraint implies that the connection A is flat away from the string S .

Some care must be taken to correctly intepret the constraint for points on S . By analogy

with the case of 3d gravity, the correct interpretation is that the holonomy of an infinitesimal

loop circling the string at some point x ∈ S is exp(−p(x)) ∈ G, where p = τλvλ−1 as before.

This describes the conical singularity of the connection at the string world-sheet.

The BF phase space variables satisfy the standard commutation relations:

{Ea
i (x), Aj

b(y)} = δa
b δ

j
i δ(3)(x − y) (16)

{Ea
i (x), Eb

j (y)} = {Ai
a(x), Aj

b(y)} = 0. (17)

Concerning the string canonical variables, there are second class constraints (this can be

seen from the consistency conditions which say that the time derivatives of (11) and (12)

vanish).

They can be solved in a way analogous to the point particle case [6, 7]. As in the latter,

this leads to a convenient parametrization of the phase space of the string in terms of the

momentum πa
i and the ‘total angular momentum’ Ji = ck

ijq
j
aπ

a
k + σi. The Poisson brackets

of these variables are given by

{πa
i (s), Jj(s

′)} = ck
ijπ

a
k(s)δ

(1)(s − s′) (18)
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{Ji(s), Jj(s
′)} = ck

ijJk(s)δ
(1)(s − s′). (19)

It is important to calculate the Poisson bracket2

{Ji(s), λ(s′)} = −eiλ(s)δ(1)(s − s′). (20)

The string variables are still subject to the following first class constraints:

tr[eiλzλ−1]J i = 0 (21)

tr[πaλzλ−1] = τ
∂xa

∂s
tr[vz], (22)

where z ∈ g is such that [z, v] = 0. The last constraint is the generalization of the mass

shell condition for point particles in 3d gravity.

The Poisson bracket of the string variables with the BF variables is trivial, as well as

the Poisson brackets among the πa
i . In the next section we shall find a representation of

the previous variables as self-adjoint operators acting on an auxiliary Hilbert space Haux.

The constraints above will also be quantized and imposed on Haux in order to construct the

physical Hilbert space Hphys.

II. QUANTIZATION

The auxiliary Hilbert space has the tensor product structure

Haux = HBF ⊗ HST ,

where HBF and HST are the BF theory and string auxiliary Hilbert spaces, respectively.

In the following two subsections we describe the construction of such Hilbert spaces; in the

third we define the so-called kinematical Hilbert space Hkin by quantizing and imposing

all the constraints but the curvature constraint (15). In the last subsection we sketch the

definition of the physical Hilbert space.

2 The presence of second class constraints in the phase space of the string means that instead of the standard

Poisson bracket one should use the appropriate Dirac bracket. However, due to the fact that both πa
i and

Ji commute with the constraints, the Dirac bracket and the standard Poisson bracket coincide for the

previous two equations as well as for the following one.
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A. The BF auxiliary Hilbert space

When the group G is compact, we may quantize the BF theory degrees of freedom just

as in standard loop quantum gravity. For this reason we only provide a quick review of how

to construct the relevant Hilbert space. A detailed description of this construction can be

found in [8].

Briefly, the auxiliary Hilbert space for BF theory, HBF , is given by L2(Ā, µ) where Ā

is a certain completion of the space A of smooth connections on P , and µ is the standard

gauge- and diffeomorphism-invariant measure on Ā. A bit more precisely, the construction

goes as follows.

One starts from a certain algebra Cyl
BF

of so-called ‘cylinder functions’ of the connection

A. The basic building blocks of this algebra are the holonomies hγ(A) ∈ G of A along paths

γ in the manifold Σ representing space:

hγ(A) = P exp

(

−

∫

γ

A

)

(23)

where P stands for the path-ordered exponential. An element of Cyl
BF

is a function

Ψγ,f :A → C,

where γ is a finite directed graph embedded in Σ and f : Gm → C is any continuous function,

m being the number of edges of γ. This function Ψγ,f is given by

Ψγ,f(A) = f(h1(A), . . . , hm(A)) (24)

where hi(A) is the holonomy along the ith edge of the graph γ and m is the number of edges.

Given any larger graph γ ′ formed by adding vertices and edges to γ, the function Ψγ,f

equals Ψγ′,f ′ for some continuous function f ′: Gm′

→ C, where m′ is the number of edges of

γ′. Using this fact, we can define an inner product on cylinder functions. Given any two

elements of Cyl
BF

, we can write them as Ψγ,f and Ψγ,g where γ is a sufficiently large graph.

Their inner product is then defined by:

〈Ψγ,f , Ψγ,g〉 =

∫

Gm

f(h1, . . . , hm) g(h1, . . . , hm) dh1 · · ·dhm (25)

where dhi is the normalized Haar measure on G.

The auxiliary Hilbert space HBF is defined as the Cauchy completion of Cyl
BF

under the

inner product in (25). Using projective techniques it has been shown [8] that HBF is also the
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space of square-integrable functions on a certain space Ā containing the space A of smooth

connections on Σ. Elements of Ā are called ‘generalized connections’. The measure µ in

equation (25) is actually a measure on Ā, and we have HBF = L2(Ā, µ). In other words, we

have

〈Ψγ,f , Ψγ,g〉 =

∫

Ā

Ψγ,f(A) Ψγ,g(A) dµ(A). (26)

The (generalized) connection is quantized by promoting the holonomy (23) to an operator

acting by multiplication on cylinder functions as follows:

ĥγ(A)Ψ(A) = hγ(A)Ψ(A) . (27)

It is easy to check that this defines a self-adjoint operator on HBF . Similarly, the conju-

gate momentum Ea
j is promoted to a self-adjoint operator-valued distribution that acts by

differentiation on smooth cylinder functions, namely:

Êa
j = −i

δ

δA
j
a

. (28)

Next, one can introduce an orthonormal basis of states in HBF using harmonic analysis

on the compact group G. Thanks to the Peter–Weyl theorem, any continuous function

f : G → C can be expanded as follows:

f(g) =
∑

ρ∈Irrep(G)

〈fρ, ρ(g)〉 . (29)

Here Irrep(G) is a set of unitary irreducible representations of G containing one from each

equivalence class. For any g ∈ G, a representation ρ ∈ Irrep(G) gives a linear transformation

ρ(g): Hρ → Hρ for some finite-dimensional Hilbert space Hρ. We may think of ρ(g) as an

element of the Hilbert space Hρ ⊗ H∗
ρ . The ‘Fourier component’ fρ is another element of

H ⊗ H∗, and 〈fρ, ρ(g)〉 is their inner product.

The straightforward generalization of this decomposition to functions f : Gm → C allows

us to write any cylindrical function (24) as:

Ψγ,f(A) =
∑

ρ1,...,ρm∈Irrep(G)

m
∏

i=1

〈fρi
, ρi(hi(A))〉 , (30)

where the ‘Fourier component’ fρi
associated to the ith edge of the graph γ is an element of

Hρi
⊗H∗

ρi
. We call the functions appearing in this sum open spin networks. A general open
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spin network is of the form

Ψγ,~ρ, ~f(A) =

m
∏

i=1

〈fρi
, ρi(hi(A))〉 . (31)

Here ~ρ is an abbreviation for the list of representations (ρ1, . . . , ρm) labelling the edges of

the graph, and ~f is an abbreviation for the tensor product fρ1 ⊗ · · · ⊗ fρm
Note that Ψ

γ,~ρ, ~f

depends in a multilinear way on the vectors fρi
, so it indeed depends only on their tensor

product ~f .

B. The string auxiliary Hilbert space

The auxiliary Hilbert space for the string degrees of freedom, HST , is obtained in an

analogous fashion. Just as we built the auxiliary Hilbert space for BF theory starting from

continuous functions of the connection’s holonomies along edges in space, we build the space

HST starting from continuous functions of the λ field’s values at points on the string. This

space HST can be described as L2(Λ̄, µST), where Λ̄ is a certain completion of the space of

G-valued functions on the string S , and µST is the natural measure on this space (see for

instance [9]).

To achieve this, we first define an algebra Cyl
ST

of ‘cylinder functions’ on the space of λ

fields, Λ = C∞(S , G). An element of Cyl
ST

is a function

Φp,f : Λ → C,

where p = {p1, . . . , pn} is a finite set of points in S and f : Gn → C is any continuous

function. This function Φp,f is given by

Φp,f(λ) = f(λ(p1), . . . , λ(pn)). (32)

As in the previous section, if p′ is a finite set of points in S with p ⊂ p′, then the function

Φp,f is equal to Φp′,f ′ for some continuous function f ′: Gn′

→ C. This lets us define an inner

product on Cyl
ST

. Given any two cylinder functions, we can write them as Φp,f and Φp,g

where p is a sufficiently large finite set of points in S . We define their inner product by

〈Φp,f , Φp,g〉 =

∫

Gn

f(h1, . . . , hn) g(h1, . . . , hn) dh1 · · ·dhn (33)

where dhi is the normalized Haar measure on G. One can check that this is independent of

the choices involved.
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The auxiliary Hilbert space HST is then defined to be the Cauchy completion of Cyl
ST

under this inner product. Using projective techniques [9] it has been shown that HST is

L2(Λ̄, µST ) for some measure µST on a certain space Λ̄ containing the space Λ:

〈Φp,f , Φp,g〉 =

∫

Λ̄

Φγ,f(λ) Φγ,g(λ) dµST(λ). (34)

In fact, Λ̄ is just the space of all functions λ: S → G. Though very large, this is actually

a compact topological group by Tychonoff’s theorem, and µST is the Haar measure on this

group.

The field λ is quantized in terms of operators acting by multiplication in HST . Therefore,

the wave functional Φ(λ) gives the momentum representation of the quantum state of the

string. More precisely, in this representation the momentum operator πa
i = τ ∂xa

∂s
tr[eiλvλ−1]

acts by multiplication, namely:

π̂a
i (λ)Φ(λ) = τ

∂xa

∂s
tr[eiλvλ−1]Φ(λ). (35)

It is easy to check that the momentum operator is self-adjoint on HBF . According to (20),

the ‘total angular momentum’ Ji ≡ ck
ijq

j
aπ

a
k +σi is promoted to a self-adjoint operator-valued

distribution that acts as a derivation, namely

J j = −i
δ

δλj
. (36)

An application of harmonic analysis on the group G, analogous to what was done in the

previous section, lets us write any cylinder function (32) as

Φp,f(λ) =
∑

ρ1,...,ρn∈Irrep(G)

n
∏

i=1

〈fρi
, ρi(λ(pi))〉 , (37)

where ρi runs over irreducible unitary representations of G on finite-dimensional Hilbert

spaces Hρi
, and the ‘Fourier component’ fρi

is an element of Hρi
⊗H∗

ρi
. We call the functions

appearing in the sum n-point spin states. A typical n-point spin state is of the form

Φ
p,~ρ, ~f

(λ) =
n

∏

i=1

〈fρi
, ρi(λ(pi))〉 . (38)

Here ~ρ is an abbreviation for the list of representations (ρ1, . . . , ρn) labelling the points in

p, and ~f is an abbreviation for the tensor product fρ1 ⊗ · · · ⊗ fρn
.

We hope the strong similarity between the BF and string auxiliary Hilbert spaces is

clear. The only real difference is that the A field assigns group elements to edges, while

the λ field assigns group elements to points. So, we need 1-dimensional spin networks to

describes states of BF theory, but their 0-dimensional analogues for the λ field.
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C. The kinematical Hilbert space

The next step in the Dirac program is to implement the first class constraints found above

as operator equations in order to define the physical Hilbert space. Here we implement the

constraints (14), (21), and (22). The states in the kernel of these quantum constraints define

a proper subspace of Haux that we call the kinematical Hilbert space

Hkin ⊂ Haux = HBF ⊗ HST .

The implementation of the remaining curvature constraint (15) (which also implies (13))

will be discussed in the next subsection.

The constraint (22) is automatically satisfied. This can be easily checked using the fact

that one is working in the momentum representation where equation (35) holds.

The Gauss constraint (14) acts on the connection A generating gauge transformations

g ∈ C∞(Σ, G) whose action transforms the holonomies along edges of any graph as follows:

he(A) 7→ g(s(e)) he(A) g(t(e))−1 (39)

where s(e), t(e) ∈ Σ are the source and target vertices of the edge e respectively. As a result,

such gauge transformations act on open spin networks in HBF as follows:

n
∏

i=1

〈fρi
, ρi(hi(A)〉 7→

n
∏

i=1

〈

fρi
, ρi(g(s(ei))hi(A)g(t(ei))

−1)
〉

. (40)

Such gauge transformations also act on the λ field:

λ 7→ gλ, (41)

so they act on n-point spin states in HST as follows:

n
∏

i=1

〈fρi
, ρi(λ(pi))〉 7→

n
∏

i=1

〈fρi
, ρi(g(pi)λ(pi))〉 . (42)

Combining these representations, we obtain a unitary representation of the group C∞(Σ, G)

on Haux = HBF ⊗ HST . Gauge-invariant states are those invariant under this action.

A spanning set of gauge-invariant states can then be constructed in analogy with the

known construction for 3d quantum gravity coupled to point particles [3]. We form such

states by taking the tensor product of an open spin network Ψ
γ,~ρ, ~f

and an n-point spin state

Φ
p,~ρ′, ~f ′. Such a tensor product state will be invariant under the action of C∞(Σ, G) if we:
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1. Require the graph γ for the open spin network to have vertices that include the points

{p1, . . . , pn} forming the set p.

2. Associate an intertwining operator to each vertex v of the graph γ as follows:

a) If the vertex v is not on the string, then choose an intertwining operator

ιv: ρi1 ⊗ · · · ⊗ ρit → ρj1 ⊗ · · · ⊗ ρjs
,

where i1, . . . it are the edges of γ whose target is v, and j1, . . . js are the edges of γ

whose source is v.

b) If the vertex v is on the string, it coincides with some point pk ∈ p. Then choose

an intertwining operator

ιv: ρi1 ⊗ · · · ⊗ ρit → (ρj1 ⊗ · · · ⊗ ρjs
) ⊗ ρ′

k,

where ρ′
k is the representation labelling the point pk in the n-point spin state Φ

p,~ρ′, ~f ′ .

3. Tensor all the intertwining operators ιv. The result is an element of

m
⊗

i=1

(Hρi
⊗ H∗

ρi
) ⊗

n
⊗

i=1

(Hρ′i
⊗ H∗

ρ′i
).

Demand that this equals ~f ⊗ ~f ′. This fixes our choice of ~f for the open spin network

and ~f ′ for the n-point spin state.

One can check that such states actually span the space of states in H that are invariant

under gauge transformations in C∞(Σ, G). So, we have solved the Gauss constraint.

Finally, constraint (21) generates gauge transformations

λ 7→ λh (43)

for any h ∈ C∞(S , H), where H ⊆ G is the subgroup stabilizing the vector v. These

transformations are unitarily represented on HST . The gauge transformation h acts on

n-point spin functions as follows:

n
∏

i=1

〈fρi
, ρi(λ(pi))〉 7→

n
∏

i=1

〈fρi
, ρi(λ(pi)h(pi))〉 . (44)
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We can find n-point spin functions Φ
p,~ρ′, ~f ′ that are invariant under these transformations by

choosing the vectors ~f ′ in such a way that each vector f ′

ρ′j
is invariant under the action of

the group H.

We call the resulting states

Ψ
γ,~ρ, ~f

⊗ Φ
p,~ρ′, ~f ′

string spin networks. They span Hkin. A typical string spin network state appears in

Figure 1. The interplay between the quantum degrees of freedom in the ‘bulk’ and those on

the string (or membrane, in the general setting of the next section) is reminiscent of that

appearing in the loop quantization of the degrees of freedom of an isolated horizon in loop

quantum gravity [10].

e

x

FIG. 1: A typical string spin network. The Gauss law implies that if a single spin network edge

e ends at some point x on the string, the representation ρe is evaluated on the product of the

associated holonomy he(A) and the value of the λ field at x.

D. The physical Hilbert space

In order to construct the physical Hilbert space Hphys we have to impose the remaining

curvature constraint (15). This can be achieved by an application of the techniques developed

in [3]. The physical inner product can be represented as a sum over spin foam amplitudes

which are a simple generalization of the amplitudes in three dimensions. The associated

state sum invariants can be directly derived from the canonical perspective presented here.

The details of the construction will be provided elsewhere.
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III. THE GENERAL CASE: MEMBRANES COUPLED TO BF THEORY

Let us now describe the phase space of the general case in detail. Recall that G is a

general Lie group with Lie algebra g equipped with an invariant inner product. Performing

the canonical analysis along the same lines as in Section I one obtains Ea
i = εaa1 ···ad−2Bia1···ad−2

as the momentum canonically conjugate to Ai
a, where as before i labels a basis ei of g. The

momentum canonically conjugate to qi
a is given by

π
a1···ad−3

i = τ
∂x[a1

∂s1

∂xa2

∂s2
· · ·

∂xad−3 ]

∂sd−3
tr[eiλvλ−1],

where t, s1, . . . , sd−3 are local coordinates on the membrane world-sheet. The Gauss law

now becomes:

DaE
a
i =

∫

B

ck
ijq

j
a1 ···ad−3

π
a1···ad−3

k δ(d−1)(x − xB), (45)

where B denotes the brane, i.e. the intersection of the membrane world-sheet W with Σ.

The curvature constraint becomes:

εa1 ···ad−3bcFibc = −

∫

B

π
a1···ad−3

i δ(d−1)(x − xB). (46)

We also have

Daπ
aa1···ad−4

i = 0. (47)

There are additional constraints for the degrees of freedom of the (d − 3)-branes, namely

tr[eiλzλ−1]J i = 0 where Ji ≡ ck
ijq

j
a1···ad−3

π
a1···ad−3

k + σi (48)

and

tr[πa1···ad−3λzλ−1] = τ
∂x[a1

∂s1

∂xa2

∂s2
· · ·

∂xad−3 ]

∂sd−3
tr[vz], (49)

for [z, v] = 0.

The quantization of the general d-dimensional BF theory coupled to (d − 3)-branes can

be achieved by following an essentially analogous path as the one described in detail for

4-dimensional BF theory coupled to strings. As long as the gauge group G is compact, the

techniques used in the construction of the auxiliary Hilbert spaces as well as the definition

of the kinematical Hilbert space and finally the physical Hilbert space can be directly gener-

alized. In particular, the kinematical Hilbert space is spanned by membrane spin networks,

which generalize the string spin networks of the 4-dimensional case.
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IV. CONCLUSIONS

There are formulations of gravity in four dimensions which are closely related to BF

theory. The results presented here could lead to natural candidates for the introduction of

matter in those models. Examples of interest are the MacDowell–Mansouri formulation of

gravity [13], which is a perturbed version of BF theory with gauge group SO(3, 2), SO(4, 1)

or SO(5) depending on the signature of the metric and sign of the cosmological constant.

Another interesting approach to gravity is the Plebanski formulation, obtained by impos-

ing extra constraints on BF theory with gauge group SO(3, 1) or SO(4). The well-known

Barrett–Crane model [14] is a tentative quantization of this theory. At least classically, the

BF theories associated to all these theories can be coupled to strings using the techniques

developed here.

When the gauge group G is compact, we can also quantize these theories. However, for

Lorentzian models G is typically not compact. In the noncompact case it seems there is no

good measure on the space of generalized connections, which precludes the construction of

the auxiliary Hilbert spaces used above. The main obstacle is the non-normalizability of the

Haar measure. As long as G is ‘unimodular’—i.e., as long as it admits a measure invariant

under both right and left translations, as in all the examples mentioned above—formulas

(25) and (33) can still be given a meaning on a fixed graph [11]. However, it is no longer

possible to promote this inner product to an inner product on cylindrical functions [12].

One can still attempt to deal with the theory in a more restricted setting by defining it on

a fixed cellular decomposition of spacetime and then showing that physical amplitudes are

independent of this choice. This is expected for topological theories such as the ones defined

here, but the study of these models still presents interesting challenges.

Another subtlety of the noncompact case is that while the Lie algebra g may still admit

an invariant nondegenerate inner product, this inner product typically fails to be positive

definite. Indeed, this happens for all noncompact semisimple groups, such as SO(p, q) for

p + q > 2. This affects the interpretation of the action (6) for our theory. Recall that

we imposed the normalization condition v · v = 1 for the vector v ∈ g. We used this

condition to give a meaning to the tension parameter τ , but the action only depends on the

combination p = τλvλ−1. As we have seen in the four-dimensional case, the field p has a

simple meaning: the holonomy of the connection A around any small loop encircling the
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membrane world-sheet is exp(−p) ∈ G. The same is true in any dimension.

This suggests a simpler action:

S(A, B, q, p) =

∫

M

tr[B ∧ F (A)] +

∫

W

tr[(B + dAq) p], (50)

where p is a g-valued function on the world-sheet W which under the gauge transformations

(7) transforms in the adjoint representation: p 7→ gpg−1. One can check that the equations

of motion still imply A is flat except at points on W . If W is connected, this implies that

the holonomy around any small loop encircling the world-sheet is in the same conjugacy

class. As before, the holonomy around an infinitesimal loop around some point x ∈ W is

exp(−p(x)). It follows that p remains in the same adjoint orbit over the whole world-sheet.

So, we can write p as τλvλ−1 for some fixed vector v ∈ g and some G-valued field λ on the

world-sheet.

When the inner product on g is positive definite, we can then fix τ by normalizing v to

have v · v = 1. However, when the inner product is not positive definite, the new action

(50) is more general than the old one, even for a connected world-sheet, since it allows the

momentum density of the membrane to be space-like (p · p > 0) or null (p · p = 0), as well

as time-like (p · p < 0). One can check that with this new action, the canonical analysis of

Section I requires only mild modifications, and the kinematical construction of the quantum

theory presented in Section II can still be used, with the precautions described above for

noncompact Lie groups.

It will be interesting to carry out the study of four-dimensional BF theory coupled to

strings in analogy to what has already been done for three-dimensional gravity coupled to

point particles. For example, point particles in three-dimensional gravity are known to obey

exotic statistics governed by the braid group. Similarly, we have argued in the companion

to this paper that strings coupled to four-dimensional BF theory obey exotic statistics

governed by the ‘loop braid group’ [5]. In that paper we studied these statistics in detail

for the case G = SO(3, 1), but we treated the strings merely as gauge defects. It would be

good to study this issue more carefully with the help of the framework developed here.
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