What is life?

Self-replicating information!

Information about what?

How to self-replicate!

It is clear that biology has something to do with information and self-replication. But what’s the math behind this — in its very simplest form?
IT’S ALL RELATIVE — EVEN INFORMATION!

When you learn something, how much information do you gain?

It depends on what you believed before!

We can model hypotheses as probability distributions. When you update your prior hypothesis p to a new one q, how much information do you gain?

This much:

$$I(q, p) = \sum_{i=1}^{n} q_i \ln \left(\frac{q_i}{p_i} \right)$$

This is the **information of q relative to p**, also called the ‘information gain’ or ‘Kullback–Leibler divergence’.

$$I(q, p) \geq 0 \quad \text{and} \quad I(q, p) = 0 \iff q = p$$
For example, suppose we flip a coin you think is fair. Your prior hypothesis is this:

\[p_H = \frac{1}{2} \quad p_T = \frac{1}{2} \]

Then you learn it landed heads up:

\[q_H = 1 \quad q_T = 0 \]

The relative information is 1 bit:

\[I(q, p) = 1 \ln \left(\frac{1}{1/2} \right) + 0 \ln \left(\frac{0}{1/2} \right) = \ln 2 \]

where we define \(0 \ln 0 = 0 \). You have gained 1 bit of information.
But suppose you think there’s only a 25% chance of heads:

\[p_H = \frac{1}{4} \quad p_T = \frac{3}{4} \]

Then you learn the coin landed heads up:

\[q_H = 1 \quad q_T = 0 \]

Now the relative information is higher:

\[I(q, p) = 1 \ln \left(\frac{1}{1/4} \right) + 0 \ln \left(\frac{0}{3/4} \right) = \ln 4 = 2 \ln 2 \]

You have gained 2 bits of information!
FREE ENERGY AS RELATIVE INFORMATION

The free energy of a system at temperature T is

$$F = \langle E \rangle - TS$$

where $\langle E \rangle$ is the expected value of its energy and S is its entropy.

In equilibrium this is minimized. Biochemistry is driven by this fact.
Let’s understand free energy more precisely. Say we have a system that can be in many states. If the probability of a system being in its ith state is q_i, then its free energy is

$$F(q) = \sum_i q_i E_i - kT \sum_i q_i \ln(q_i).$$

where E_i is the energy of the ith state and k is Boltzmann’s constant.
‘Equilibrium’ is a hypothesis about the system’s state, in which the probability of the system being in its \(i\)th state is

\[p_i \propto \exp\left(-\frac{E_i}{kT}\right) \]

But suppose we choose a different hypothesis, and say probability of finding the system in its \(i\)th state is \(q_i\).

A fun calculation shows that

\[F(q) - F(p) = kT I(q, p) \]

where \(F(q)\) is the free energy for \(q\) and \(F(p)\) is the free energy in equilibrium.

So: the extra free energy of a system out of equilibrium is proportional to \textit{the information it has, relative to equilibrium}.
Since
\[I(q, p) \geq 0 \quad \text{and} \quad I(q, p) = 0 \iff q = p \]
and
\[F(q) - F(p) = kT I(q, p) \]
when \(p \) is the equilibrium, we see that free energy is minimized only in equilibrium.

There are theorems saying that free energy, or relative information, tends to decrease. For example, whenever \(p(t) \) and \(q(t) \) are probability distributions evolving via a Markov process, we have
\[\frac{d}{dt} I(q(t), p(t)) \leq 0 \]
But let’s see a result like this in evolutionary game theory!
NATURAL SELECTION AND RELATIVE INFORMATION

Suppose we have self-replicating entities of different kinds:

- molecules of different chemicals
- organisms belonging to different species
- genes of different alleles
- restaurants belonging to different chains
- people with different beliefs
- game-players with different strategies
- etc.

I’ll call them **organisms** of different **species**.
Let P_i be the population of the ith species, as a function of time.

Suppose the replicator equation holds:

$$ \frac{dP_i}{dt} = F_i P_i $$

where $F_i = F_i(P_1, \ldots, P_n)$, the fitness of the ith species, can depend on the populations of all the species.
The probability that a randomly chosen organism belongs to the ith species is

$$p_i = \frac{P_i}{\sum_j P_j}$$

If we think of each species as a strategy, the probability distribution p_i can be seen as a hypothesis about the best strategy. The quality of a strategy is measured by its fitness F_i. We can show

$$\frac{dp_i}{dt} = (F_i - \langle F \rangle)p_i$$

where $\langle F \rangle = \sum_j F_j p_j$ is the mean fitness.

This is a continuous-time version of Bayesian hypothesis updating:

Now suppose that \(q \) is some *fixed* probability distribution of species, while \(p_i(t) \) changes as above.

A fun calculation shows that

\[
\frac{d}{dt} I(q, p(t)) = - \sum_i (F_i - \langle F \rangle) q_i
\]
But what does this equation mean?

\[
\frac{d}{dt} I(q, p(t)) = - \sum_i (F_i - \langle F \rangle) q_i
\]

\(I(q, p(t))\) is the ‘information left to learn’ in going from \(p(t)\) to \(q\).

\(\sum_i (F_i - \langle F \rangle) q_i\) is the average ‘excess fitness’ of a small ‘invader’ population with distribution \(q_i\). It says how much fitter the invaders are, on average, than the general population \(P_i(t)\).

If this average excess fitness is \(\geq 0\) for all choices of \(P_i(t)\), we call \(q\) a **dominant** distribution.
So: if q is a dominant distribution, then

$$\frac{d}{dt} I(q, p(t)) \leq 0$$

In short, the information ‘left to learn’ tends to decrease!

But real biology is more interesting! At all levels, biological systems only approach steady states in limited regions for limited times.

Even using just the replicator equation

$$\frac{dP_i}{dt} = F_i P_i$$

we can already see more complex phenomena.
"Now, here, you see, it takes all the running you can do, to keep in the same place."
The **Red Queen Hypothesis**: replicators must keep changing simply to survive amid other changing replicators.

For example, in males of the common side-blotched lizard, orange beats blue, blue beats yellow, and yellow beats orange:
We can model this using the replicator equation by assuming lizards play randomly chosen opponents in the rock-paper-scissors game, with fitness determined by the game’s outcome:

The replicator equation gives this dynamics for the probability distribution of strategies ‘rock’, ‘paper’ and ‘scissors’:

There is a steady state, but it is not an attractor. In general, the population never stops learning new information!
How can we quantify the *rate of learning*?

Here we face a ‘paradox’: For any probability distribution $p(t)$ that changes smoothly with time, we have

$$\frac{d}{dt} I(p(t), p(t_0)) \bigg|_{t=t_0} = 0$$

for all times t_0.

“To first order, you’re never learning anything.”
However, as long as the velocity $\dot{p}(t_0)$ is nonzero, we have

$$\left. \frac{d^2}{dt^2} l(p(t), p(t_0)) \right|_{t=t_0} > 0$$

“To second order, you’re always learning something... unless your opinions are fixed.”

This lets us define a ‘rate of learning’ — that is, the ‘speed’ of the changing probability distribution $p(t)$.
Namely, define the length of the vector \(\dot{p}(t_0) \) by

\[
\| \dot{p}(t_0) \|^2 = \frac{d^2}{dt^2} I(p(t), p(t_0)) \bigg|_{t=t_0}
\]

This notion of length defines a ‘Riemannian metric’ on the space of probability distributions: the **Fisher information metric**. This makes the space of probability distributions round:
Now suppose we have populations obeying the replicator equation:

\[\frac{dP_i}{dt} = F_i P_i \]

so the probability distribution of species evolves via

\[\frac{dp_i}{dt} = (F_i - \langle F \rangle) p_i \]

Then a fun calculation shows

\[\left\| \frac{dp}{dt} \right\|^2 = \sum_i (F_i - \langle F \rangle)^2 p_i \]

The square of the rate of learning is the variance of the fitness!

This result resembles Fisher’s fundamental theorem of natural selection, but it applies to many more situations.
These are some small steps toward a theory of biology as information dynamics.