
RELATIVE ENTROPY IN BIOLOGICAL SYSTEMS

JOHN C. BAEZ AND BLAKE S. POLLARD

Abstract. In this paper we review various information-theoretic character-

izations of the approach to equilibrium in biological systems. The replicator

equation, evolutionary game theory, Markov processes and chemical reaction
networks all describe the dynamics of a population or probability distribu-

tion. Under suitable assumptions, the distribution will approach an equilib-

rium with the passage of time. Relative entropy—that is, the Kullback–Leibler
divergence, or various generalizations of this—provides a quantitative measure

of how far from equilibrium the system is. We explain various theorems that

give conditions under which relative entropy is nonincreasing. In biochemical
applications these results can be seen as versions of the Second Law of Thermo-

dynamics, stating that free energy can never increase with the passage of time.
In ecological applications, they make precise the notion that a population gains

information from its environment as it approaches equilibrium.

1. Introduction

Life relies on nonequilibrium thermodynamics, since in thermal equilibrium there
are no flows of free energy. Biological systems are also open systems, in the sense
that both matter and energy flow in and out of them. Nonetheless, it is important
in biology that systems can sometimes be treated as approximately closed, and
sometimes approach equilibrium before being disrupted in one way or another.
This can occur on a wide range of scales, from large ecosystems to within a single
cell or organelle. Examples include:

• a population approaching an evolutionarily stable state;
• random processes such as mutation, genetic drift, the diffusion of organisms

in an environment or the diffusion of molecules in a liquid;
• a chemical reaction approaching equilibrium.

A common feature of these processes is that as they occur, quantities mathe-
matically akin to entropy tend to increase. Closely related quantities such as free
energy tend to decrease. In this review we explain some mathematical results that
explain why this occurs.

Most of these results involve a quantity that is variously known as ‘relative infor-
mation’, ‘relative entropy’, ‘information gain’ or the ‘Kullback–Leibler divergence’.
We shall use the first term. Given two probability distributions p and q on a fi-
nite set X, their relative information, or more precisely the information of p
relative to q, is

I(p, q) =
∑
i∈X

pi ln

(
pi
qi

)
. (1)
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We use the word ‘information’ instead of ‘entropy’ because one expects entropy to
increase with time, and the theorems we present will say that I(p, q) decreases with
time under various conditions. The reason is that the Shannon entropy

S(p) = −
∑
i∈X

pi ln pi (2)

contains a minus sign that is missing from the definition of relative information.
Intuitively, I(p, q) is the amount of information gained when we start with a

hypothesis given by some probability distribution q and then change our hypothesis,
perhaps on the basis of some evidence, to some other distribution p. For example,
if we start with the hypothesis that a coin is fair and then are told that it landed
heads up, the relative information is ln 2, so we have gained 1 bit of information.
If however we started with the hypothesis that the coin always lands heads up, we
would have gained no information.

Mathematically, relative information is a divergence: it obeys

I(p, q) ≥ 0

and

I(p, q) = 0 ⇐⇒ p = q

but not necessarily the other axioms for a distance function, symmetry and the
triangle inequality, which indeed fail for relative information. There are many
other divergences besides relative information [7, 13]. However, relative information
can be singled out by a number of characterizations [17], including one based on
ideas from Bayesian inference [5]. The relative information is also close to the
expected number of extra bits required to code messages distributed according to
the probability measure p using a code optimized for messages distributed according
to q [6, Theorem 5.4.3].

In this review we describe various ways in which a population or probability
distribution evolves continuously according to some differential equation. For all
these differential equations, we describe conditions under which relative information
decreases. Briefly, the results are as follows. We hasten to reassure the reader that
our paper explains all the terminology involved, and the proofs of the claims are
given in full:

• In Section 2 we consider a very general form of the Lotka–Volterra equa-
tions, which are a commonly used model of population dynamics. Starting
from the population Pi of each type of replicating entity, we can define a
probability distribution

pi =
Pi∑

i∈X
Pi

which evolves according to a nonlinear equation called the replicator equa-
tion. We describe a necessary and sufficient condition under which I(q, p(t))
is nonincreasing when p(t) evolves according to the replicator equation while
q is held fixed.
• In Section 3 we consider a special case of the replicator equation that is

widely studied in evolutionary game theory. In this case we can think of
probability distributions as mixed strategies in a two-player game. When
q is a dominant strategy, I(q, p(t)) can never increase when p(t) evolves
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according to the replicator equation. We can think of I(q, p(t)) as the in-
formation that the population has left to learn. Thus, evolution is analogous
to a learning process—an analogy that in the field of artificial intelligence
is exploited by evolutionary algorithms.
• In Section 4 we consider continuous-time, finite-state Markov processes.

Here we have probability distributions on a finite set X evolving according
to a linear equation called the master equation. In this case I(p(t), q(t)) can
never increase. Thus, if q is a steady state solution of the master equation,
both I(p(t), q) and I(q, p(t)) are nonincreasing. We can always write q as
the Boltzmann distribution for some energy function E : X → R, meaning
that

qi =
exp(−Ei/kT )∑

j∈X
exp(−Ej/kT )

where T is temperature and k is Boltzmann’s constant. In this case,
I(p(t), q) is proportional to a difference of free energies:

I(p(t), q) =
F (p)− F (q)

kT
.

Thus, the nonincreasing nature of I(p(t), q) is a version of the Second Law
of Thermodynamics. In a companion paper [28], we examine how this result
generalizes to non-equilibrium steady states of ‘open Markov processes’, in
which probability can flow in or out of the set X.
• Finally, in Section 5 we consider chemical reactions and other processes

described by reaction networks. In this context we have nonnegative real
populations Pi of entities of various kinds i ∈ X, and these population
distributions evolve according to a nonlinear equation called the rate equa-
tion. We can generalize relative information from probability distributions
to populations by setting

I(P,Q) =
∑
i∈X

Pi ln

(
Pi
Qi

)
− (Pi −Qi) .

The extra terms cancel when P and Q are both probability distributions,
but they ensure that I(P,Q) ≥ 0 for arbitrary populations. If Q is a special
sort of steady state solution of the rate equation, called a complex balanced
equilibrium, I(P (t), Q) can never increase when P (t) evolves according to
the rate equation.

2. The Replicator Equation

The replicator equation is a simplified model of how populations change with
time. Suppose we have n different types of self-replicating entity. We will call these
entities replicators. We will call the types of replicators species, but they do not
need to be species in the biological sense. For example, the replicators could be
genes, and the types could be alleles. Or the replicators could be restaurants, and
the types could be restaurant chains.

Let Pi(t), or just Pi for short, be the population of the ith species at time t.
Then a very general form of the Lotka–Volterra equations says that

dPi
dt

= fi(P1, . . . , Pn)Pi. (3)
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Thus the population Pi changes at a rate proportional to Pi, but the ‘constant
of proportionality’ need not be constant: it can be any smooth function fi of the
populations of all the species. We call fi the fitness function of the ith species.
We can create a vector whose components are all the populations:

P = (P1, . . . , Pn).

This lets us write the Lotka–Volterra equations more concisely as

Ṗi = fi(P )Pi,

where the dot stands for a time derivative.
Instead of considering the population Pi of the ith species, one often considers

the probability pi that a randomly chosen replicator will belong to the ith species.
More precisely, this is the fraction of replicators belonging to that species:

pi =
Pi∑
j Pj

.

As a mnemonic, remember that the Population Pi is being normalized to give a
probability pi.

How do these probabilities pi change with time? The quotient rule gives

ṗi =
Ṗi

(∑
j Pj

)
− Pi

(∑
j Ṗj

)
(∑

j Pj

)2
so the replicator equation gives

ṗi =
fi(P )Pi

(∑
j Pj

)
− Pi

(∑
j fj(P )Pj

)
(∑

j Pj

)2 .

Using the definition of pi, this simplifies to:

ṗi = fi(P )pi −

∑
j

fj(P )pj

 pi.

The expression in parentheses here has a nice meaning: it is the mean fitness.
In other words, it is the average, or expected, fitness of a replicator chosen at
random from the whole population. Let us write it thus:

〈f(P )〉 =
∑
j

fj(P )pj .

This gives the replicator equation in its classic form:

ṗi =
(
fi(P )− 〈f(P )〉

)
pi (4)

where the dot stands for a time derivative. Thus, for the fraction of replicators of
the ith species to increase, their fitness must exceed the mean fitness.

So far, all this is classic material from population dynamics. At this point, Marc
Harper considers what information theory has to say [15, 16]. For example, consider
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the relative information I(q, p) where q is some fixed probability distribution. How
does this change with time? First, recall that

I(q, p) =
∑
i

qi ln

(
qi
pi

)
,

and we are assuming only pi depends on time, not qi, so

d

dt
I(q, p(t)) = −

∑
i

ṗi
pi
qi.

By the replicator equation we obtain

d

dt
I(q, p(t)) = −

∑
i

(
fi(P )− 〈f(P )〉

)
qi.

This is nice, but we can massage this expression to get something more enlight-
ening. Remember, the numbers qi sum to one. So:

d

dt
I(q, p(t)) = 〈f(P )〉 −

∑
i

fi(P )qi

=
∑
i

fi(P )(pi − qi).

This result looks even better if we treat the numbers fi(P ) as the components of
a vector f(P ), and similarly for the numbers pi and qi. Then we can use the dot
product of vectors to write

d

dt
I(q, p(t)) = f(P (t)) · (p(t)− q), (5)

whenever p evolves according to the replicator equation while q is fixed. It follows
that the relative information I(q, p(t)) will be nonincreasing if and only if

f(P (t)) · (p(t)− q) ≤ 0.

This nice result can be found in Marc Harper’s 2009 paper relating the replicator
equation to Bayesian inference [16, Theorem 1]. He traces its origins to much earlier
work by Akin [2, 3], and also Hofbauer, Schuster and Sigmund [20], who worked
with a certain function of I(q, p(t)) rather than this function itself.

Next we turn to the question: how can we interpret the above inequality, and
when does it hold?

3. Evolutionary Game Theory

To go further, evolutionary game theorists sometimes assume the fitness func-
tions are linear in the probabilities pj . Then

fi(P ) =

n∑
j=1

Aijpj

for some matrix A, called the fitness matrix.
In this situation the mathematics is connected to the usual von Neumann–

Morgenstern theory of two-player games. In this approach to game theory, each
player has the same finite set X of pure strategies. The payoff matrix Aij
specifies the first player’s winnings if the first player chooses the pure strategy i
and the second player chooses the pure strategy j. A probability distribution on
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the set of pure strategies is called a mixed strategy. The first player’s expected
winnings will be p ·Aq if they use the mixed strategy p and the second player uses
the mixed strategy q.

To apply this analogy to game theory, we assume that we have a well-mixed
population of replicators. Each one randomly roams around, ‘plays games’ with
each other replicator it meets, and reproduces at a rate proportional to its expected
winnings. A pure strategy is just what we have been calling a species. A mixed
strategy is a probability distribution of species. The payoff matrix is the fitness
matrix.

In this context, the vector of fitness functions is given by

f(P ) = Ap.

Then, if p(t) evolves according to the replicator equation while q is fixed, the time
derivative of relative information, given in Equation (5), becomes

d

dt
I(q, p(t)) = (p(t)− q) ·Ap(t). (6)

Thus, we define q to be a dominant mixed strategy if

q ·Ap ≥ p ·Ap (7)

for all mixed strategies p. If q is dominant, we have

d

dt
I(q, p(t)) ≤ 0 (8)

whenever p(t) obeys the replicator equation. Conversely, if the information of p(t)
relative to q is nonincreasing whenever p(t) obeys the replicator equation, the mixed
strategy q must be dominant.

The question is then: what is the meaning of dominance? First of all, if q is
dominant then it is a steady state solution of the replicator equation, meaning one
that does not depend on time. To see this, let r(t) be the solution of the replicator
equation with r(0) = q. Then I(q, r(t)) is nonincreasing because q is dominant.
Furthermore I(q, r(t)) = 0 at t = 0, since for any probability distribution we have
I(q, q) = 0. Thus we have I(q, r(t)) ≤ 0 for all t ≥ 0. However, relative information
is always non-negative, so we must have I(q, r(t)) = 0 for all t ≥ 0. This forces
r(t) = q, since the relative information of two probability distributions can only
vanish if they are equal.

Thus, a dominant mixed strategy is a special kind of steady state solution of
the replicator equation. But what is special about it? We can understand this if
we think in game-theoretic terms. The inner product q · Ap will be my expected
winnings if I use the mixed strategy q and you use the mixed strategy p. Similarly,
p · Ap will be my expected winnings if we both use the mixed strategy p. So,
the dominance of the mixed strategy q says that my expected winnings can never
increase if I switch from q to whatever mixed strategy you are using.

It helps to set these ideas into the context of evolutionary game theory [32].
In 1975, John Maynard Smith, the founder of evolutionary game theory, defined
a mixed strategy q to be an ‘evolutionarily stable state’ if when we add a small
population of ‘invaders’ distributed according to any other probability distribution
p, the original population is more fit than the invaders [24]. He later wrote [25]: “A
population is said to be in an evolutionarily stable state if its genetic composition
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is restored by selection after a disturbance, provided the disturbance is not too
large.”

More precisely, Maynard Smith defined q to be an evolutionarily stable state
if

q ·A((1− ε)q + εp) > p ·A((1− ε)q + εp)

for all mixed strategies p 6= q and all sufficiently small ε > 0. Here

(1− ε)q + εp

is the population we get by replacing an ε-sized portion of our original population
by invaders.

Taking this inequality and separating out the terms of order ε, one can easily
check that q is an evolutionarily stable state if and only if two conditions hold for
all probability distributions p 6= q:

q ·Aq ≥ p ·Aq (9)

and

q ·Aq = p ·Aq ⇒ q ·Ap > p ·Ap. (10)

The first condition says that q is a symmetric Nash equilibrium. In other words,
the invaders cannot on average do better playing against the original population
than members of the original population are. The second says that if the invaders
are just as good at playing against the original population, they must be worse at
playing against each other! The combination of these conditions means the invaders
won’t take over.

Note, however, that the dominance condition (7), which guarantees nonincreas-
ing relative information, is different from either Equation (9) or (10). Indeed, after
Maynard Smith came up with his definition of ‘evolutionarily stable state’, Bernard
Thomas [34] came up with a different definition. For him, q is an evolutionarily
stable strategy if Maynard Smith’s condition (9) holds along with

q ·Ap ≥ p ·Ap. (11)

This condition is stronger than Equation (10), so he renamed Maynard Smith’s
evolutionarily stable states weakly evolutionarily stable strategies.

More importantly for us, Equation (11) is precisely the same as the condition we
are calling ‘dominance’, which implies that the relative information I(q, p(t)) can
never increase as p(t) evolves according to the replicator equation. We can interpret
I(q, p(t)) as the amount of information ‘left to learn’ as the population approaches
the dominant strategy.

This idea of evolution as a learning process is exploited by genetic algorithms
in artificial intelligence [18]. Conversely, some neuroscientists have argued that in-
dividual organisms act to minimize ‘surprise’—that is, relative information: the
information of perceptions relative to predictions [11]. As we shall see in the next
section, relative information also has the physical interpretation of free energy.
Thus, this hypothesis is known as the ‘free energy principle’. Another hypothe-
sis, that neurons develop in a manner governed by natural selection, is known as
‘neural Darwinism’ [8]. The connection between relative information decrease and
evolutionary game theory shows that these two hypotheses are connected.
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4. Markov Processes

One limitation of replicator equations is that in these models, when the popu-
lation of some species is initially zero, it must remain so for all times. Thus, they
cannot model mutation, horizontal gene transfer, or other sources of novelty.

The simplest model of mutation is a discrete-time Markov chain, where there is
a fixed probability per time for a genome to change from one genotype to another
each time it is copied [19]. The information-theoretic aspects of Markov models in
genetics have been discussed by Sober and Steel [33]. To stay within our overall
framework, here we instead consider continuous-time Markov chains, which we shall
simply call Markov processes. These are a very general framework that can be used
to describe any system with finite set X of states where the probability that the
system is in its ith state obeys a differential equation of this form:

dpi
dt

=
∑
j∈X

Hijpj(t)

with the matrix H chosen so that total probability is conserved.
In what follows we shall explain a very general result saying that for any Markov

process, relative information is nonincreasing [14, 23, 26]. It is a form of the Second
Law of Thermodynamics. Some call this result the ‘H-theorem’, but this name goes
back to Boltzmann, and strictly this name should be reserved for arguments like
Boltzmann’s which seek to derive the Second Law from time-symmetric dynam-
ics together with time-asymmetric initial conditions [29, 35]. The above equation
is not time-symmetric, and the relative information decrease holds for all initial
conditions.

We can describe a Markov process starting with a directed graph whose nodes
correspond to states of some system, and whose edges correspond to transitions
between these states. The transitions are labelled by ‘rate constants’, like this:

4

2
1

1
2

3
2

1

2

3

1

The rate constant of a transition from i ∈ X to j ∈ X represents the probability
per time that an item hops from the ith state to the jth state.

More precisely, we say a Markov process M consists of:

• a finite set X of states,
• a finite set T of transitions,
• maps s, t : T → X assigning to each transition its source and target,
• a map r : T → (0,∞) assigning a rate constant r(τ) to each transition
τ ∈ T .

If τ ∈ T has source i and target j, we write τ : i→ j.
From a Markov process we can construct a square matrix, or more precisely a

function H : X ×X → R, called its Hamiltonian. If i 6= j we define

Hij =
∑
τ : j→i

rτ
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to be the sum of the rate constants of all transitions from j to i. We choose the
diagonal entries in a more subtle way:

Hii = −
∑
τ : i→j
j 6=i

r(τ).

Given a Markov process, the master equation for a time-dependent probability
distribution on X is:

d

dt
p(t) = Hp(t), (12)

where H is the Hamiltonian. Thus, given a probability distribution p on X, for
i 6= j we interpret Hijpj as the rate at which population flows from state j to state
i, while the quantity Hiipi is the outflow of population from state i. The diagonal
entries Hii are chosen in a way that ensures total population is conserved.

More precisely, H is infinitesimal stochastic, meaning that its off-diagonal
entries are non-negative and the entries in each column sum to zero:

Hij ≥ 0 if i 6= j and
∑
i

Hij = 0.

This guarantees that if p(t) obeys the master equation and if it is initially a prob-
ability distribution, it remains a probability distribution for all times t ≥ 0.

Markov processes are an extremely general formalism for dealing with randomly
evolving systems, and they are presented in many different ways in the literature.
For example, besides the master equation one often sees the Kolmogorov forward
equation:

d

dt
G(t, s) = HG(t, s)

where G(t, s) is a square matrix depending on two times s, t ∈ R with s ≤ t. The
idea here is that the matrix element Gij(t, s) is the probability that if the system
is in the jth state at time s, it will be in the ith state at some later time t. We
thus demand that G(t, s) is the identity matrix when s = t, and we can show that

G(t, s) = exp((t− s)H)

whenever s ≤ t. From this it is easy to see that G(t, s) also obeys the Kolmogorov
backward equation:

d

ds
G(t, s) = −G(t, s)H.

We should warn the reader that conventions differ and many, perhaps even most,
authors multiply these matrices in the reverse order.

The master equation and Kolmogorov forward equation are related as follows. If
p(t) obeys the master equation and G(t, s) solves the Kolmogorov forward equation,
then

p(t) = G(t, s)p(s),

whenever s ≤ t. Thus, knowledge of G(t, s) immediately tells us all solutions of the
master equation.

Most of our discussion so far, and the results to follow, can be generalized to
the case where X is an arbitrary measure space, for example Rn. The Kolmogorov
forward equation is often studied in this more general context, sometimes in the
guise of the ‘Fokker–Planck equation’. This formulation is often used to study
Brownian motion and other random walk processes in the continuum. A careful



10 JOHN C. BAEZ AND BLAKE S. POLLARD

treatment of this generalization involves more analysis: sums become integrals, and
one needs to worry about convergence and passing derivatives through integrals
[9, 27, 30, 31]. To keep things simple and focus on basic concepts, we only treat
the case where X is a finite set.

As one evolves any two probability distributions p and q according to a Markov
process, their relative information is nonincreasing:

d

dt
I(p(t), q(t)) ≤ 0.

This is a very nice result, because it applies regardless of the Markov process. It
even applies to a master equation where the Hamiltonian depends on time, as long
as it is always infinitesimal stochastic.

To prove this result, we start by computing the derivative:

d

dt
I(p(t), q(t)) =

d

dt

∑
i∈X

pi ln(
pi
qi

)

=
∑
i

ṗi ln(
pi
qi

) + pi

(
ṗi
pi
− q̇i
qi

)

=
∑
i,j

Hijpj ln(
pi
qi

) + pi

(
Hijpj
pi
− Hijqj

qi

)
where in the second line we used the master equation. We can rewrite this as

d

dt
I(p(t), q(t)) =

∑
i,j

Hijpj

(
ln(

pi
qi

) + 1− piqj
pjqi

)
.

Note that the last two terms cancel when i = j. Thus, if we break the sum into an
i 6= j part and an i = j part, we obtain

d

dt
I(p(t), q(t)) =

∑
i 6=j

Hijpj

(
ln(

pi
qi

) + 1− piqj
pjqi

)
+
∑
j

Hjjpj ln(
pj
qj

).

Next we use the infinitesimal stochastic property of H to write Hjj as the sum of
−Hij over i not equal to j:

d

dt
I(p(t), q(t)) =

∑
i 6=j

Hijpj

(
ln(

pi
qi

) + 1− piqj
pjqi

)
−
∑
i 6=j

Hijpj ln(
pj
qj

)

=
∑
i 6=j

Hijpj

(
ln(

piqj
pjqi

) + 1− piqj
pjqi

)
.

Since Hij ≥ 0 when i 6= j and ln(s) + 1− s ≤ 0 for all s > 0, we conclude that

d

dt
I(p(t), q(t)) ≤ 0 (13)

as desired. To be precise, this derivation only applies when qi is nonzero for all
i ∈ X. If this is true at any time, it will be true for all later times. If some
probability qi vanishes, the relative entropy I(p, q) can be infinite. As we evolve p
and q in time according to the master equation, the relative entropy can drop from
infinity to a finite value, but never increase.
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One of the nice features of working with a finite state space X is that in this case
every Markov process admits one or more steady states: probability distributions
q that obey

Hq = 0

and thus give solutions of the master equation that are constant in time [4]. If we
fix any one of these, we can conclude

d

dt
I(q, p(t)) ≤ 0 (14)

for any solution of the master equation. This is the same inequality we have al-
ready seen for the replicator equation when q is a dominant mixed strategy, namely
Equation (8). But for a Markov process, we also have

d

dt
I(p(t), q) ≤ 0, (15)

and this, it turns out, has a nice meaning in terms of statistical mechanics.
In statistical mechanics we want to assign an energy Ei to each state such that

the steady state probabilities qi are given by the so-called Boltzmann distribu-
tion:

qi =
e−βEi

Z(β)
. (16)

Here β is a parameter which in physics is defined in terms of the temperature T by
β = 1/kT , where k is Boltzmann’s constant. The quantity Z(β) is a normalizing
constant called the partition function, defined by

Z(β) =
∑
i∈X

e−βEi (17)

to ensure that the probabilities qi sum to one.
However, whenever we have a probability distribution q on a finite set X, we

can turn this process on its head. We start by arbitrarily choosing β > 0. Then we
define energy differences by

Ei − Ej = −β−1 ln(
qi
qj

). (18)

This determines the energies up to an additive constant. If we make a choice for
these energies, we can define the partition function by Equation (17), and Boltz-
mann’s law, Equation (16), will follow.

We can thus apply ideas from statistical mechanics to any Markov process, for
example the process of genetic drift. The concepts of ‘energy’ and ‘temperature’
play only a metaphorical role here; they are not the ordinary physical energy and
temperature. However, the metaphor is a useful one.

So, let us fix a Markov process on a set X together with a steady state probability
distribution q. Let us choose a value of β, choose energies obeying Equation (18),
and define the partition function Z(β) by Equation (17). To help the reader’s
intuition we define a temperature T = 1/β, setting Boltzmann’s constant to 1.
Then, for any probability distribution p on X we can define the expected energy:

〈E〉p =
∑
i∈X

piEi
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and the entropy:

S(p) = −
∑
i∈X

pi ln(pi).

From these, we can construct the all-important free energy

F (p) = 〈E〉p − TS(p).

In applications to physics and chemistry this is, roughly speaking, the amount of
‘useful’ energy, meaning energy not in the form of random ‘heat’, which gives the
term TS(p).

We can prove that this free energy can never increase with time if we evolve p
in time according to the master equation. This is a version of the Second Law of
Thermodynamics. To prove this, note that

F (p) = 〈E〉p − TS(p)

=
∑
i∈X

piEi + T pi ln(pi),

but by Boltzmann’s law, Equation (16), we have

Ei = −T (ln(qi) + ln(Z))

so we obtain

F (p) = −T
∑
i∈X

(pi ln(qi)− pi ln(pi) + pi ln(Z)) ,

or, using the definition of relative information and the fact that the pi sum to one:

F (p) = T (I(p, q)− ln(Z)).

In the special case where p = q the relative information vanishes and we obtain

F (q) = −T ln(Z).

Substituting this into the previous equation, we reach an important result:

F (p)− F (q)

T
= I(p, q). (19)

Relative information is proportional to a difference in free energies! Since relative
entropy is nonnegative, we immediately see that any probability distribution p has
at least as much free energy as the steady state q:

F (p) ≥ F (q).

Moreover, if we evolve p(t) according to the master equation, the decrease of relative
entropy given by Equation (15) implies that

d

dt
F (p(t)) ≤ 0.

These two facts suggest, but do not imply, that p(t)→ q as t→∞. This is in fact
true when there is a unique steady state, but not necessarily otherwise. One can
determine the number of linearly independent steady states from the topology of
the graph associated to the Markov process [4, Section 22.2].
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5. Reaction Networks

Reaction networks are commonly used in chemistry, where they are called ‘chemi-
cal reaction networks’. An example is the Krebs cycle, important in the metabolism
of aerobic organisms. A simpler example is the Michaelis–Menten model of an en-
zyme E binding to a substrate S to form an intermediate I, which in turn can
break apart into a product P and the original enzyme:

E + S
α //

I
β
oo

γ
// E + P.

Mathematically, this is a directed graph. The nodes of this graph, namely E+S, I,
and E +P , are called ‘complexes’. Complexes are finite sums of ‘species’, which in
this example are E,S, I, and P . The edges of this graph are called ‘reactions’. Each
reaction has a name, which may also serve as the ‘rate constant’ of that reaction.
In real-world chemistry, every reaction has a reverse reaction going the other way,
but if the rate constant for the reverse reaction is low enough, we may simplify our
model by omitting it. This is why the Michaelis–Menten model has no reaction
going from E + P back to I.

From a reaction network we can extract a differential equation called its ‘rate
equation’, which describes how the population of each species changes with time.
We treat these populations as functions of time, taking values in [0,∞). If we use
PE as the name for the population of the species E, and so on, the rate equation
for the above reaction network is:

d

dt
PE = −αPEPS + βPI + γPI

d

dt
PS = −αPEPS + βPI

d

dt
PI = αPEPS − γPI

d

dt
PP = γPI

We will give the general rules for extracting the rate equation from a reaction
network, but the reader may enjoy guessing them from this example. It is worth
noting that chemists usually deal with ‘concentrations’ rather than populations: a
concentration is a population per unit volume. This changes the meaning and the
values of the rate constants, but the mathematical formalism is the same.

More precisely, a reaction network consists of:

• a finite set S of species,
• a finite set X of complexes with X ⊆ NS ,
• a finite set T of reactions or transitions,
• maps s, t : T → X assigning to each reaction its source and target,
• a map r : T → (0,∞) assigning to each reaction a rate constant.

The reader will note that this looks very much like our description of a Markov pro-
cess in Section 4. As before, we have a graph with edges labelled by rate constants.
However, now instead of the nodes of our graphs being abstract ‘states’, they are
complexes: finite linear combinations of species with natural number coefficients,
which we can write as elements of NS .
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For convenience we shall often write k for the number of species present in a
reaction network, and identify the set S with the set {1, . . . , k}. This lets us write
any complex as a k-tuple of natural numbers. In particular, we write the source
and target of any reaction τ as

s(τ) = (s1(τ), . . . , sk(τ)) ∈ Nk,

t(τ) = (t1(τ), . . . , tk(τ)) ∈ Nk.
The rate equations involve the population Pi ∈ [0,∞) of each species i. We

can summarize these in a population vector

P = (P1, . . . , Pk).

The rate equations say how this vector change with time. It says that each reaction
τ contributes to the time derivative of P via the product of:

• the vector t(τ)− s(τ) whose ith component is the change in the number of
items of the ith species due to the reaction τ ;
• the concentration of each input species i of τ raised to the power given by

the number of times it appears as an input, namely si(τ);
• the rate constant r(τ) of τ .

The rate equations are

d

dt
P (t) =

∑
τ∈T

r(τ)(t(τ)− s(τ))P (t)s(τ), (20)

where P : R→ [0,∞)k and we have used multi-index notation to define

P s(τ) = P
s1(τ)
1 · · ·P sk(τ)k .

Alternatively, in components, we can write the rate equation as

Ṗi =
∑
τ∈T

r(τ)(ti(τ)− si(τ))P s(τ).

The reader can check that this rule gives the rate equations for the Michaelis–
Menten model.

Reaction networks include Markov processes as a special case. A reaction net-
work where every complex is just a single species—that is, a vector in NS with one
component being 1 and all the rest 0—can be viewed as a Markov process. For a
reaction network that corresponds to a Markov process in this way, the rate equa-
tion is linear, and it matches the master equation for the corresponding Markov
process. The goal of this section is to generalize results on relative information from
Markov processes to other reaction networks. However, the nonlinearity of the rate
equation introduces some subtleties.

The applications of reaction networks are not limited to chemistry. Here is an
example that arose in work on HIV, the human immunodeficiency virus [22]:

0
α // H

β
// 0 H + V

γ
// I

δ // I + V

I
ε // 0 V

ζ
// 0.

Here we have three species:

• H: healthy white blood cells,
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• I: infected white blood cells,
• V : virions (that is, individual virus particles).

The complex 0 above is short for 0H + 0I + 0V : that is, ‘nothing’. We also have
six reactions:

• α: the birth of one healthy cell, which has no input and one H as output.
• β: the death of a healthy cell, which has one H as input and no output.
• γ: the infection of a healthy cell, which has one H and one V as input, and

one I as output.
• δ: the reproduction of the virus in an infected cell, which has one I as

input, and one I and one V as output.
• ε: the death of an infected cell, which has one I as input and no output.
• ζ: the death of a virion, which has one V as input and no output.

For this reaction network, if we use the Greek letter names of the reactions as names
for their rate constants, we get these rate equations:

d

dt
PH = α− βPH − γPHPV

d

dt
PI = γPHPV − εPI

d

dt
PV = −γPHPV + δPI − ζPV .

The equations above are not of the Lotka–Volterra type shown in Equation
(3), because the time derivative of PH contains a term with no factor of PH , and
similarly for PI and PV . Thus, even when the population of one of these three
species is initially zero, it can become nonzero. However, many examples of Lotka–
Volterra equations do arise from reaction networks. For example, we could take
two species:

• R: rabbits,
• W : wolves,

and form this reaction network:

R
α // 2R R+W

β
// 2W W

γ
// 0.

Taken literally, this seems like a ludicrous model: rabbits reproduce asexually, a
wolf can eat a rabbit and instantly give birth to another wolf, and wolves can also
die. However, the resulting rate equations are a fairly respectable special case of
the famous Lotka–Volterra predator-prey model:

d

dt
PR = αPR − βPRPW

d

dt
PW = βPRPW − γPW .

It is probably best to think of this as saying no more than this: general results
about reaction networks will also apply to Lotka–Volterra equations that can arise
from this framework.

In our discussion of the replicator equation, we converted populations to proba-
bility distributions by normalizing them, and defined relative information only for
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the resulting probability distributions. We can, however, define relative informa-
tion for populations, and this is important for work on reaction networks. Given
two populations P,Q : X → [0,∞), we define

I(P,Q) =
∑
i∈X

Pi ln(
Pi
Qi

)− (Pi −Qi). (21)

When P and Q are probability distributions on X this reduces to the relative
information defined before in Equation (1). As before, one can prove that

I(P,Q) ≥ 0.

To see this, note that a differentiable function f : R → R is convex precisely when
its graph lies above any of its tangent lines:

f(y) ≥ f(x) + f ′(x)(y − x).

This is true for the exponential function, so

ey ≥ ex + ex(y − x)

and thus for any p, q > 0 we have

q ≥ p+ p(ln(q)− ln(p))

or

p ln(
p

q
)− (p− q) ≥ 0.

Thus, each term of the sum in Equation (21) is greater than or equal to zero, so
I(P,Q) ≥ 0. Furthermore since we have equalities above only when x = y, or in
other words p = q, we also obtain

I(P,Q) = 0 ⇐⇒ P = Q.

So, relative information has the properties of a divergence, but for arbitrary popu-
lations P,Q : X → [0,∞).

A function very similar to I(P,Q) was used by Friedrich Horn and Roy Jackson
in their important early paper on reaction networks [21]. They showed that this
function is nonincreasing when P evolves according to the rate equation and Q
is a steady state of a special sort, called a ‘complex balanced equilibrium’. Later
Martin Feinberg, another of the pioneers of reaction network theory, gave a shorter
proof of this fact [10]. Our goal here is to explain this result and present Feinberg’s
proof.

We say that a population Q is complex balanced if for each complex κ ∈ K
we have ∑

τ :s(τ)=κ

r(τ)Qs(τ) =
∑

τ :t(τ)=κ

r(τ)Qs(τ). (22)

This says that each complex is being produced at the same rate at which it is being
destroyed. This is stronger than saying Q is a steady state solution of the rate
equation. On the other hand, it is weaker than the ‘detailed balance’ condition
saying that each reaction occurs at the same rate as the reverse reaction. The
founders of chemical reaction theory discovered that many results about detailed
balanced equilibria can just as easily be shown in the complex balanced case. The
calculation below is an example.
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We have
d

dt
I(P (t), Q) =

∑
i∈X

Ṗi ln(
Pi
Qi

),

so, using the rate Equation (20), we obtain:

d

dt
I(P (t), Q) =

∑
i∈X

∑
τ∈T

r(τ)
(
ti(τ)− si(τ)

)
ln(

Pi
Qi

) P s(τ)

=
∑
i∈X

∑
τ∈T

r(τ)

[
ln

((
Pi
Qi

)ti(τ))
− ln

((
Pi
Qi

)si(τ))]
P s(τ).

We can convert each sum over i of the logarithms into a logarithm of a product,
and if we define a vector

P

Q
= (

P1

Q1
, . . . ,

Pk
Qk

),

we can use multi-index notation to write these products very concisely, obtaining

d

dt
I(P (t), Q) =

∑
τ∈T

r(τ)

[
ln

((
P

Q

)t(τ))
− ln

((
P

Q

)s(τ))]
P s(τ)

=
∑
τ∈T

r(τ)

[
ln

((
P

Q

)t(τ))
− ln

((
P

Q

)s(τ))](
P

Q

)s(τ)
Qs(τ).

Then, using the fact that (lnx− ln y)y ≤ x− y, we obtain

d

dt
I(P (t), Q) ≤

∑
τ∈T

r(τ)

[(
P

Q

)t(τ)
−
(
P

Q

)s(τ)]
Qs(τ).

Next, we write the sum over reactions as a sum over complexes κ and then a sum
over reactions having κ is their target (for the first term) or target (for the second):

d

dt
I(P (t), Q) ≤

∑
κ∈X

 ∑
τ :t(τ)=κ

r(τ)

(
P

Q

)t(τ)
Qs(τ) −

∑
τ :s(τ)=κ

r(τ)

(
P

Q

)s(τ)
Qs(τ)

 .
We can pull out the factors involving P

Q :

d

dt
I(P (t), Q) ≤

∑
κ∈X

(
P

Q

)κ  ∑
τ :t(τ)=κ

r(τ)Qs(τ) −
∑

τ :s(τ)=κ

r(τ)Qs(τ)

 ,
but now the right side is zero by the complex balanced condition, Equation (22).
Thus, we have

d

dt
I(P (t), Q) ≤ 0, (23)

whenever P (t) evolves according to the rate equation and Q is a complex balanced
equilibrium.

As noted above, a reaction network where every complex consists of a single
species gives a linear rate equation. In this special case we can strengthen the
above result: we have

d

dt
I(P (t), Q(t)) ≤ 0 (24)
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whenever P (t) and Q(t) evolve according to the rate equation. The reason is in
this case, the rate equation is also the master equation for a Markov process. Thus,
we can reuse the argument leading up to inequality (13) for Markov processes,
since nothing in this argument used the fact that the probability distributions were
normalized.

6. Conclusions

We have seen theorems guaranteeing that relative information cannot increase
in three different situations: evolutionary games described by the replicator equa-
tion, Markov processes, and reaction networks. In all cases, the decrease of relative
entropy is closely connected to the approach to equilibrium as t → ∞. For the
replicator equation, this equilibrium is a dominant mixed strategy. For a Markov
process, whenever there is a unique steady state, all probability distributions ap-
proach this steady state as t → ∞. For reaction networks, the appropriate notion
of equilibrium is a complex balanced equilibrium, generalizing the more familiar
concept of detailed balanced equilibrium.

It is natural to inquire about the mathematical relation between these results.
Inequality (24) for Markov processes resembles inequality (23) for reaction networks.
However, neither result subsumes the other. The master equation for a Markov
process is a special case of the rate equation for a reaction network. However, the
result for reaction networks says only that

d

dt
I(P (t), Q) ≤ 0

when Q is a complex balanced equilibrium and P (t) obeys the rate equation, while
the result for Markov processes says that

d

dt
I(P (t), Q(t)) ≤ 0

whenever P (t) and Q(t) obey the master equation. Furthermore, neither of these
inequalities subsume or are subsumed by the result for the replicator equation,
inequality (8). Indeed, this result applies only to the probability distributions
obtained by normalizing population distributions, not populations. Furthermore it
is ‘turned around’, in that sense that q appears first:

d

dt
I(q, p(t)) ≤ 0

whenever p(t) obeys the replicator equation and q is a dominant strategy. We know
of no results showing that I(p(t), q) is nonincreasing when p(t) obeys the replicator
equations, nor results showing that I(P (t), Q) or I(Q,P (t)) is nonincreasing when
P (t) obeys the Lotka–Volterra equation.

In short, while relative entropy is nonincreasing in the approach to equilibrium
in all three situations considered here, the details differ in significant ways. A
challenging open problem is thus to find some ‘super-theorem’ that has all three of
these results as special cases. The work of Gorban [14] is especially interesting in
this regard, since he tackles the challenge of finding new nonincreasing functions
for reaction networks.
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