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Abstract

Storytellers have many strategies for luring in their audience and keeping them interested.
These include standardized narrative structures, vivid characters, breaking down long stories
into episodes, and subtle methods of reminding the readers of facts they may have forgotten. The
typical style of writing mathematics systematically avoids these strategies, since the explicit goal
is “proving a fact” rather than “telling a story”. Readers are left to provide their own narrative
framework, which they do privately, in conversations, or in colloquium talks. As a result, even
expert mathematicians find papers — especially those outside their own field — boring and
difficult to understand. This impedes the development of mathematics.

Introduction

In their research papers, mathematicians usually eschew narrative techniques designed to keep read-
ers interested, since their main goal is not to “entertain” or even explain, but present logical argu-
ments as efficiently as possible. While this makes a certain sense, it neglects the human dimension
of mathematics. It neglects the fact that a piece of mathematics is almost useless if almost nobody
understands it. But, before anyone can understand a piece of mathematics, they must first become
interested in it. So, for a mathematician who wants to fully develop a piece of mathematics, discovery
and proof are only the first steps on a longer road. The next step is getting people interested.

Unfortunately, mathematicians are not trained in this art. Indeed, their writing is famous for
being “dry”. There are exceptions, and these exceptions are worth studying. But it also makes sense
to look to people whose whole business is getting people interested: story-tellers.

Everyone enjoys a good story. We have been telling and listening to stories for untold millennia.
Stories are one of our basic ways of understanding the world. I believe that when we read a piece of
mathematics, part of us is reading it as a highly refined and sublimated sort of story, with characters
and a plot, conflict and resolution.

If this is true, maybe we should consider some tips for short story writers, and see how they can
be applied — in transmuted form — to the writing of mathematics. These tips may sound a bit
crass to mathematicians, or even readers of “serious” fiction. But they go straight to the heart of
what gets people interested, and what keeps them interested, in a piece of writing.

Here are ten tips for short story writers, taken from a typical online guide [2], but listed in a
somewhat different order:

• Write a Catchy First Paragraph

• Choose a Point of View

• Use Setting and Context

• Develop Your Characters

• Write Meaningful Dialogue
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• Set up the Plot

• Create Conflict and Tension

• Build to a Crisis or a Climax

• Find a Resolution

Let us gauge a typical mathematics paper according to these guidelines, and see what we learn.

Write a Catchy First Paragraph

We are constantly encountering texts; we don’t bother reading all the way through most of them.
Once texts were rare and precious. Now, in the era of the world-wide web, there is always too much
to read. We must efficiently cull out most of the material vying for our attention. Often we base
our decision on the first sentence or two.

Since most writers of short stories succeed largely on their sheer number of readers, and few
people read stories because they need to, writers of short stories learn the importance of quickly
grabbing the reader’s attention. In a catchy story, each sentence makes the reader want to read the
next. The first few sentences bear the brunt of this responsibility.

Mathematicians operate in a more forgiving environment, with guaranteed permanent employ-
ment for many. They can succeed with only few people reading their work. Consider two of the
most famous mathematicians of recent years: Andrew Wiles and Grigori Perelman. How many of us
have really read Wiles’ proof of Fermat’s last theorem, or Perelman’s sketched proof of the Poincaré
conjecture? Even among professional mathematicians, most are satisfied to know that a few experts
vouch for these proofs’ validity. So, instead of broadening their readership, mathematicians are
mostly concerned with impressing other experts in their field.

Most mathematics papers begin according to a strict format. First comes a paragraph-long
“abstract”. This summarizes the main results of the paper, usually in language understandable
only by specialists in the given field. Here is a typical example [1], randomly chosen from the main
electronic database of math papers, the arXiv:

First and second fundamental theorems are given for polynomial invariants of a class of
pseudo-reflection groups (including the Weyl groups of type Bn), under the assumption
that the order of the group is invertible in the base field. Special case of the result is
a finite presentation of the algebra of multisymmetric polynomials. Reducedness of the
invariant commuting scheme is proved as a by-product. The algebra of multisymmetric
polynomials over an arbitrary base ring is revisited.

Few people would call this an attention-grabbing start. The passive voice, the ungrammatical
second sentence (“broken English is the international language of science”), and most of all the
density of technical terminology conspire to filter down the potential audience of this paper to the
few experts who are eager to know more about polynomial invariants of pseudo-reflection groups.

An abstract like this is enough to make most non-mathematicians want to run away screaming.
More important here is how trained mathematicians react. As a widely read dilettante, perhaps my
personal reaction is worth noting. Different branches of mathematics have their own “fundamental
theorems”. I don’t know which “first and second fundamental theorems” were being alluded to
here. This makese me curious, but also intimidated. If the author eventually deigns to explain these
theorems, I’ll be happy, but if he doesn’t I’ll be frustrated. Experience has taught me that the odds
are about 50-50.

I also don’t know what a “pseudo-reflection group” is, but I can guess it is a generalization of
something I already know and love: a “reflection group”. Reflections groups describe the symmetries
of regular polygons, Platonic solids, and their higher-dimensional kin. In particular, the Weyl group
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of type Bn is the symmetry group of an n-dimensional cube. I know a bit about this group, and
would like to know more.

I also know a bit about “polynomial invariants” of reflection groups. For the symmetry group
of the n-dimensional cube, these are just polynomial functions on an n-dimensional cube that don’t
change when you rotate or reflect the cube. So, they are functions of n variables, say x1, . . . , xn,
that don’t change when you permute these variables or replace any variable with its negative. Here
are two examples when n = 2:

f(x1, x2) = x2
1 + x2

2

and
g(x1, x2) = x2

1x
2
2

You can see that if you switch x1 and x2, or replace either x1 or x2 by its negative, these functions
don’t change. That’s what “invariant” means.

I first became interested in polynomial invariants of reflection groups when I learned they have
applications to geometry, topology and physics. The tale behind this is intricate and fascinating.
Though reflection groups describe discrete symmetries, each one is closely linked to to a specific
continuous group of symmetries. For example, the Weyl group of type Bn is linked to the group
of rotations in (2n + 1) dimensions. Through a chain of reasoning too clever to explain here, this
winds up implying that any polynomial invariant for the Weyl group of type Bn gives a recipe for
computing information about the topology of (2n + 1)-dimensional spaces! These recipes, called
“characteristic classes” are also important for theoretical physicists studying fields in (2n + 1)-
dimensional spacetimes.

Given all this, I would happily learn more about polynomial invariants of reflection groups —
and even “pseudo-reflection groups”, whatever those are. But, I know that polynomial invariants of
reflection groups have been studied for a long time; my understanding must lag decades behind the
state of the art. So, I can guess that the Weyl groups of type Bn are mentioned merely because the
author considers them an elementary example of the more general “class of pseudo-reflection groups”
he is really interested in. This discourages me from reading this paper to indulge my interest.

The phrase “the order of the group is invertible in the base field” puts me on notice that the author
is studying polynomial invariants that take values not in the rational, real, or complex numbers —
the cases I’m most familiar with — but in significantly different number systems. Again this fills
me with curiosity but also some trepidation. I don’t know what “multisymmetric polynomials” are,
and I am not sure I want to. Finally, the phrase “reducedness of the invariant commuting scheme”
lets me know that to enjoy this paper, it would help if I knew more algebraic geometry than I do.

Overall, the main effect the abstract has on me is to inspire curiosity, but also hint that reading
this paper will not satisfy that curiosity. Nothing suggests the author will bend over backwards to
help out an amateur like me. So, I feel like not reading this paper.

But beware: if you think I’m trying to criticize this particular paper, you have completely missed
my point. I think my reaction to this paper is similar to how most mathematicians react to most
mathematics papers. For any given paper, I bet at least 95% of the mathematicians who see the
abstract would decide it’s not worth going on to read further. (It would be interesting to compile
statistics on this. With the facilities of the arXiv, it should be possible to see what fraction of the
people who look at a given abstract go on to download the paper. But, even looking at the abstract
indicates a higher-than-average level of interest in the subject in question.)

In short, “attention-grabbing” is precisely what the typical beginning of a math paper is not.

Use Setting and Context

In a short story, the reader is usually “located” as an observer to some scene of action, with a definite
point of view — perhaps in a room somewhere, perhaps in some character’s mind, or whatever. The
story should quickly and unobtrusively establish this context.
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In a typical math paper, setting the scene is usually done in the “introduction”, which comes
after the abstract. This section, usually between 1 and 10 pages long, explains the main results in a
bit more detail than the abstract, and put these results in their historical and mathematical context.

It’s very hard to appreciate the virtues of piece of mathematics without the necessary background.
At the very simplest level, this requires understanding all the words: mathematics bristles with
technical terminology. So, the introduction to a good math paper should set the scene as simply as
possible, with a minimum of fancy vocabulary. Often this requires “watering down” the results being
described — stating corollaries or special cases instead of the full theorems in maximal generality.
Sometimes one even needs to leave out technical conditions required for the results to really be true.
In this case, one should warn the reader that one is doing so.

While most mathematicians could do better at explaining terminology, they are aware of the
issues I just mentioned. Reviewing definitions is common practice, and phrases like “under mild
assumptions” abound in the introductions to math papers. Where mathematicians really fall down
is in explaining the context of their work. New results rely on previous ones not only for their proofs,
but for their interest.

Here is the introduction to the paper whose abstract I already analyzed. I’ll interrupt it with a
few small remarks, and then comment in more detail.

Fix natural numbers n and q, and a field K. Apart from Theorem 2.7 and Section 5,
we shall assume that n!q is invertible in K, and assume that K contains a primitive qth
root of 1. Denote by G = G(n, q) the subgroup of GL(n,K) consisting of the monomial
matrices whose non-zero entries are qth roots of 1. The order of G is n!qn, and as
an abstract group, G is isomorphic to the wreath product of the cyclic group Cq of
order q and the symmetric group Sn; that is, G is isomorphic to a semi-direct product
(Cq × · · · × Cq)o Sn.

This first paragraph is on the dry side even for mathematics papers, but it’s not unusual. It is
not welcoming; it assumes the reader already wants to know the results this paper contains, and dives
right in, defining a class of groups G = G(n, q). With careful attention, a non-expert like myself
could guess that these are the “class of pseudo-reflection groups” mentioned in the introduction.
This is confirmed in the next two sentences:

Consider the natural action of G on V = Kn. Since G is generated by pseudo-reflections,
[....]

However, the author does not expend much energy to make this clear. It would have been easy
to do so, simply by starting the introduction with a sentence like “In this paper we study a class
of pseudo-reflection groups G(n, q) defined as follows”. Without a cue like this, the non-expert can
easily miss what’s going on.

The sentence beginning “Since G is generated by pseudo-reflections...” also informs me that I’m
unlikely to learn what a pseudo-reflection is here: the time for defining them has arrived, but no
definition is given. So, my curiosity about these will be frustrated.

Continuing:

Since G is generated by pseudo-reflections, by the Shephard-Todd Theorem [Shephard-
Todd] (see [Chevalley] for a uniform proof in characteristic zero, and [Smith] for the
case when char(K) is positive and co-prime to the order of G) the algebra K[V ]G of
polynomial invariants is generated by algebraically independent elements.

While some mathematicians would find this sentence forbidding, it actually comes as a great
relief to me, since it is the first one that explicitly mentions a result I know. Let me explain what
the Shephard–Todd theorem says in a special case. Suppose G is the Weyl group of type B2 — that
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is, the symmetry group of the square. The algebra K[V ]G mentioned above is just another notation
for the polynomial invariants of G. In the case at hand, these are polynomial functions on a square
that don’t change when you rotate or reflect the square. I mentioned two examples:

f(x1, x2) = x2
1 + x2

2

and
g(x1, x2) = x2

1x
2
2

The Shephard–Todd theorem says you can get all the rest from these two. More precisely: if you
have any polynomial in the variables x1 and x2 that doesn’t change when you permute the variables
or replace a variable by its negative, you can express it as a linear combination of functions of the
form fngm. Even better, the Shephard–Todd theorem says there’s just just one way to express it in
this manner! — this is what “generated by algebraically independent elements” means in the above
passage.

I had thought that Chevalley proved this result; I didn’t know it was called the Shephard–Todd
theorem. So, I just learned something from reading this introduction. By glancing at the bibliog-
raphy, I can see that Chevalley’s paper appeared in 1955, while Shephard and Todd’s paper dates
back to 1954. And, I can see that in 1985, someone named Smith generalized this result to number
systems significantly different from the rational, real and complex numbers — so-called “fields of
positive characteristic”. Smith’s paper is entitled “On the invariant theory of finite pseudoreflection
groups.” So, if ever want to know what a “pseudo-reflection group” is, I now have a reference to try.

These are facts worth knowing if I ever get around to studying this subject further. More
importantly, they make the author’s work into an episode of a larger ongoing story. This is not
primarily a story about mathematicians: it’s a story about mathematical entities, and how they are
gradually becoming better understood.

However, all this information is packed into a single sentence, which can only be appreciated by
readers already familiar with polynomial invariants of reflection groups!

Next:

Now consider the diagonal action of G on V m = V ⊕ · · · ⊕V , the direct sum of m copies
of V . The algebra K[V m]G is no longer a polynomial ring if m ≥ 2 (and G is not the
trivial group). In the present paper we show a very short and simple argument that yields
simultaneously the generators of K[V m]G (first fundamental theorem) and the relations
among these generators (second fundamental theorem). Our main result is Theorem 3.2,
which provides an explicit finite presentation of K[V m]G(n,q) in terms of generators and
relations. In the proof we apply Derksen’s degree bound on syzygies [Derksen] and ideas
of Wallach and Garsia [Haiman].

Since I understand the notation and terminology here, I am happy: I now know what the author
means by “first fundamental theorem” and “second fundamental theorem”! You may recall that
when I described a special case of the Shephard–Todd theorem, my description consisted of two
parts:

• Every polynomial invariant for the symmetry group of the square can be built up from two
functions f and g. In this situation, the process of building up fancy functions like f 2g+ 3fg3

is usually called “generating”, and the building blocks f and g are called “generators”.

• Every polynomial invariant can be built up in a unique way from the functions f and g. In
other words, no equations like 2f 2g = g2 + f4 are true. In this situation, we say there are no
“relations” among the generators.

From what the author writes above, I can tell that the first part, which deals with generators, is
what he is calling the “first fundamental theorem”. The second part, which deals with relations, is
what he is calling the “second fundamental theorem”.
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In the special case q = 1 we have G = Sn, and K[V m]Sn is the algebra of multisymmetric
functions, which received much attention in the literature (see the references in Remark
2.6 (ii)).

This sentence also makes me happy, because it explains the phrase “multisymmetric polynomi-
als,” which appeared earlier in the abstract. I will not bother to explain the term here.

If we were to compare this introduction to a short story, the best analogy might be a tricky
detective story. Clues from later in the text shed light on secrets hidden in earlier portions. To un-
derstand what is really happening, the reader must read back and forth until the meaning gradually
oozes forth. This is quite typical of mathematics papers.

The introduction concludes with, some helpful hints for readers wanting to know how the paper
fits into the context of earlier work:

Our approach gives new insight even in this special case, especially by its simplicity
and transparency compared to the other approaches in the literature. In addition we
gain some technical improvements in the known results. We mention also that no finite
presentation of the algebra of multisymmetric functions appeared in prior work (apart
from the case of char(K) = 2 studied in [Feshbach]).

Another interesting special case is when q = 2, and the group G is the Weyl group of
type Bn. The generators of K[V m]G(n,2) were determined in [Jerjen] and [Hunziker].
To the best of our knowledge, the relations have never been considered in the literature
when q > 1.

The fundamental relation appearing here can be deduced from the theory of trace iden-
tities of matrices. This observation leads to the corollary that the GL(n,C)-invariant
commuting scheme is reduced, see Theorem 4.1.

The present paper joins the content of our preprints [Domokos1] and [Domokos2] (some
digressions from the preprints have been omitted). In addition, in Section 5 we adjust our
method for arbitrary base rings and clarify and strengthen the known results in this case.
In particular, in Theorem 5.5 we give a new characteristic free (infinite) presentation of
the ring of multisymmetric polynomials.

Note, however, that no reason for generalizing the original Shephard–Todd theorem is ever given.
The original theorem is part of a fascinating web of ideas involving geometry, topology and physics.
Does this web extend to include the generalizations? I can’t tell.

To summarize: the introduction of a typical mathematics paper does indeed “set the scene,” but
in a way that’s utterly incomprehensible to non-mathematicians, and — more importantly — only
understandable by non-specialists if they exert themselves and know enough to pick up the clues
scattered here and there. The broader context, which answers the question why does any of this
matter?, is often left unspoken.

I already mentioned my guess that at least 95% of the mathematicians who see the abstract of
a given paper will not read further, because the abstract does not grab their attention. I suspect
that of those who go on to read the introduction, at least 90% will stop there, because the scene has
not been set in a way they can understand. To the mathematician who understands its context, a
paper may be very exciting. Without enough context, it will be boring.

Develop your Characters

If a mathematics paper is a kind of story, the “characters” must be the mathematical entities involved
in this paper. Some of these characters are more important than others; there are usually just a
few heroes (and sometimes villians). For the paper to be enjoyable, the main characters must be
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introduced in a way that marks them as special and highlights their already known properties: their
“personality”.

In the paper discussed above, the hero is a certain “class of pseudo-reflection groups”. It makes
its entrance already in the first line of the abstract:

First and second fundamental theorems are given for polynomial invariants of a class of
pseudo-reflection groups (including the Weyl groups of type Bn), under the assumption
that the order of the group is invertible in the base field.

Note however that it enters masked: there is no way from the abstract to tell precisely which
class of pseudo-reflection groups will be discussed. We must commit to reading the introduction to
find that out. The hero lets his mask slip in the first paragraph:

Fix natural numbers n and q, and a field K. Apart from Theorem 2.7 and Section 5,
we shall assume that n!q is invertible in K, and assume that K contains a primitive qth
root of 1. Denote by G = G(n, q) the subgroup of GL(n,K) consisting of the monomial
matrices whose non-zero entries are qth roots of 1. The order of G is n!qn, and as
an abstract group, G is isomorphic to the wreath product of the cyclic group Cq of
order q and the symmetric group Sn; that is, G is isomorphic to a semi-direct product
(Cq × · · · × Cq)o Sn.

To an insufficiently expert reader, this way of starting the paper will inevitably seem dry as dust
— an unmotivated barrage of assumptions and notation. As mentioned earlier, part of the problem
is that the author fails to mention what must seem obvious to him: the groups G(n, q) are none
other than the “class of pseudo-reflection groups” the paper is all about!

After penetrating this ruse, we can note something very important: the tendency of mathematics
to singularize the plural. What is really a class of groups G(n, q), depending on the numbers n and
q, is for most of this paper treated as an individual group G. The shift in perspective begins in the
first sentence, where the author tells us to “fix” natural numbers n and q — that is, pick particular
ones, without saying which. So, by the time we reach the sentence “Denote by G = G(n, q) the
subgroup...,” we are discussing a particular group G, a typical representative of the class of groups
under discussion.

While this sort of move has been thoroughly analyzed by logicians, and there is nothing mysteri-
ous about it from a purely logical point of view, its relation to the art of story-telling may have been
neglected. It is harder to imagine or sympathize with a “class” of entities than a particular repre-
sentative of that class. When listening to a story, we prefer to imagine one person doing something,
not a mob of similar people doing similar things. Even authors of the crudest sort of politically
engaged fiction, seeking to depict the “plight of the working class”, know enough to tell their story
about a particular member, not the the whole class all at once.

Create Conflict and Tension

The “conflict” in a mathematics paper is usually the struggle to know — often manifested in the
struggle to prove something. As Piet Hein noted,

Problems worthy of attack
prove their worth by fighting back.

The best known epics in mathematics, like the long saga of Fermat’s Last Theorem, gain their
interest from the way truths can resist being known.
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Find a Resolution

The conclusion of a math paper should set our feelings at rest by assuring us those problems that
have been solved have indeed been solved, while reminding us of those that have not yet been solved.

References

[1] M. Domokos, Vector invariants of a class of pseudo-reflection groups and multisymmetric syzi-
gies, available as arxiv:0706:2154.

[2] K. Kennedy, Short stories: 10 tips for novice creative writers, available at
http://jerz.setonhill.edu/writing/creative/shortstory/.

8


