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Gauge Theory

Ordinary gauge theory describes how 0-dimensional par-
ticles transform as we move them along 1-dimensional
paths. It is natural to assign a Lie group element to

each path:

g
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since composition of paths then corresponds to multipli-
cation:
[ ] [ [

while reversing the direction of a path corresponds to
taking inverses:

and the associative law makes the holonomy along a
triple composite unambiguous:
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In short: the topology dictates the algebra!

The electromagnetic field is described by a connection
where the group is U(1). Other forces are described using
other groups.



To really let the topology dictate the algebra, we should
replace the Lie group by a ‘smooth groupoid’: a groupoid
in some convenient category of smooth spaces. Mackaay
and Picken have noted that for any manifold M there
is a smooth groupoid P;(M), the path groupoid, for
which:

e objects are points x € M,

e morphisms are thin homotopy classes of smooth paths
v: 10,1] — M such that () is constant near t = 0, 1.

For any Lie group G, a principal G-bundle P — M gives
a smooth groupoid Trans(P), the transport groupoid,
for which:

e objects are torsors P, for x € M,

e morphisms are torsor morphisms.

Via parallel transport, any connection on P gives a smooth
functor called its holonomy:

hol: P;(M) — Trans(P)

A trivialization of P makes Trans(P) equivalent to G, so
it gives:
hol: P (M) — G



Next let’s study how 1-dimensional ‘strings’ transform
as we move them along 2-dimensional surfaces. Naively
we might wish our holonomy to assign a group element
to each surface like this:

RN
[ ﬂg [ ]
\_/
We can compose surfaces of this sort vertically:

a0

and horizontally:
SN T T
° ﬂg ° ﬂg °
\_/ \_/
Suppose both of these correspond to multiplication in
some Lie group G. To obtain a well-defined holonomy

for this surface regardless of whether we do vertical or
horizontal composition first:

we must have

(9192)(9195) = (9191)(9295)-
This forces G to be abelian!

Pursuing this approach, we ultimately get the theory of
connections on ‘abelian gerbes’. If G = U(1), such a
connection looks locally like a 2-form — and it shows
up naturally in string theory, satisfying equations very
much like those of electromagnetism!
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To go beyond this and get nonabelian higher gauge fields,
we should let the topology dictate the algebra, and con-
sider a connection that gives holonomies both for paths
and for surfaces.

So, let’s replace the path groupoid by some 2-groupoid
where:

e objects are points of M: e

v

e morphisms are certain paths in M: e T T

e 2-morphisms are certain equivalence classes of paths

of paths in M: e “f °

A 2-groupoid allows composition of morphisms:

g Y

/\ /\
[ [ J [ J

vertical composition of 2-morphisms:

Yy

%

and horizontal composition of morphisms:
T R I
o ﬂf ° ﬂf °
\_/ \_/
satisfying various laws, including one that makes this

unambiguous:




More precisely, define the path 2-groupoid P2(M) to
be the smooth 2-groupoid in which:

e objects are points x € M,

e morphisms are smooth paths v: [0, 1] — M with y(¢)
constant near t = 0, 1,

e 2-morphisms are thin homotopy classes of smooth
maps f: [0,1]> — M with f(s,t) independent of s
near s = 0,1 and constant near t = 0, 1.

We might hope for something like this:
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For any Lie 2-group G, a principal G-2-bundle P — M
gives a smooth 2-groupoid Trans(P) where:

e objects are 2-torsors P,
e morphisms are 2-torsor morphisms, f: P, — P,

e 2-morphisms are 2-torsor 2-morphisms 6: f = g¢.

Via parallel transport, a 2-connection on P gives a smooth
2-functor called its holonomy:

hol: Py(M) — Trans(P).

A trivialization of P makes Trans(P) equivalent to G so
it gives

hol: Py(M) — G.
PPNV VVDDVDD2992?

Can we make this precise? Is it true?



Internalization

The crucial trick is ‘internalization’. Ehresmann and
Lawvere showed how to ‘internalize’ concepts by defining
them in terms of commutative diagrams:

A small category, say C, has a set of objects Ob(C), a set of
morphisms Mor(C'), source and target functions

s,t: Ob(C) — Mor(C),
a composition function
o: Mor(C')sx:Mor(C') — Mor(C)
and an identity—assigning function

id: Ob(C) — Mor(C)

making these diagrams commute. . ..

and letting these diagrams live within some category K:

A category in K, say C, has an object Ob(C) € K, an object
Mor(C) € K, source and target morphisms

s,t: Ob(C) — Mor(C),

a composition morphism
o: Mor(C)sx¢Mor(C) — Mor(C)
and an identity-assigning morphism

id: Ob(C) — Mor(C)

making these diagrams commute. . . .

Similarly we can define functors in K and natural
transformations in K, obtaining a 2-category K Cat.
We can also define groups in K and homomorphisms
in K, obtaining a category K Grp.



Smooth Categories, 2-Groups, and Lie 2-Groups

We can categorify concepts from differential geometry
with the help of internalization:

e A smooth category is a category in Diff.

e A strict 2-group (or categorical group) is a
category in Grp.

e A strict Lie 2-group is a category in LieGrp.

A strict 2-group is the same as a strict monoidal category
such that:

e for every object x there exists an object y with
rRy=1,1yQx=1;
e for every morphism f there exists a morphism g with
fg=19f=1
More generally, a 2-group (or gr-category) is a weak
monoidal category such that:
e for every object x there is a specified object z~!
equipped with isomorphisms

[ 1—>x®x_1, e, @r — 1

forming an adjunction;

e for every morphism f there exists a morphism g with
fg=19f=1

We can also define general Lie 2-groups the same way,
working in Diff Cat rather than Cat.



Examples of 2-Groups

1) Any abelian group A gives a strict 2-group with one
object and A as the automorphisms of this object. Lie
2-groups of this kind will be structure 2-groups of 2-
bundles having an abelian gerbe of sections.

2) Any category C' gives a 2-group Aut(C') whose objects
are equivalences f: C — (C and whose morphisms are
natural isomorphisms between these.

3) A group H is a category with one object and all
morphisms invertible. In this case, 2) gives a strict 2-
group Aut(H) whose objects are automorphisms of H
and whose morphisms from f to f’ are elements k € H

with f'(h) = kf(h)k~L.

4) Any Lie group H gives a strict Lie 2-group Aut(H) de-
fined as in 3) but with everything smooth. Lie 2-groups
of this sort will be structure 2-groups of 2-bundles having
a nonabelian gerbe of sections.

...and many ‘more concrete’ examples, some listed in
my paper with Aaron Lauda.



2-Bundles

Toby Bartels has developed a theory of ‘2-bundles’. We
can think of a manifold M as a smooth category with
only identity morphisms. A 2-bundle over M consists

of:
e a smooth category P (the total space),
e a smooth category F' (the standard fiber),
e a smooth functor p: P — M (the projection),

such that each point x € M has an open neighborhood
U for which there exists a smooth equivalence:

f:p'lU—-UxF
such that this diagram commutes:

| UxF

p U

p|p71U

U

The equivalence f is called a local trivialization.
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If F'is a smooth category, G = Aut(F') is a smooth 2-
group. Given a 2-bundle P — M with standard fiber
F', and choosing local trivializations over open sets U;
covering M, we obtain:

e smooth maps
g9ij: UiNnU;j — Ob(G)

e smooth maps

hiji: UiNU; N U, — Mor(G)

with

hije(@): gij(@)gjr(z) — gin(z)

e smooth maps
k;: Ui — Mor(G)

with

Furthermore:

e ) satisfies an equation on quadruple intersections
UiﬂUjﬂUkﬂUgi

Sik Sik
il &1

(the associative law)
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e L satisfies two equations on double intersections
Ui N Uji

(the left unit law) and

&ij /A

&ij

(the right unit law).

More generally, for any smooth 2-group G we say a 2-
bundle P — M has G as its structure 2-group when
Gij, hiji, ki factor through an action G — Aut(F).

In particular, if G acts on F' = G by left multiplication,
P is a principal G-2-bundle. Its fibers are then G-2-
torsors in a suitable sense.

Any 2-bundle has a stack of sections. A principal G-2-
bundle with G = Aut(H) for some Lie group H has a
nonabelian gerbe of sections!
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2-Connections on Principal 2-Bundles

So far Urs Schreiber and I have only handled 2-connections
on principal 2-bundles where the structure 2-group G is
strict.

A strict Lie 2-group G is determined by:
e the Lie group G consisting of all objects of G,

e the Lie group H consisting of all morphisms of G
with source 1,

e the homomorphism ¢t: H — G sending each mor-
phism in H to its target,

e the action o of G on H defined using conjugation in
Mor(G) via
a(g)h = 1,h1,7"

The system (G, H,t,«) satisfies equations making it a
crossed module. Conversely, any crossed module of
Lie groups gives a strict Lie 2-group.

13



Let G be a strict Lie 2-group, let (G, H, t, a) be its crossed
module, and let (g, b, dt, da) be the corresponding
differential crossed module.

If P — M is a principal 2-bundle with structure group
G built using a cover U; of M, we can describe a 2-
connection on P in terms of:

e a g-valued 1-form A; on each open set U,
e an h-valued 2-form B; on each open set U;,

together with some extra data and equations for double
and triple intersections — following the ideas of Breen
and Messing.

If P is trivial all this reduces to:
e a g-valued 1-form A on M,

e an bh-valued 2-form B on M.

Let’s restrict attention to this case and ponder the
existence of a holonomy 2-functor

F:Py(M)— G

built using parallel transport.
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Parallel Transport

Recall: G is a strict Lie 2-group with crossed module
(G, H,t,a). A 2-connection on a trivial principal G-2-
bundle over M consists of:

e a g-valued 1-form A on M,

e an b-valued 2-form B on M.

This data determines a smooth holonomy 2-functor
hol: Po(M) — G

if and only if the fake curvature vanishes:
Fq—dt(B) =0,

where F4 is the usual curvature of A, namely the g-
valued 2-form

Fp=dA+ ANA.

The fake curvature vanishing ensures that parallel trans-
port along a path of paths is invariant under thin homo-
topies — in particular, invariant under reparametriza-
tion! This implies that hol(f) is well-defined for any
2-morphism f: v — 7/ in the the path 2-groupoid.

Vanishing fake curvature is also needed to obtain

hol(f): hol(y) — hol(v").

All this generalizes to nontrivial principal G-2-bundles:
we obtain a holonomy 2-functor

hol: Py(M) — Trans(P)

if and only if the fake curvature vanishes.
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