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Gauge Theory

Ordinary gauge theory describes how 0-dimensional par-
ticles transform as we move them along 1-dimensional
paths. It is natural to assign a Lie group element to

each path:

•

g

&&
•

since composition of paths then corresponds to multipli-
cation:

•

g

&&
•

g′

&&
•

while reversing the direction of a path corresponds to
taking inverses:

• •

g−1

xx

and the associative law makes the holonomy along a

triple composite unambiguous:

•

g

&&
•

g′

&&
•

g′′

&&
•

In short: the topology dictates the algebra!

The electromagnetic field is described by a connection
where the group is U(1). Other forces are described using

other groups.
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To really let the topology dictate the algebra, we should
replace the Lie group by a ‘smooth groupoid’: a groupoid

in some convenient category of smooth spaces. Mackaay
and Picken have noted that for any manifold M there

is a smooth groupoid P1(M), the path groupoid, for
which:

• objects are points x ∈ M ,

• morphisms are thin homotopy classes of smooth paths
γ : [0, 1] → M such that γ(t) is constant near t = 0, 1.

For any Lie group G, a principal G-bundle P → M gives
a smooth groupoid Trans(P ), the transport groupoid,
for which:

• objects are torsors Px for x ∈ M ,

• morphisms are torsor morphisms.

Via parallel transport, any connection on P gives a smooth

functor called its holonomy:

hol : P1(M) → Trans(P )

A trivialization of P makes Trans(P ) equivalent to G, so
it gives:

hol : P1(M) → G
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Next let’s study how 1-dimensional ‘strings’ transform
as we move them along 2-dimensional surfaces. Naively

we might wish our holonomy to assign a group element
to each surface like this:

•
&&
88g

��
•

We can compose surfaces of this sort vertically:

•
��
//

g
��

BB
g′

��

•

and horizontally:

•
&&
88g

��
•

&&
88g′

��
•

Suppose both of these correspond to multiplication in
some Lie group G. To obtain a well-defined holonomy

for this surface regardless of whether we do vertical or
horizontal composition first:

•
��
//

g1

��
BB

g2

��

•
��
//

g′
1��

BB
g′
2��

•

we must have

(g1g2)(g
′
1g

′
2) = (g1g

′
1)(g2g

′
2).

This forces G to be abelian!

Pursuing this approach, we ultimately get the theory of

connections on ‘abelian gerbes’. If G = U(1), such a
connection looks locally like a 2-form — and it shows

up naturally in string theory, satisfying equations very
much like those of electromagnetism!
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To go beyond this and get nonabelian higher gauge fields,
we should let the topology dictate the algebra, and con-

sider a connection that gives holonomies both for paths

and for surfaces.

So, let’s replace the path groupoid by some 2-groupoid
where:

• objects are points of M : • x

• morphisms are certain paths in M : •

γ

&&
•

• 2-morphisms are certain equivalence classes of paths

of paths in M : •
��
BB•f

��

A 2-groupoid allows composition of morphisms:

•

γ

&&
•

γ′

&&
•

vertical composition of 2-morphisms:

•
��
//

f
��

BB
g

��

•

and horizontal composition of morphisms:

•
&&
88f

��
•

&&
88f ′

��
•

satisfying various laws, including one that makes this
unambiguous:

•
��
//

f
��

BB
g

��

•
��
//

f ′

��
BB

g′
��

•
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More precisely, define the path 2-groupoid P2(M) to
be the smooth 2-groupoid in which:

• objects are points x ∈ M ,

• morphisms are smooth paths γ : [0, 1] → M with γ(t)

constant near t = 0, 1,

• 2-morphisms are thin homotopy classes of smooth
maps f : [0, 1]2 → M with f(s, t) independent of s

near s = 0, 1 and constant near t = 0, 1.

We might hope for something like this:

????????????????????????????????????????????????????
For any Lie 2-group G, a principal G-2-bundle P → M

gives a smooth 2-groupoid Trans(P ) where:

• objects are 2-torsors Px,

• morphisms are 2-torsor morphisms, f : Px → Py

• 2-morphisms are 2-torsor 2-morphisms θ : f ⇒ g.

Via parallel transport, a 2-connection on P gives a smooth

2-functor called its holonomy:

hol : P2(M) → Trans(P ).

A trivialization of P makes Trans(P ) equivalent to G so
it gives

hol : P2(M) → G.

????????????????????????????????????????????????????

Can we make this precise? Is it true?
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Internalization

The crucial trick is ‘internalization’. Ehresmann and
Lawvere showed how to ‘internalize’ concepts by defining

them in terms of commutative diagrams:

A small category, say C, has a set of objects Ob(C), a set of
morphisms Mor(C), source and target functions

s, t : Ob(C) → Mor(C),

a composition function

◦ : Mor(C)s×tMor(C) → Mor(C)

and an identity–assigning function

id : Ob(C) → Mor(C)

making these diagrams commute. . . .

and letting these diagrams live within some category K:

A category in K, say C, has an object Ob(C) ∈ K, an object
Mor(C) ∈ K, source and target morphisms

s, t : Ob(C) → Mor(C),

a composition morphism

◦ : Mor(C)s×tMor(C) → Mor(C)

and an identity-assigning morphism

id : Ob(C) → Mor(C)

making these diagrams commute. . . .

Similarly we can define functors in K and natural
transformations in K, obtaining a 2-category KCat.

We can also define groups in K and homomorphisms
in K, obtaining a category KGrp.
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Smooth Categories, 2-Groups, and Lie 2-Groups

We can categorify concepts from differential geometry
with the help of internalization:

• A smooth category is a category in Diff.

• A strict 2-group (or categorical group) is a

category in Grp.

• A strict Lie 2-group is a category in LieGrp.

A strict 2-group is the same as a strict monoidal category

such that:

• for every object x there exists an object y with

x ⊗ y = 1, y ⊗ x = 1;

• for every morphism f there exists a morphism g with
fg = 1, gf = 1.

More generally, a 2-group (or gr-category) is a weak

monoidal category such that:

• for every object x there is a specified object x−1

equipped with isomorphisms

ix : 1 → x ⊗ x−1, ex : x−1 ⊗ x → 1

forming an adjunction;

• for every morphism f there exists a morphism g with
fg = 1, gf = 1.

We can also define general Lie 2-groups the same way,
working in DiffCat rather than Cat.
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Examples of 2-Groups

1) Any abelian group A gives a strict 2-group with one
object and A as the automorphisms of this object. Lie
2-groups of this kind will be structure 2-groups of 2-

bundles having an abelian gerbe of sections.

2) Any category C gives a 2-group Aut(C) whose objects

are equivalences f : C → C and whose morphisms are
natural isomorphisms between these.

3) A group H is a category with one object and all
morphisms invertible. In this case, 2) gives a strict 2-

group Aut(H) whose objects are automorphisms of H

and whose morphisms from f to f ′ are elements k ∈ H

with f ′(h) = kf(h)k−1.

4) Any Lie group H gives a strict Lie 2-group Aut(H) de-

fined as in 3) but with everything smooth. Lie 2-groups
of this sort will be structure 2-groups of 2-bundles having

a nonabelian gerbe of sections.

. . . and many ‘more concrete’ examples, some listed in

my paper with Aaron Lauda.
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2-Bundles

Toby Bartels has developed a theory of ‘2-bundles’. We
can think of a manifold M as a smooth category with
only identity morphisms. A 2-bundle over M consists

of:

• a smooth category P (the total space),

• a smooth category F (the standard fiber),

• a smooth functor p : P → M (the projection),

such that each point x ∈ M has an open neighborhood

U for which there exists a smooth equivalence:

f : p−1U → U × F

such that this diagram commutes:

p−1U

p|
p−1U

��4
44

44
44

44
44

44

f
// U × F

��
























U

The equivalence f is called a local trivialization.
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If F is a smooth category, G = Aut(F ) is a smooth 2-
group. Given a 2-bundle P → M with standard fiber

F , and choosing local trivializations over open sets Ui

covering M , we obtain:

• smooth maps

gij : Ui ∩ Uj → Ob(G)

• smooth maps

hijk : Ui ∩ Uj ∩ Uk → Mor(G)

with
hijk(x) : gij(x)gjk(x) → gik(x)

• smooth maps

ki : Ui → Mor(G)

with
ki(x) : gii(x) → 1 ∈ G.

Furthermore:

• h satisfies an equation on quadruple intersections
Ui ∩ Uj ∩ Uk ∩ U`:

hijl

jklh
hikl

ijk

gil
gil

gjl

gjk gjk

gklgij

h �������
�

���
�

�������
�

���
�

	�		�	
�

�
������������

��������������������

gklgij
gik

(the associative law)
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• k satisfies two equations on double intersections
Ui ∩ Uj:

������������ ������������

�������
�

���
�

�������
�

������������

1 ijg

gij

ijg

ijg

iig

ik iijh
iig

(the left unit law) and

���
�

 �  � !�!!�!

""#
#

$�$$�$%
%

&�&&�&'�''�'

(�((�()
)

1 jjg

ijjh

gijgij

gij gjj ijg
kj

(the right unit law).

More generally, for any smooth 2-group G we say a 2-

bundle P → M has G as its structure 2-group when
gij, hijk, ki factor through an action G → Aut(F ).

In particular, if G acts on F = G by left multiplication,
P is a principal G-2-bundle. Its fibers are then G-2-

torsors in a suitable sense.

Any 2-bundle has a stack of sections. A principal G-2-

bundle with G = Aut(H) for some Lie group H has a
nonabelian gerbe of sections!
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2-Connections on Principal 2-Bundles

So far Urs Schreiber and I have only handled 2-connections
on principal 2-bundles where the structure 2-group G is
strict.

A strict Lie 2-group G is determined by:

• the Lie group G consisting of all objects of G,

• the Lie group H consisting of all morphisms of G
with source 1,

• the homomorphism t : H → G sending each mor-
phism in H to its target,

• the action α of G on H defined using conjugation in

Mor(G) via
α(g)h = 1gh1g

−1

The system (G, H, t, α) satisfies equations making it a
crossed module. Conversely, any crossed module of
Lie groups gives a strict Lie 2-group.
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Let G be a strict Lie 2-group, let (G, H, t, α) be its crossed
module, and let (g, h, dt, dα) be the corresponding

differential crossed module.

If P → M is a principal 2-bundle with structure group
G built using a cover Ui of M , we can describe a 2-

connection on P in terms of:

• a g-valued 1-form Ai on each open set Ui,

• an h-valued 2-form Bi on each open set Ui,

together with some extra data and equations for double
and triple intersections — following the ideas of Breen
and Messing.

If P is trivial all this reduces to:

• a g-valued 1-form A on M ,

• an h-valued 2-form B on M .

Let’s restrict attention to this case and ponder the
existence of a holonomy 2-functor

F : P2(M) → G

built using parallel transport.
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Parallel Transport

Recall: G is a strict Lie 2-group with crossed module
(G, H, t, α). A 2-connection on a trivial principal G-2-

bundle over M consists of:

• a g-valued 1-form A on M ,

• an h-valued 2-form B on M .

This data determines a smooth holonomy 2-functor

hol : P2(M) → G

if and only if the fake curvature vanishes:

FA − dt(B) = 0,

where FA is the usual curvature of A, namely the g-
valued 2-form

FA = dA + A ∧ A.

The fake curvature vanishing ensures that parallel trans-
port along a path of paths is invariant under thin homo-

topies — in particular, invariant under reparametriza-
tion! This implies that hol(f) is well-defined for any

2-morphism f : γ → γ ′ in the the path 2-groupoid.

Vanishing fake curvature is also needed to obtain

hol(f) : hol(γ) → hol(γ ′).

All this generalizes to nontrivial principal G-2-bundles:
we obtain a holonomy 2-functor

hol : P2(M) → Trans(P )

if and only if the fake curvature vanishes.
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