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Categorification

sets  categories
functions  functors
equations  natural isomorphisms

Categorification ‘boosts the dimension’ by one:
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In strict categorification we keep equations as
equations. This is evil... but today we’ll do it whenever
it doesn’t cause trouble, just to save time.



Higher Gauge Theory

groups  2-groups
Lie algebras  Lie 2-algebras

bundles  2-bundles
connections  2-connections

Connections describe parallel transport for particles.
2-Connections describe parallel transport for strings!
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We should even go beyond n = 2... but not today.



Fix a simply-connected compact simple Lie group G.
Then:

• The Lie algebra g gives a 1-parameter family of Lie
2-algebras stringk(g).

•When k ∈ Z, stringk(g) comes from a Lie 2-group
Stringk(G).

• The ‘geometric realization of the nerve’ of Stringk(G)
is a topological group, |Stringk(G)|.
• Principal Stringk(G)-2-bundles are the same as
|Stringk(G)|-bundles.

• For k = 1, |Stringk(G)| is G with its 3rd homotopy
group made trivial.

•We can define connections and characteristic classes
for Stringk(G)-2-bundles!



2-Groups

A strict 2-group is a category in Grp: a category with
a group of objects and a group of morphisms, such that
all the category operations are group homomorphisms.

The objects in a 2-group look like this:
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The morphisms look like this:
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We can multiply objects: •
g
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multiply morphisms: •
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and compose morphisms: •
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All 3 operations have a unit and inverses. All 3 are
associative, so these are well-defined:

• ))• ))• ))•

• ##

;;

��

• ##

;;

��

• ##

;;

��

•

• ��
))

��

55�� BB

��

•

Finally, the interchange law holds, meaning
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is well-defined.



Mac Lane and Whitehead first introduced 2-groups in
the disguise of ‘crossed modules’:

G0
∂←− G1

Here G0 and G1 are groups, and G0 acts on G1 in a
manner compatible with the differential ∂.

To get a crossed module from a 2-group, just let G0 be
the group of objects:

•
g
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and G1 be the group of morphisms starting at 1. The
differential ∂ is defined as follows:
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Lie 2-Algebras

A strict Lie 2-algebra is a category in LieAlg: a
category with a Lie algebra of objects and a Lie algebra
of morphisms, such that all the category operations are
Lie algebra homomorphisms.

A strict Lie 2-algebra can be viewed as an ‘infinitesimal
crossed module’:

g0
∂←− g1

Here g0 and g1 are Lie algebras, and g0 acts as deriva-
tions of g1 in a manner compatible with the differential
∂.



Theorem (Mac Lane, Sinh). A 2-group is determined
up to equivalence by:

• the group G of isomorphism classes of objects,

• the abelian group A of endomorphisms of any object,

• an action of G on A,

• an element of H3(G,A).

Theorem (Gerstenhaber, Crans). A Lie 2-algebra is
determined up to equivalence by:

• the Lie algebra g of isomorphism classes of objects,

• the vector space a of endomorphisms of any object,

• a representation of g on a,

• an element of H3(g, a).



Suppose G is a simply-connected compact simple Lie
group. Let g be its Lie algebra. A lemma of Whitehead
says:

H3(g,R) = R
So:

Corollary. For any k ∈ R there is a Lie 2-algebra
stringk(g) for which:

• g is the Lie algebra of isomorphism classes of objects;

•R is the vector space of endomorphisms of any object.

Every Lie 2-algebra with these properties is equivalent
to stringk(g) for some unique k ∈ R.



Theorem. For any k ∈ Z, stringk(g) is the Lie 2-
algebra of an infinite-dimensional Lie 2-group Stringk(G).

An object of Stringk(G) is a smooth path

f : [0, 2π]→ G

starting at the identity. A morphism from f1 to f2 is an
equivalence class of pairs (D,α) where D is a disk going
from f1 to f2 and α ∈ U(1):
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Any two such pairs (D1, α1) and (D2, α2) have a 3-ball
B whose boundary is D1∪D2. The pairs are equivalent
when

exp

(
2πik

∫

B
ν

)
= α2/α1

where ν is the left-invariant closed 3-form on G with

ν(x, y, z) = 〈[x, y], z〉
and 〈·, ·〉 is the smallest invariant inner product on g
such that ν gives an integral cohomology class.

Theorem. The morphisms in Stringk(G) starting at
the constant path form the level-k central extension of
the loop group ΩG:

1 // U(1) // Ω̂kG
// ΩG // 1



For any category C there is a space |C|, the geometric
realization of the nerve of C, built from a vertex for
each object:
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an edge for each morphism:
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a triangle for each composable pair of morphisms:
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a tetrahedron for each composable triple:
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fgh 22 and so on...



A 2-group is a category with a product and inverses.
So, if G is a 2-group, |G| is a topological group.

More generally, we can define a topological group |G| for
any topological 2-group G.

Theorem. For any k ∈ Z, there is a short exact
sequence of topological groups

1 //K(Z, 2) // |Stringk(G)| p
//G // 1

where p is a fibration. Using this we can show:

π1(|Stringk(G)|) = 0
π2(|Stringk(G)|) = Z/kZ
π3(|Stringk(G)|) = 0 if k 6= 0



Theorem. When k = 1, |Stringk(G)| is the ‘3-connected
cover’ of G: the topological group formed by making the
3rd homotopy group of G trivial.

For example, start with O(n):

•Making π0 trivial gives SO(n).

•Making π1 trivial gives Spin(n).

• π2 of Spin(n) is already trivial.

•Making π3 trivial gives String(n).

We are claiming

String(n) ' |Stringk(G)|
where G = Spin(n) and k = 1.



2-Bundles — Quick and Dirty

For any topological 2-group G and any space X , we can
define a principal G-2-bundle over X to consist of:

• an open cover Ui of X ,

• continuous maps

gij : Ui ∩ Uj → Ob(G)

satisfying gii = 1, and

• continuous maps

hijk : Ui ∩ Uj ∩ Uk → Mor(G)

with
hijk(x) : gij(x)gjk(x)→ gik(x)



satisfying the nonabelian 2-cocycle condition:
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on any quadruple intersection Ui ∩ Uj ∩ Uk ∩ U`.



There’s a natural notion of ‘equivalence’ for 2-bundles
over X , since they form a 2-category.

Theorem. For any topological 2-group G and paracom-
pact Hausdorff space X , there is a 1-1 correspondence
between:

• equivalence classes of principal G-2-bundles over X ,

• isomorphism classes of principal |G|-bundles over X ,

• homotopy classes of maps f : X → B|G|.

So, B|G| is the classifying space for G-2-bundles.



We have homomorphisms

String(n) // Spin(n) // SO(n) // O(n)

Given an n-dimensional Riemannian manifoldX , we can
reduce the structure group of the frame bundle from
O(n) to:

• SO(n) if we have an orientation on X ,

• Spin(n) if we have a spin structure on X ,

• String(n) if we have a string structure on X .

Corollary. For any Riemannian n-manifoldX , a string
structure on X gives a G-2-bundle over X , where G =
Stringk(G) with G = Spin(n) and k = 1.



2-Connections — Quick and Dirty

Let G be a Lie 2-group, P the trivial principal G-2-bundle
over some smooth manifold X . A 2-connection on P
assigns holonomies to paths in X :

hol : x
γ

))y 7→ •
hol(γ)

))• ∈ Ob(G)

and surfaces going between paths:

hol : x

γ

  

η

>>Σ

��

y 7→ •

hol(γ)

  

hol(η)

>>hol(Σ)
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in a manner preserving all 3 forms of composition:
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Theorem. Let

g0
∂←− g1

be the infinitesimal crossed module obtained by
differentiating the crossed module

G0
∂←− G1

corresponding to G. Then there is a 1-1 correspondence
between 2-connections on P → X and connections:

• a g0-valued 1-form A on X

• a g1-valued 2-form B on X

satisfying the fake flatness condition:

dA +
1

2
[A,A] + ∂B = 0



All this generalizes to nontrivial 2-bundles.

Nice Problem. When G = Stringk(G), compute the
real characteristic classes of a G-2-bundle in terms of an
arbitrary connection on this 2-bundle.

The homomorphism |G| p→ G gives an algebra
homomorphism:

H∗(BG,R)
p∗−→ H∗(B|G|,R)

When k = 1 this is onto, with kernel generated by the
‘second Chern class’ c2 ∈ H4(BG,R).

In this case, the real characteristic classes of G-2-bundles
are just like those of G-bundles, but with the second
Chern class killed!


