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Abstract

These are rough notes for four lectures on higher gauge theory, aimed

at explaining how this theory is related to some classic themes from ho-

motopy theory, such as Eilenberg–Mac Lane spaces. After a brief intro-

duction to connections on principal bundles, with a heavy emphasis on

the concept of ‘torsor’, we describe how to build the classifying space BG

of a topological group G starting from the topological category of its tor-

sors. In the case of an abelian topological group A, we explain how this

construction can be iterated, with points of B
n

A corresponding to ‘finite

collections of A-charged particles on S
n’. Finally, we explain how B

n

A

can be constructed from the n-category of n-torsors of A. In the process,

we give a quick introduction to some simple concepts from n-category

theory. References provide avenues for further study.

1 A Taste of Gauge Theory

Gauge theory describes the forces of nature using the mathematical formalism
of connections on principal bundles, which physicists call ‘gauge fields’. We
will not explain how this works — our goal is instead to explain how principal
bundles and their categorified generalizations relate to some basic themes in
homotopy theory — but a taste of the original physics motivation will still be
helpful. The easiest example is gravity. A physical object can be used to define
a ‘frame’ in the n-dimensional smooth manifold M representing spacetime:

Definition 1. A frame at a point x in some smooth manifold M is a basis of
the tangent space TxM . The set of all frames at x is denoted FxM . The set of
all frames at all points of M is denoted FM , and called the frame bundle of
M .

Ignoring the fourth dimension (time), the picture looks like this:
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The frame bundle of M can be made into a smooth manifold, and the motion
of a freely falling nonrotating object traces out a path in the frame bundle:

More generally, we may carry an object without rotating it along any smooth
path in spacetime — this is called ‘parallel transport’. Parallel transport along
a smooth path γ from x ∈M to y ∈M gives rise to a map

hol(γ) : FxM → FyM

called ‘the holonomy along γ’. It’s easy to visualize: we just imagine carrying a
basis of tangent vectors from x to y, doing our best not to rotate it or otherwise
mess with it:

This is easy in Euclidean Rn, but it is more tricky when M is a more general
manifold. Mathematically, we compute hol(γ) using an extra structure called
a ‘connection on the frame bundle’. Our goal in this lecture is to explain how
this works.

First: what’s the mathematical structure of FxM? Given a basis of the
tangent space at x, say f ∈ FxM , and an invertible n × n real matrix, say
g ∈ GL(n), we can apply g to f and get a new basis. We write this as fg, since
a basis of TxM is really just a linear isomorphism

f : R
n ∼
−→TxM

and composing this with
g : R

n ∼
−→R

n

gives a new basis
fg : R

n ∼
−→TxM.
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So, the group GL(n) acts on FxM ; by convention it acts on the right. So, wesay
FxM is a ‘right G-set’. Furthermore, given any two bases f, f ′ ∈ FxM there
exists a unique g ∈ GL(n) with f ′ = fg.

We summarize this structure by saying that FxM is a ‘GL(n)-torsor’:

Definition 2. Given a group G, a G-torsor is a nonempty set T equipped with
a right G-action such that for every t, t′ ∈ T there exists a unique g ∈ G with
t′ = tg.

Equivalently, but even better:

Proposition 3. Given a group G, a G-torsor is a set T equipped with a right
G-action such that T is isomorphic as a right G-set to G itself. In other words,
there exists an invertible map

φ : T
∼
−→G

with
φ(tg) = φ(t)g

for all t ∈ T , g ∈ G.

The reader should prove this and see why the nonemptiness condition is required.
The idea is simple: if T is a G-torsor, for any t0 ∈ T we get an isomorphism of
right G-sets φ : T → G that sends t0 ∈ T to 1 ∈ G. So, we say:

A torsor is a group that has forgotten its identity!

Picking any point as identity lets us think of our G-torsor as being the group
G:

As we’ll soon see, the holonomy of a connection on the frame bundle:

hol(γ) : FxM → FyM

is a G-torsor morphism. So, we’d better define this notion:

Definition 4. Given G-torsors T and T ′, a G-torsor morphism φ : T → T ′

is a map of right G-spaces, that is, a map with

φ(tg) = φ(t)g

for all t ∈ T , g ∈ G.

If G is a topological group (or Lie group), its torsors naturally become topologi-
cal spaces (or smooth manifolds), and these are the cases we’ll be most interested
in. In these cases we demand that our G-torsor morphisms be continuous (or
smooth).

We’re now ready to define connections on bundles and compute their holonomies!

Definition 5. Given a topological (or Lie) group G and a topological space
(or manifold) M , a principal G-bundle over M is a topological space (or
manifold) P equipped with a right action of G, together with a map

π : P →M
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which is locally trivial: any point x ∈M has a neighborhood U such that
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commutes, where t is an isomorphism of right G-spaces, Here U × G has been
made into a right G-space in the obvious way.

Here’s a picture of a principal G-bundle, which is strictly accurate when G

is the circle group, U(1):

So, a principal G-bundle over M looks like a bundle of copies of G sitting over
the points of M . However, these copies of G are really just G-torsors, since they
don’t have a chosen identity element:

Proposition 6. Given a principal G-bundle π : P →M , each fiber Px = π−1x

is a G-torsor.

Here’s my favorite example of a principal bundle:

Proposition 7. The frame bundle

FM =
⋃

x∈M

FxM

of an n-dimensional smooth manifold M is a principal GL(n)-bundle, where
GL(n) acts on the right thanks to the fact that each fiber FxM is a GL(n)-
torsor.

Now for connections. Here we need everything to be smooth:

Definition 8. Suppose G is a Lie group and π : P → M is a principal G-
bundle where P and M are smooth manifolds and π is a smooth map. Then a
connection on this principal G-bundle is a smoothly varying choice of subspaces

Hp ⊆ TpP

that is preserved by the action of G, and such that

TpP = ker(dπ)p ⊕Hp.

We call vectors in Hp horizontal vectors and call vectors in the kernel of
(dπ)p vertical vectors. A picture explains why:
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Given p ∈ P with π(p) = x ∈ M , a connection allows us to lift any smooth
path γ : [0, 1]→M to a unique smooth path γ̃ in P once we choose the starting
point γ̃(0) to be any desired point sitting over x ∈M , and require that γ̃ ′(t) ∈
Hγ̃(t):

We call γ̃ a horizontal lift of γ because its tangent vector is always hori-
zontal. In the case of a connection on the frame bundle, this condition says that
we are moving the frame along while changing it as little as possible — parallel
transporting it, in other words. But, we need the connection H to know what
‘changing as little as possible’ means!

Homotopy theorists are fond of fibrations. These satisfy a ‘path lifting con-
dition’. A principal bundle is a fibration so it satisfies this sort of condition.
What a connection does is pick out a specific way to lift any path γ in M to a
path in P , given a lift of the starting point γ(0). This is the horizontal lift γ̃.

Suppose that γ starts at x ∈ M and ends at y ∈ M . Since γ has a unique
horizontal lift γ̃ after we pick the starting point γ̃(0) to be any point in the fiber
over x, we obtain a map

hol(γ) : Px → Py

γ̃(0) 7→ γ̃(1)

called the holonomy of the connection H along the path γ. It looks like
this:
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Since the connection is G-invariant, one can show:

Proposition 9. hol(γ) : Px → Py is a G-torsor morphism.

Here are some exercises to help you master the all-important concept of
torsor:

Exercise 10. Write down an equivalent definition of a G-torsor as a set T

equipped with a ‘multiplication’

T ×G → T

(t, g) 7→ tg

and a ‘division’
T × T → G

(t, t′) 7→ t′

t

such that

t
t′

t
= t′.

What other axioms are needed?

Exercise 11. Show that the indefinite integral of a real function of one variable,∫
f(x)dx, is actually an R-torsor. Here we treat R as a group with addition as

the group operation. (Hint: this explains that annoying ‘+C’ from freshman
calculus.)

Exercise 12. Show a U(1)-torsor morphism φ : T → T is just a rotation.

Exercise 13. More generally, show that every G-torsor morphism φ : T → T ′

is invertible, and show that the G-torsor automorphisms φ : T → T form a group
isomorphic to G. However, show that this group is not canonically isomorphic
to G unless G is abelian!

2 Classifying Spaces

Given a principal G-bundle π : P → M and a map f : M ′ → M , we can ‘pull
back’ π along f and get a principal G-bundle over M ′:

f∗P //

f∗π

��

P

π

��
M ′

f // M

Here
f∗P = {(p, m′) ∈ P ×M ′ : π(p) = f(m′)}

and f∗π sends (p, m′) to m′.
The marvelous thing is that every principal G-bundle over every space is

isomorphic to the pullback of a single ‘universal’ one!

Theorem 14. For any topological group G there is a classifying space BG

equipped with a principal G-bundle

πG : EG→ BG

6



such that every principal G-bundle over every space M is isomorphic to f ∗EG

for some map f : M → BG. We call f the classifying map of the principal G-
bundle f∗EG. Homotopic classifying maps give isomorphic principal G-bundles,
and

[M, BG] ∼= {isomorphism classes of principal G−bundles over M}.

How can we construct this magical space BG? Naively, we might dream
that BG should be the ‘space of all G-torsors’. Then EG could be the principal
G-bundle over BG whose fiber over any point T is just the torsor T itself! If
we could make this precise, we could define the classifying map f : M → BG of
any principal G-bundle P over M by

f(x) = Px.

Check that then we would get P = f∗EG!
However, what topology should we put on the ‘space of all G-torsors’? The

discrete topology doesn’t work, and it’s hard to imagine any other. Furthermore,
the ‘space of all G-torsors’ isn’t even an honest set — it’s a proper class!

To solve these problems we should instead consider the category of all G-
torsors, and find an equivalent category that has a mere set of objects, instead
of a proper class. Starting from this we can build BG in a way that makes our
naive dream precise.

So, begin with the category GTor, for which:

• objects are G-torsors,

• morphisms are G-torsor morphisms.

Since all G-torsors are isomorphic to G, this category is equivalent to the cate-
gory in which:

• the only object is G,

• the morphisms are G-torsor morphisms φ : G→ G.

Note that such φ : G→ G are precisely left translations: if

φ(gh) = φ(g)h

for all g, h ∈ G, then
φ(h) = φ(1)h

for all h ∈ G. So, GTor is also equivalent to the category with:

• one object,

• elements of G as morphisms,

with multiplication in G as composition of morphisms. Equivalent categories
are ‘the same’ for most purposes, so henceforth we will call this last category
GTor. It has the advantage of being much smaller than the original version.

Moreover, this small version of GTor is a ‘topological category’:

Definition 15. A topological category is a category where the set of all
objects and the set of all morphisms are topological spaces, and all the category
operations (source, target, composition, and the map sending any object to its
identity morphism) are continuous.
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There’s a standard way to turn a topological category into a topological
space, and applying this to GTor gives BG! First, given a topological category
C, we can form its nerve NC, which is a simplicial space:

Second, given any simplicial space X , we can form its geometric realiza-
tion |X |, which is a space — just take the simplices literally and glue them
together using face and degeneracy maps, but defining the topology with the
help of the topology on each space of n-simplices. (You may be more familiar
with the geometric realization of a simplicial set; this is like that but a little
fancier.)

Composing these constructions, we define

BG = |N(GTor)|.

So, BG looks like this:

Similarly, we build EG using the category of pointed G-torsors, GTor∗. Since
all G-torsors are isomorphic to G, this is equivalent to the category in which:

• the objects are (G, g) for any g ∈ G

• the morphisms are G-torsor morphisms φ : (G, g)→ (G, g′) with φ(g) = g′.

Since G-torsor morphisms from G to itself are just left translations, this in turn
is equivalent to the category in which:

• objects are elements g ∈ G,

• a morphism h : g → g′ is an element h ∈ G with hg = g′.

This ‘small’ version of GTor∗ is a topological category in an obvious way, so we
can define

EG = |N(GTor∗)|

and use the forgetful functor

F : GTor∗ → GTor

to define
πG = |N(F )|.
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This gives our universal G-bundle

πG : EG→ BG.

Check that sitting over each point of BG there’s a G-torsor, just as in our naive
dream!

This is beautiful mathematics, but it may seem too abstract for some, so
let’s learn to visualize points of BG. A point in BG is a point in the n-simplex:

0 ≤ t1 ≤ · · · ≤ tn ≤ 1

together with an n-tuple of elements of G. So, it looks like this:

It’s nice to think of this as a finite collection of ‘particles’ on the unit interval
with ‘charges’ taking values in the group G. However, there are equivalence
relations coming from face and degeneracy maps:

Since particles of any charge can be born and die at the endpoints, it’s even
better think of a point in BG as a collection of G-charged particles on S1:

with a topology on BG that allows continuous paths in which these particles
move around, collide or split, and be born or die at the north pole. When
particles collide, their charges multiply. In particular, when a particle with
charge g collides with its ‘antiparticle’ with charge g−1, they become a particle
of charge 1, which is equivalent to no particle at all. So, there are paths in
BG in which particle/antiparticle pairs are annihilated — or for that matter,
created! Charge is conserved except at the north pole.

When A is an abelian topological group, BA is again an abelian topological
group, with multiplication defined like this:
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(Note that we need A to be abelian for this product to be continuous.) So, in
this case we can form BBA, BBBA, and so on. If you think about it a while,
you’ll see that a point in BnA is a finite collection of A-charged particles on Sn:

with a topology that allows continuous paths in which these particles move
around, collide or split, and be born or die at the north pole. When particles
with charges g and h collide, they form a particle of charge gh. Note that when
n ≥ 2, we need A to be abelian for this to make sense: there’s no good way to
say which particle is on the left and which particle is on the right!

Let us summarize the story so far. We have seen that to formalize the concept
of ‘parallel transport’ we need the concept of a connection on a principal bundle.
A principal G-bundle has G-torsors as fibers. Starting from the category of all
G-torsors, we can build a space BG which has a ‘universal’ G-bundle on it: all
others are pullbacks of this one.

In fact, the story goes much further. Whenever G is a compact Lie group,
BG is a kind of infinite-dimensional manifold, and there’s a nice way to put a
connection on the universal G-bundle over BG. Given a smooth map from a
manifold M to BG, we can pull back not only the universal bundle but also this
connection to get a principal G-bundle with connection on M .

Even better, we can concoct certain closed differential forms on M from
any principal G-bundle with connection over M . These represent elements of
deRham cohomology called ‘characteristic classes’, which are independent of the
choice of connection. When we apply this construction to the universal G-bundle
over BG, these characteristic classes give us the whole real cohomology of BG.
The characteristic classes of other principal G-bundles over other manifolds are
simply the pullbacks of these.

Of course algebraic topologists are comfortable simply defining characteristic
classes to be elements of the cohomology of BG, with coefficients in whatever
you like. But if we restrict attention to the real cohomology, working with con-
nections allows us to reason geometrically about characteristic classes. This has
become very important in applications of topology to mathematical physics...
and applications of mathematical physics to topology!

Here are some exercises to help you become more comfortable with the ideas
of this lecture:

Exercise 16. Use the particle picture of BBA to show that BBZ ∼= CP∞,
and to get an explicit abelian group structure on CP∞. (Hint: think of integers
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labelling points of S2 as orders of the zeroes or poles of a nonzero rational
function on the Riemann sphere. This data determines the rational function up
to a nonzero scalar multiple.

Exercise 17. Give a ‘particle picture’ of points in EG similar to that for BG.
(Hint: the big difference is that now charge is conserved even at the north pole.)
Use this to explicitly describe the map πG : EG → BG. Show that this is a
principal G-bundle.

Exercise 18. Define a concept of ‘equivalent’ topological categories that gener-
alizes the usual notion of equivalent categories. Show that if C and C ′ are equiv-
alent topological categories, the spaces |N(C)| and |N(C ′)| are homotopy equiva-
lent. Show that the topological category GTor∗ is equivalent to the topological cat-
egory with just one object and one morphism. Conclude that EG = |N(GTor∗)|
is contractible.

Exercise 19. Show that for any topological group G, BG is connected.

Exercise 20. Using the previous two exercises, show that

G ' ΩBG

where Ω stands for based loop space of a pointed space, and BG becomes a pointed
space using the fact that N(GTor) has just one 0-simplex. (Hint: you can use
the long exact homotopy sequence of the fibration G → EG → BG.) Indeed,
many authors define BG to be any connected pointed space with ΩBG ' G.

3 A Taste of Higher Gauge Theory

We have seen that we can iterate the classifying space construction if we start
with an abelian topological group. So, starting from any discrete abelian group
A we can build a sequence of spaces

K(A, n) = BnA

The space K(A, 0) is just A itself, and by Exercise 20 we have

ΩK(A, n) = K(A, n− 1),

so a little work shows that K(A, n) is a space with A as its nth homotopy group,
and with all its other homotopy groups being trivial. In fact this property
characterizes the spaces K(A, n) up to weak homotopy equivalence. We call
K(A, n) the nth Eilenberg–Mac Lane space of A.

Any decent homotopy theorist knows more about these spaces than I do,
but I would like to say a bit about how they show up in ‘higher gauge theory’.
This is a generalization of gauge theory that deals with parallel transport, not
of particles, but of strings or higher-dimensional membranes.

In this lecture I’ll be a bit sketchy at times, because my main goal is to
get you used to a wonderfully mind-boggling idea, and technical details would
merely be distracting. I’ll fill in more details next time.

To get the main idea across let’s consider the example A = Z. We have

K(Z, 0) = Z

K(Z, 1) ' U(1)
K(Z, 2) ' CP∞.

The first two are easy to see, and I gave you a nice way to see the third fact in
Exercise 16. The space K(Z, n) is a bit less familiar for n > 2, but we have seen
that it consists of ‘collections of Z-charged particles on Sn’.
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Now let’s consider a puzzle about the meaning of cohomology groups. Any
homotopy theorist worthy of the name knows that the nth cohomology group
of a space X with coefficients in A classifies maps from X to K(A, n):

Hn(X, A) = [X, K(A, n)].

But there is also another nice way to think about cohomology, at least when
A = Z. Since K(Z, 1) = U(1) we have:

H1(X, Z) ∼= {homotopy classes of U(1)−valued functions on X}.

Since K(Z, 2) = BU(1) is the classifying space for principal U(1)-bundles, we
have:

H2(X, Z) ∼= {isomorphism classes of principal U(1) bundles over X}.

There seems to be some pattern here. The puzzle is, what comes next?
Of course K(Z, 3) = BBU(1) = B(CP∞), so

H3(X, Z) ∼= {isomorphism classes of principal CP∞ bundles over X},

but this answer misses the point. We want a very ‘U(1)-ish’ description of the
integral third cohomology of a space, which continues the pattern we’ve seen for
H1 and H2.
The right answer is:

H3(X, Z) ∼= {equivalence classes of U(1) gerbes over X},

or in my own preferred (but less standard) terminology,

H3(X, Z) ∼= {equivalence classes of principal U(1) 2-bundles over X}.

The idea here is simple but quite mind-boggling at first — which is why it’s so
fun. Just as a principal U(1)-bundle over X is a gadget where the fiber over
each point looks like U(1), a principal U(1)-2-bundle is a gadget where the fiber
over each point looks like U(1)Tor!

Of course U(1)Tor is not a topological space but a topological category, so the
kind of gadget we need here is a generalization of a principal bundle which has
topological categories rather than spaces as fibers. Replacing ordinary mathe-
matical gadgets by analogous gadgets using categories in place of sets is called
‘categorification’. So, what we need is to categorify the concept of bundle —
hence the term ‘2-bundle’.

Let’s see if we can make sense of this. When we say the fibers of a principal
U(1)-bundle ‘look like U(1)’, we really mean that they are U(1)-torsors. So,
by analogy, when we say that the fibers of a principal U(1)-2-bundle look like
U(1)Tor, we must mean that they are U(1)Tor-torsors. But what in the world
is a ‘U(1)Tor-torsor’?

To figure this out, we need to realize that the category U(1)Tor is very much
like an abelian group in its own right.

First of all, we can ‘multiply’ U(1)-torsors. Given U(1)-torsors T and T ′, we
can define

T ⊗ T ′ =
T × T ′

(tg, t′) ∼ (t, gt′)
.

This definition should remind you of the tensor product of a right module of
a ring with a left module of the same ring. Note that we are using the fact
that U(1) is abelian here: this lets us make the right U(1)-space T ′ into a left
U(1)-space by defining gt′ := t′g. The space T ⊗ T ′ becomes a U(1)-torsor in
an obvious way:

(t, t′)g = (t, t′g).
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Second of all, U(1) itself is the ‘unit’ for this multiplication: there are canon-
ical isomorphisms

U(1)⊗ T ∼= T

(g, t) 7→ gt

and
T ⊗U(1) ∼= T

(t, g) 7→ tg

where again we use the fact that U(1) is abelian to make T into a left U(1)-space.
Third of all, every U(1)-torsor T has an ‘inverse’ T−1. As a space, T−1 is

just T , but we define tg in T−1 to be the element tg−1 in T . Again this works
only because U(1) is abelian. We get canonical isomorphisms

T ⊗ T−1 ∼= U(1),

T−1 ⊗ T ∼= U(1).

So, the category U(1)Tor acts a lot like a group! Such a categorified version
of a group is called a ‘2-group’. For more information on 2-groups, try my paper
with Aaron Lauda [5]. Everything you can do with groups, you can do with
2-groups. For example, any pointed space has a fundamental 2-group. This is
part of a massive pattern linking categorification to homotopy theory [4].

Since U(1)Tor acts a lot like a group, we can define torsors for it. Again I
will be quite sketchy. Just as we can talk about right G-sets for a group G, we
can talk about ‘right G-categories’ for a 2-group G. A right G-category X is a
category equipped with a right action of G, meaning that there’s a functor

X ×G→ X

satisfying the usual laws for a right action. We say a right G-category T is a
‘G-torsor’ if it is equivalent to G as a right G-category.

So, the concept of a U(1)Tor-torsor actually makes sense. And, we can go
ahead and use this categorify the whole theory of principal U(1)-bundles and
connections on these. To do this, we start by defining the concept of a ‘principal
U(1)-2-bundle over X ’. You can find the details elsewhere [9, 10]; for now it is
enough to imagine a gadget whose fibers over each point of X are not topological
spaces but topological categories: in fact, U(1)Tor-torsors. And, the beautiful
thing is that we obtain

H3(X, Z) ∼= {equivalence classes of principal U(1) 2-bundles over X}.

In fact, this sort of result was first proved not in the language of bundles but
in the language of sheaves. A categorified sheaf is called a ‘stack’ [23]. A stack
that’s a categorified version of the sheaf of sections of a principal U(1) bundle
is called a ‘U(1) gerbe’ [14, 16, 19, 24], and one has

H3(X, Z) ∼= {equivalence classes of U(1) gerbes over X}.

I just happen to like bundles a bit more than sheaves, so I’ve been developing
the 2-bundle formalism as a complement to the gerbe formalism. People have
studied connections both on gerbes [12, 14, 26] and on 2-bundles [8]. The subject
gets really interesting when one passes from ‘abelian’ 2-groups like U(1)Tor
to more general 2-groups, since then the principal 2-bundles are classified by
something called nonabelian cohomology, invented by Giraud [19]. A good place
to read about this subject is Breen’s book [11].

But the truly wonderful thing is that all this math shows up quite naturally
in string theory [2, 3] and related mathematics like the study of Chern–Simons
theory, central extensions of loop groups, and the ‘string’ group [7, 15]. The
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reason is that just as a connection on a principal bundle lets us talk about
parallel transport of point particles, a connection on a principal 2-bundle lets
us talk about parallel transport of curves — i.e., strings!

Here’s an easy way to see why this might be true, at least in the abelian
case. A smooth map from some manifold M to BU(1) ' K(Z, 2):

f : M → BU(1)

gives a principal U(1) bundle with connection on M . But now suppose we have
a smooth map from M to BBU(1) ' K(Z, 3):

f : M → BBU(1).

This gives a principal U(1)-2-bundle with connection on M . But, we can ‘loop’
f to get a map

Ωf : ΩM → BU(1)

so we also get a principal U(1)-bundle with connection on ΩM . This gives a
holonomy for any path in ΩM . But, a path in ΩM is a one-parameter family
of loops in M ! We can think of this as a ‘closed string’ tracing out a surface in
M . So, we are getting a notion of parallel transport for strings.

There’s much more to say about this, but alas, there’s no time! I hope you
look at some of the references for more of the story.

For now, all I can do is to give a hint as to why principal U(1)-2-bundles
should be classified by third integral cohomology, just as principal U(1)-bundles
are classified by second cohomology. The reason is that K(Z, 3) is related to
U(1)Tor just as K(Z, 2) is related to U(1). In fact, just as

K(Z, 2) ' BU(1),

we have
K(Z, 3) ' B(U(1)Tor).

To really make sense of this this we’d need to understand what we mean by
the classifying space of an abelian topological 2-group. I’ll tackle this issue in
the next lecture. In fact, next time we’ll see hints that the pattern continues
indefinitely:

H4(X, Z) ∼= {equivalence classes of principal U(1) 3-bundles over X}.

because
K(Z, 4) ' B((U(1)Tor)Tor)

and so on.
But to prepare ourselves for this climb, let’s just try to imagine how to build

B(U(1)Tor) — and why it might turn out to be K(Z, 3). To do this, let’s recall
how we built BU(1), and categorify that.

In the previous lecture we built BU(1) by taking U(1)Tor and turning it into
a space. By analogy, we must build B(U(1)Tor) by forming something called
(U(1)Tor)Tor and turning that into a space! This actually makes some sense:
we’ve seen that U(1)Tor is a categorified version of a group, so we can define
torsors for it. These torsors form a gadget called (U(1)Tor)Tor. But what sort
of gadget is it, and how do we turn it into a space?

In fact, this gadget is a topological ‘2-category’. A 2-category is a categorified
version of a category: instead of a mere set hom(x, y) of morphisms from any
object x to any object y, this has a category hom(x, y). We draw the objects of
hom(x, y) as arrows:

f : x→ y
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and draw the morphisms of hom(x, y) as ‘arrows between arrows’:

x

f

��

g

CC yα

��

or
α : f ⇒ g

for short. We call the arrows ‘morphisms’ in our 2-category, and call the arrows
between arrows ‘2-morphisms’.

If the notion of 2-category makes your head spin, don’t worry — enjoy the
sensation while it lasts! Some people pay good money to get dizzy by riding
roller-coasters in amusement parks. We mathematicians are lucky enough to
get paid for making ourselves dizzy with abstract concepts. After a while 2-
categories become as routine as second derivatives or double integrals, and then
you have to move on to more abstract structures to get that thrill.

The 2-category you’re most likely to have seen is Cat. This has:

• categories as objects,

• functors as morphisms,

• natural transformations as 2-morphisms.

Indeed, (U(1)Tor)Tor is closely related to Cat, because U(1)Tor-torsors are
certain categories with extra structure. Roughly speaking, (U(1)Tor)Tor has:

• U(1)Tor-torsors as objects,

• functors preserving the right U(1)Tor action as morphisms,

• natural transformations as 2-morphisms.

But in fact, just as all U(1)-torsors are isomorphic, all U(1)Tor-torsors are
equivalent. This lets us find a nice small 2-category equivalent to (U(1)Tor)Tor,
just as we found a nice small category equivalent to U(1)Tor in the last lecture.
Last time we saw that U(1)Tor was equivalent to the category with:

• one object,

• elements of U(1) as morphisms.

Similarly, it turns out that (U(1)Tor)Tor is equivalent to the 2-category with:

• one object,

• one morphism,

• elements of U(1) as 2-morphisms.

And, it’s easy to make this into a topological 2-category, using the topology on
U(1).

In short, (U(1)Tor)Tor is just like U(1)Tor ‘shifted up a notch’. So, it should
not be surprising that once we learn how to turn a topological 2-category into a
space, (U(1)Tor)Tor gives the space K(Z, 3), just as U(1)Tor gave K(Z, 2). Nor
should it be surprising that this pattern continues on into higher dimensions!
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4 Higher Torsors and Eilenberg–Mac Lane Spaces

Now let’s make some of the ideas of the previous lecture more precise. We’ll
build a recursive machine that lets us define n-categories for all n, and construct
a topological n-category of ‘n-torsors’ for any abelian topological group A. The
geometric realization of the nerve of this will be the iterated classifying space
BnA. So, for example, we get

|N(U(1)nTor)| = K(Z, n + 1).

First we need the notion of an ‘enriched category’. To get ahold of this, first
look at this definition of ‘category’:

A category C has a class of objects, and for each pair of objects x, y

a set hom(x, y), and for each triple of objects a composition function

◦ : hom(x, y)× hom(y, z)→ hom(x, z)

such that....

Note that the category of sets plays a special role in the underlined terms. If
we replace this category by some other category K, we get the concept of a
category enriched over K, or K-category for short. We assume that K has
finite products so that the ‘×’ in the composition function makes sense. Here’s
how it goes:

A K-category C has a class of objects, and for each pair of ob-
jects x, y an object of K hom(x, y), and for each triple of objects a
composition morphism

◦ : hom(x, y)× hom(y, z)→ hom(x, z)

such that....

We leave it as an exercise (see below) to fill in the the details.
Enriched categories are not really strange: nature abounds with them. For

example, the category Top is enriched over itself: for any pair of spaces x, y

there is a space hom(x, y) of contiuous maps from x to y, and composition is a
continous map:

◦ : hom(x, y)× hom(y, z)→ hom(x, z).

The category of abelian groups is also enriched over itself.
We can define K-functors between K-categories: given K-categories C and

C ′, a K-functor F : C → C ′ consists of a map sending objects of C to objects
of C ′, and also for any pair of objects x, y ∈ C a morphism

F : hom(x, y)→ hom(Fx, Fy).

As usual, we require that identities and composition are preserved.
In fact, there is a category KCat in which:

• objects are K-categories,

• morphisms are K-functors.

Even better, KCat has finite products! This allows us to iterate this construc-
tion and define n-categories in a recursive way:

Definition 21. Define the category 0Cat to be the category of sets, and for
n ≥ 0 define

(n + 1)Cat = (nCat)Cat.

An object of nCat is called an n-category, and a morphism of nCat is called
an n-functor.
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If one unravels this above definition, one sees that a (strict) n-category consists
of objects, morphisms between objects, 2-morphisms between morphisms, and so
on up to n-morphisms. The j-morphisms are shaped like j-dimensional ‘globes’:

Objects Morphisms 2-morphisms 3-morphisms j-morphisms

• • •// • •
��
DD��

• •
��
EE

�% y�

_*4 j-dimensional globes

There are various geometrically sensible ways to compose j-morphisms, satis-
fying various ‘associativity’ and ‘identity’ laws. All this can be extracted from
the slick definition we have given above!

To be honest, we have only defined so-called ‘strict’ n-categories, where all
the laws hold ‘on the nose’, as equations. We won’t be needing the vastly more
interesting and complicated ‘weak’ n-categories, even though these are more
important for topology [4]. The reason we can get away with this is that we’re
only talking about the simplest case of higher gauge theory, where the classifying
space is an Eilenberg–Mac Lane space. The lack of interesting Postnikov data
in these spaces lets us build them from strict n-categories.

Next let us define an n-category A nTor whose objects are n-torsors for the
abelian group A. First note that we can define the concept of ‘group’ in any
category with finite products. To do this, we just take the usual definition of a
group, write it out using commutative diagrams, and let these diagrams live in
K. Skeptics may want to see the details:

Definition 22. Given a category K with finite products, a group in K is

• an object G of K,

together with

• a ‘multiplication’ morphism m : G×G→ G,

• an ‘identity’ for the multiplication, given by the morphism id : I → G

where I is the terminal object in K,

• an ‘inversion’ morphism inv : G→ G,

such that the following diagrams commute:

• the associative law:

G×G×G

1×m

&&MMMMMMMMMM
m×1

xxqqqqqqqqqq

G×G

m

&&MMMMMMMMMMMM G×G

m

xxqqqqqqqqqqqq

G

• the right and left unit laws:

I ×G
id×1 //

$$JJJJJJJJJJ G×G

m

��

G× I
1×idoo

zztttttttttt

G
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• the right and left inverse laws:

G×G G×G

G G

I
&&MMMMMMMMM

∆
EE����

id

88qqqqqqqqq

m

��2
22

2
1×inv // G×G G×G

G G

I
&&MMMMMMMMM

∆
EE����

id

88qqqqqqqqq

m

��2
22

2
inv×1 //

where ∆: G→ G×G is the diagonal map.

Example 23. A group in the category of topological spaces is a topological
group; a group in the category of smooth manifolds is a Lie group.

Now suppose G is a group in K. Copying our work in Section 2, we define a
K-category called GTor with

• one object, say ∗.

• hom(∗, ∗) = G,

with the multiplication in G as composition of morphisms. This is equivalent
to the GTor we know and love when K is the category of sets.

We can easily define the concept of an ‘abelian’ group in K, and this is when
we can iterate the torsor construction. Suppose A is an abelian group in K.
Then ATor is an object in KCat, but in fact it’s even better: it is an abelian
group in KCat! So, we are ready to iterate:

A is an abelian group in K =⇒

ATor is an abelian group in KCat.

Definition 24. Suppose A is an abelian group. Define A0Tor to be A, and for
n ≥ 0 define

A (n + 1)Tor = (A nTor)Tor.

AnTor is an n-category whose objects are called A-n-torsors.

Note that A nTor is an abelian group in nCat. In fact, if if A is a topological
abelian group one can check that A nTor is an abelian group in the category
of ‘topological n-categories’. Of course, one first needs to define the concept
of a topological n-category, but this is not very hard. To keep things simple,
however, we will focus on the case where A is a discrete abelian group, for
example Z.

Now that we have A nTor in hand, we want to turn it into a space and show
that this space is K(A, n). To do this, we use two theorems:

Theorem 25 (Brown–Higgins). The category of abelian groups in nCat is
equivalent to the category of degree-n chain complexes of abelian groups: that
is, chain complexes of the form:

A0 ← A1 ← · · · ← An.

Theorem 26 (Dold–Kan). The category of degree-n chain complexes is equiv-
alent to the category of simplicial abelian groups such that all j-simplices with
j > n are degenerate.
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The first theorem was probably known to Grothendieck quite a while back, but
the first proof can be found in a paper by Brown and Higgins [13]. The second
theorem is very famous, and it can be found in many textbooks [1]. The proofs
are very similar: for each j, we take the j-dimensional simplices or globes in our
simplicial abelian group or n-categorical abelian group and construct j-chains
from them, defining the differential in a geometrically obvious way.

Now, suppose that A is an abelian group. Then A nTor is an abelian group
in nCat, and it has

• one object,

• one morphism,

• ......,

• one n-morphism for each element of A.

If we use the Brown–Higgins theorem this becomes a degree-n chain complex.
Unsurprisingly, it looks like this:

0← 0← · · · ← A.

We can then apply the Dold–Kan theorem and turn this into a simplicial abelian
group. We can then take the geometric realization of this and get an abelian
topological group Using the proof of the Dold–Kan theorem one can see that
this topological group has

• π0 = 1,

• π1 = 1,

• ......,

• πn = A

with all higher homotopy groups vanishing. So, it is K(A, n)! More generally, if
we had started with a topological abelian group A, a version of this game would
give us the n-fold classifying space BnA.

I hope you see by now that we are really just talking about the same thing
in many different guises here. Indeed, you might get the impression that the
whole business is an elaborate shell game. But it’s not: the relation of BnU(1) to
U(1)-n-torsors allows us to think of integral cohomological classes on a space X

as principal U(1)-n-bundles on X , and deal with these geometrically, especially
when X is a smooth manifold.

Furthermore, we should be able to generalize a lot of this story to principal
n-bundles for nonabelian n-groups — that is, nonabelian groups in (n− 1)Cat.
So far this has only been demonstrated for n = 2 [8, 12], or higher n for the
abelian case [17, 18, 26], but the results are already very interesting.

Unfortunately I have only had time to skim the surface. I didn’t even get
around to defining a 2-bundle! Alissa Crans, Danny Stevenson and I went
further in our lectures at Ross Street’s 60th birthday conference [9]. But I hope
this tiny taste of higher gauge theory leaves you hungry for more.

Finally, here are few more exercises to try:

Exercise 27. Suppose K is a category with finite products. Write down the
complete definition of a K-category. (Hint: one needs to use the terminal object
in K to generalize the clause saying that every object has an identity morphism.
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Instead of saying there is an element 1x ∈ hom(x, x) with certain properties,
one must say there is a morphisms ix : I → hom(x, x) with certain properties,
where I is the terminal object of K.)

Exercise 28. Write down the complete definition of a K-functor, and show
that KCat is a category.

Exercise 29. Show that KCat has finite products.

If you get stuck on the above exercises, take a look at Max Kelly’s book on
enriched categories [21], which is now freely available online.
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[20] F. Girelli and H. Pfeiffer, Higher gauge theory—differential versus integral
formulation, J. Math. Phys. 45 (2004), 3949–3971. Also available as hep-
th/0309173.

[21] G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge
University Press, Lecture Notes in Mathematics 64, 1982. Also available at
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html

[22] M. Mackaay and R. Picken, Holonomy and parallel transport for abelian
gerbes. Available as math.DG/0007053.

[23] I. Moerdijk, Introduction to the language of stacks and gerbes. Available as
math.AT/0212266.

[24] M. Murray, Bundle gerbes, available as math.DG/9407015.

[25] H. Pfeiffer, Higher gauge theory and a non-Abelian generalization of 2-
form electromagnetism, Ann. Phys. 308 (2003) 447–477. Also available as
hep-th/0304074.

[26] D. Stevenson, The Geometry of Bundle Gerbes, Ph.D. thesis, University of
Adelaide, 2000. Also available as math.DG/0004117.

21


