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for references and more, see:

http://math.ucr.edu/home/baez/cat/



Once upon a time, mathematics was all about sets:
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In 1945, Eilenberg and Mac Lane introduced categories:
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Category theory puts processes (morphisms): • → •
on an equal footing with things (objects): •

In 1967 Bénabou introduced weak 2-categories:
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These include processes between processes, or ‘2-morphisms’:
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We can compose 2-morphisms vertically:
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or horizontally:
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and various laws hold, including the ‘interchange’ law:
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(αα′)⊗ (ββ′) = (α⊗ β)(α′ ⊗ β′)



We call these 2-categories ‘weak’ because all laws
between morphisms hold only up to 2-isomorphisms,
which satisfy laws of their own.

For example, we have an ‘associator’

af,g,h : (fg)h⇒ f(gh)

which satisfies the ‘pentagon equation’:

(fg)(hi)

f(g(hi))

f((gh)i)(f(gh))i

((fg)h)i

af,g,hi
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The ‘set of all sets’ is really a category: Set.

The ‘category of all categories’ is really a 2-category:
Cat. It has:

• categories as objects,

• functors as morphisms,

• natural transformations as 2-morphisms.

• •
•
22

--
		

• •
•
22

//

��

• •
•
22

..

��
��

��

��

F ..

G
00

α
��

DC

Cat is a ‘strict’ 2-category: all laws hold exactly, not
just up to isomorphism. But there are also many
interesting weak 2-categories!



For example, any topological space has a ‘fundamental
groupoid’:
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This is a category with:

• points as objects,

• homotopy classes of paths as morphisms.

All morphisms are invertible, so it’s a ‘groupoid’.

Indeed, groupoids are equivalent to ‘homotopy 1-types’:
spaces X with πn(X, x) trivial for all n > 1 and all
x ∈ X.



Any space also has a fundamental 2-groupoid :
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This is a weak 2-category with:

• points as objects,

• paths as morphisms,

• homotopy classes of ‘paths of paths’ as 2-morphisms.

All 2-morphisms are invertible and all morphisms are
weakly invertible, so it’s a ‘weak 2-groupoid’.

And indeed, weak 2-groupoids are equivalent to
homotopy 2-types!



Around 1975, Grothendieck suggested:

The Homotopy Hypothesis: Weak n-groupoids are
equivalent to homotopy n-types.

This was easy to prove using the simplicial approach to
weak ∞-groupoids, where they are called ‘Kan
complexes’:
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It is not yet proved in the ‘globular’ approach:
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In 1995, Gordon, Power and Street introduced a
globular approach to weak 3-categories.

In 1998, Batanin introduced globular weak∞-categories.

There are also many other approaches, and simplicial
approaches have been the most successful in topology.
To orient ourselves in this complicated field, we need
some hypotheses about how n-categories work.

Many of these involve the ‘Periodic Table’.



A category with one object is a ‘monoid’ — a set with
associative multiplication and a unit element:
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A 2-category with one object is a ‘monoidal category’
— a category with an associative tensor product: and
a unit object:
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Now associativity and the unit laws are ‘weakened’:

(x⊗ y)⊗ z ∼= x⊗ (y ⊗ z), I ⊗ x ∼= x ∼= x⊗ I



To regard a 2-category with one object as a monoidal
category:

• we ignore the object,

• we rename the morphisms ‘objects’,

• we rename the 2-morphisms ‘morphisms’.

Vertical and horizontal composition of 2-morphisms
become composition and tensoring of morphisms:
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= f ⊗ f ′
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In general, we may define an n-category with one object
to be a ‘monoidal (n− 1)-category’.

For example:

• Set is a monoidal category, using the cartesian
product S × T of sets.

• Cat is a monoidal 2-category, using the cartesian
product C ×D of categories.

•We expect that nCat is a monoidal (n+1)-category!



QUESTION: what’s a monoidal category with just one
object? It must be some sort of monoid...

It has one object, namely the unit I, and a set of
morphisms α : I → I. We can compose morphisms:

αβ

and also tensor them:

α⊗ β

Composition and tensoring are related by the
interchange law:

(αα′)⊗ (ββ′) = (α⊗ β)(α′ ⊗ β′)



So, we can carry out the ‘Eckmann–Hilton argument’:

βα

α⊗ β

β

α

1

1

= (α⊗ 1)(1⊗ β)

||
(α1)⊗ (1β) =

β

α

αβ

β

α

1

1

(1β)⊗ (α1) =

||
= (1⊗ α)(β ⊗ 1)

β α

β ⊗ α

ANSWER: a monoidal category with one object is a
commutative monoid!

In other words: a 2-category with one object and one
morphism is a commutative monoid.



What’s the pattern?

An (n+k)-category with only one j-morphism for j < k
can be reinterpreted as an n-category.

But, it will be an n-category with k ways to ‘multiply’:
a k-tuply monoidal n-category.

When there are several ways to multiply, the Eckmann–
Hilton argument gives a kind of ‘commutativity’.

Our guesses are shown in the Periodic Table...



k-tuply monoidal n-categories

n = 0 n = 1 n = 2
k = 0 sets categories 2-categories
k = 1 monoids monoidal monoidal

categories 2-categories
k = 2 commutative braided braided

monoids monoidal monoidal
categories 2-categories

k = 3 ‘’ symmetric sylleptic
monoidal monoidal
categories 2-categories

k = 4 ‘’ ‘’ symmetric
monoidal

2-categories
k = 5 ‘’ ‘’ ‘’



Consider n = 1, k = 2: a doubly monoidal 1-category
is a braided monoidal category. The Eckmann–Hilton
argument gives the braiding:

βα ∼=
β

α

1

1 ∼=
β

α ∼=
β

α

1

1 ∼= β α
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β α

α

Bα,β : α⊗ β ∼−→ β ⊗ α

The process of proving an equation has become an
isomorphism! This happens when we move one
step right in the Periodic Table.



Indeed, a different proof of commutativity becomes a
different isomorphism:
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α

αβ

β

B−1
β,α : α⊗ β ∼−→ β ⊗ α

This explains the existence of knots!

Shum’s theorem: 1Tang2, the category of 1d tangles in
a (2+1)-dimensional cube, is the free braided monoidal
category with duals on one object x: the positively
oriented point.



An object α in a monoidal category has a ‘dual’ α∗ if
there is a ‘unit’

iα : I → α⊗ α∗

and ‘counit’
eα : α∗ ⊗ α→ I

satisfying the ‘zig-zag equations’:

= =



A triply monoidal 1-category is a symmetric monoidal
category. Now we have 3 dimensions of space instead
of just 2. This makes the two ways of moving α past β
equal:

α β

=

βα

So, the situation is ‘more commutative’. This happens
when we move one step down in the Periodic Table.

We can untie all knots in 4d:

Theorem: 1Tang3, the category of 1d tangles in a (3 +
1)-dimensional cube, is the free symmetric monoidal
category with duals on one object.



However, as we march down any column of the Periodic
Table, k-tuply monoidal n-categories seem to become
‘maximally commutative’ when k reaches n+ 2.

For example, you can untie all n-dimensional knots in
a (2n + 2)-dimensional cube. Extra dimensions don’t
help! The Freudenthal Suspension Theorem is another
big piece of evidence: the homotopy n-type of a k-fold
loop space stabilizes when k ≥ n+ 2.

So, Larry Breen, James Dolan and I guessed:

The Stabilization Hypothesis: k-tuply monoidal
n-categories are equivalent to (k + 1)-tuply monoidal
n-categories when k ≥ n+ 2.

Let us call these stable n-categories.



Now let’s look harder at higher-dimensional knot the-
ory. Consider nTangk, the n-category of n-dimensional
tangles in a (k + n)-dimensional cube.

For example 2Tang1 has:

• collections of oriented points in the 1-cube as objects:

•x •x
∗

•x

• 1d tangles in the 2-cube as morphisms:

•x •x
∗
•x

•
x
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• isotopy classes of 2d tangles in the 3-cube as 2-morphisms:

•
x∗
•
x

•
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•
x
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∗
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Objects in 2Tang1 have duals — but now the zig-zag
equations are weakened to 2-isomorphisms. These come
from the cusp catastrophe:

and they satisfy equations coming from the swallowtail
catastrophe.



Everything in nTangk has duals: not just objects, but
j-morphisms for all j.

For example, in 2Tang1 we have the unit of the counit
of the point x:

iex : 11I ⇒ exe
∗
x

<

We also have the counit of the unit:

eix : i∗xix⇒ 11I

<



We also have

iix : 1x⊗x∗ ⇒ ixix eex : e∗xex⇒ 1x∗⊗x
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All these give critical points in 2d Morse theory. The
zig-zag equations then give cancellation of critical points,
like this:

•x
•x∗

•x
•x∗
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Even more interesting are 2d tangles in 4 dimensions.
In 1997, Laurel Langford and I proved:

Theorem: 2Tang2, the category of 2d tangles in a
(2 + 2)-dimensional cube, is the free braided monoidal
2-category with duals on one object x.

This categorifies ordinary knot theory! The category
C of representations of a quantum group is a braided
monoidal category with duals, so any object a ∈ C
gives a tangle invariant

Z : 1Tang2 → C

with Z(x) = a.

If we categorify C and obtain a braided monoidal 2-
category with duals, say C̃, any object a ∈ C̃ gives a
2-tangle invariant Z̃ : 2Tang2 → C̃.



In a braided monoidal category the braiding satisfies
the ‘Yang–Baxter equation’:

%%%%%%
=

In a braided monoidal 2-category, this becomes a 2-
isomorphism, the ‘Yang–Baxterator’:

Y :

%%%%%%
⇒



This in turn satisfies the ‘Zamolodchikov tetrahedron
equation’:
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More generally, in 1995 Dolan and I formulated:

The Tangle Hypothesis: nTangk, the n-category of framed
n-dimensional tangles in a (k+n)-dimensional cube, is
the free k-tuply monoidal n-category with duals on one
object x: the positively oriented point.

Taking the limit k→∞ and applying the Stabilization
Hypothesis, this gives:

The Cobordism Hypothesis: nCob, the n-category of
framed cobordisms, is the free stable n-category with
duals on one object x.



If the Cobordism Hypothesis is true, we can construct
an ‘n-dimensional extended TQFT’, that is a stable n-
functor

Z : nCob→ C,

simply by choosing any stable n-category with duals C
and any object a ∈ C.

Z is determined by its value on the point:

Z(x) = a.
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Based on joint work with Mike Hopkins, Jacob Lurie
announced a proof of the Cobordism Hypothesis in
2008. He reformulated it using (∞, n)-categories.

Roughly, an ‘(∞, n)-category’ is an ∞-category where
all j-morphisms with j > n are invertible. nCob should
be such a thing, with:

• collections of oriented points as objects,

• framed 1d cobordisms between these as morphisms,

• framed 2d cobordisms between these as 2-morphisms,

• ...

• framed nd cobordisms between these as n-morphisms,

• diffeomorphisms of these as (n+ 1)-morphisms,

• smooth paths of diffeomorphisms as (n+2)-morphisms...



A bit more formally:

An (∞, 0)-category is just an ∞-groupoid. In the
simplicial approach these are ‘Kan complexes’. The
Homotopy Hypothesis has been proved in this frame-
work: the model category of Kan complexes is Quillen
equivalent to the model category of topological spaces.

There is also a simplicial approach to (∞, 1)-categories:
‘complete Segal spaces’. There is a version of the
Homotopy Hypothesis for these, too! The model cat-
egory of complete Segal spaces is Quillen equivalent
to the model category of ‘topological categories’: cat-
egories for which each set hom(x, y) is a topological
space, and composition is continuous.

In 2005, Clark Barwick generalized complete Segal spaces
to define (∞, n)-categories.



Lurie claims to prove:

The Cobordism Hypothesis: Let C be a stable (∞, n)-
category. Then there is a bijection between equivalence
classes of stable (∞, n)-functors

Z : nCob→ C

and equivalence classes of fully dualizable objects a ∈
C.

This bijection sends Z to

Z(x) = a

where x ∈ nCob is the positively oriented point.



Lurie is also working on a version of the Tangle
Hypothesis.

So: the challenge for algebraists is to construct k-tuply
monoidal n-categories with duals, and get invariants
of manifolds and higher-dimensional knots!

What’s the real reason we can categorify quantum groups
and their representations, and — apparently — get
braided monoidal 2-categories with duals? Can we get
braided monoidal 3-categories?

More generally: what naturally arising algebraic
gadgets have representations forming k-tuply monoidal
n-categories with duals? What’s the pattern?



Two challenges for topologists: prove the Generalized
Tangle Hypothesis, and construct the ‘fundamental monoidal
n-category with duals’ of a stratified space.


