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Once upon a time, mathematics was all about sets:

In 1945, Eilenberg and Mac Lane introduced categories:



Category theory puts processes (morphisms): e — e
on an equal footing with things (objects): e

In 1967 Bénabou introduced weak 2-categories:

These include processes between processes, or ‘2-morphisms’:



We can compose 2-morphisms vertically:
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and various laws hold, including the ‘interchange’ law:
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We call these 2-categories ‘weak’ because all laws
between morphisms hold only up to 2-isomorphisms,
which satisfy laws of their own.

For example, we have an ‘associator’

argn: (fg)h = f(gh)

which satisfies the ‘pentagon equation’:
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The ‘set of all sets’ is really a category: Set.

The ‘category of all categories’ is really a 2-category:
Cat. It has:

e categories as objects,
e functors as morphisms,

e natural transformations as 2-morphisms.
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Cat is a ‘strict’ 2-category: all laws hold exactly, not
just up to isomorphism. But there are also many
interesting weak 2-categories!



For example, any topological space has a ‘fundamental
groupoid’:

This is a category with:
® points as objects,
e homotopy classes of paths as morphisms.

All morphisms are invertible, so it’s a ‘groupoid’.

Indeed, groupoids are equivalent to ‘homotopy 1-types’:
spaces X with m,(X,x) trivial for all n > 1 and all
x € X.



Any space also has a fundamental 2-groupoid:

This is a weak 2-category with:

® points as objects,

e paths as morphisms,

e homotopy classes of ‘paths of paths’ as 2-morphisms.

All 2-morphisms are invertible and all morphisms are
weakly invertible, so it’s a ‘weak 2-groupoid’.

And indeed, weak 2-groupoids are equivalent to
homotopy 2-types!



Around 1975, Grothendieck suggested:

The Homotopy Hypothesis: Weak n-groupoids are
equivalent to homotopy n-types.

This was easy to prove using the simplicial approach to
weak oco-groupoids, where they are called ‘Kan

\ /\

It is not yet proved in the ‘globular’ approach:



In 1995, Gordon, Power and Street introduced a
globular approach to weak 3-categories.

In 1998, Batanin introduced globular weak oc-categories.

There are also many other approaches, and sitmplicial
approaches have been the most successful in topology.
To orient ourselves in this complicated field, we need
some hypotheses about how n-categories work.

Many of these involve the ‘Periodic Table’.



A category with one object is a ‘monoid’ — a set with
associative multiplication and a unit element:

A 2-category with one object is a ‘monoidal category’
— a category with an associative tensor product: and
a unit object:

Now associativity and the unit laws are ‘weakened’:
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To regard a 2-category with one object as a monoidal
category:

e we ignore the object,
e we rename the morphisms ‘objects’,
e we rename the 2-morphisms ‘morphisms’.

Vertical and horizontal composition of 2-morphisms
become composition and tensoring of morphisms:
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In general, we may define an n-category with one object
to be a ‘monoidal (n — 1)-category’.

For example:

e Set is a monoidal category, using the cartesian
product S X T of sets.

e Cat is a monoidal 2-category, using the cartesian
product C X D of categories.

e We expect that nCat is a monoidal (n 4+ 1)-category!



QUESTION: what’s a monoidal category with just one
object? It must be some sort of monoid...

It has one object, namely the unit I, and a set of
morphisms a: I — I. We can compose morphisms:
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and also tensor them:

a® 3

Composition and tensoring are related by the
interchange law:

(aa’) ® (BF") = (@ B) (' ® B')



So, we can carry out the ‘Eckmann—Hilton argument’:
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ANSWER: a monoidal category with one object is a
commutative monoid!

In other words: a 2-category with one object and one
morphism is a commutative monoid.



What’s the pattern?

An (n+k)-category with only one j-morphism for 7 < k
can be reinterpreted as an n-category.

But, it will be an n-category with k ways to ‘multiply’:
a k-tuply monoidal n-category.

When there are several ways to multiply, the Eckmann—
Hilton argument gives a kind of ‘commutativity’.

Our guesses are shown in the Periodic Table...



k-tuply monoidal n-categories

n =20 n=1 n = 2
k=0 sets categories | 2-categories
k=1 monoids monoidal | monoidal

categories | 2-categories
k = 2| commutative| braided braided
monoids monoidal | monoidal

categories | 2-categories
k=3 ¢ symmetric| sylleptic
monoidal | monoidal

categories | 2-categories

k=4 ¢ ¢ symmetric
monoidal

2-categories
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Consider n = 1, k = 2: a doubly monoidal 1-category
is a braided monoidal category. The Eckmann—Hilton
argument gives the braiding:
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The process of proving an equation has become an
tsomorphism! This happens when we move one
step right in the Periodic Table.




Indeed, a different proof of commutativity becomes a
different isomorphism:

.
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This explains the existence of knots!

Shum’s theorem: 1Tang,, the category of 1d tangles in
a (2+1)-dimensional cube, is the free braided monoidal
category with duals on one object x: the positively
oriented point.



An object o in a monoidal category has a ‘dual’ o™ if
there is a ‘unit’

ig: I - aa® o™
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satisfying the ‘zig-zag equations’:

and ‘counit’




A triply monoidal 1-category is a symmetric monoidal
category. Now we have 3 dimensions of space instead
of just 2. This makes the two ways of moving o past 3

equal:
a, B o, 0
"X

So, the situation is ‘more commutative’. This happens
when we move one step down in the Periodic Table.

We can untie all knots in 4d:

Theorem: 1Tangs, the category of 1d tangles in a (3 +
1)-dimensional cube, is the free symmetric monoidal
category with duals on one object.



However, as we march down any column of the Periodic
Table, k-tuply monoidal n-categories seem to become
‘maximally commutative’ when k reaches n + 2.

For example, you can untie all n-dimensional knots in
a (2n + 2)-dimensional cube. Extra dimensions don’t
help! The Freudenthal Suspension Theorem is another
big piece of evidence: the homotopy n-type of a k-fold
loop space stabilizes when k& > n + 2.

So, Larry Breen, James Dolan and I guessed:

The Stabilization Hypothesis: k-tuply monoidal
n-categories are equivalent to (k + 1)-tuply monoidal
n-categories when k > n 4 2.

Let us call these stable n-categories.



Now let’s look harder at higher-dimensional knot the-
ory. Consider nTang,;, the n-category of n-dimensional
tangles in a (k 4+ n)-dimensional cube.

For example 2Tang, has:

e collections of oriented points in the 1-cube as objects:

x x x*
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e 1d tangles in the 2-cube as morphisms:

T x* x
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e isotopy classes of 2d tangles in the 3-cube as 2-morphisms:

x*x




Objects in 2Tang; have duals — but now the zig-zag
equations are weakened to 2-isomorphisms. These come
from the cusp catastrophe:

and they satisfy equations coming from the swallowtaszl
catastrophe.



Everything in nTang; has duals: not just objects, but
7-morphisms for all 3.

For example, in 2Tang,; we have the unit of the counit
of the point x:
":em: ]‘1I — ewe;

We also have the counit of the unit:
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We also have

All these give critical points in 2d Morse theory. The
zig-zag equations then give cancellation of critical points,

like this:



Even more interesting are 2d tangles in 4 dimensions.
In 1997, Laurel Langford and I proved:

Theorem: 2Tang,, the category of 2d tangles in a
(2 4+ 2)-dimensional cube, is the free braided monoidal
2-category with duals on one object x.

This categorifies ordinary knot theory! The category
C' of representations of a quantum group is a braided
monoidal category with duals, so any object a € C
gives a tangle invariant

Z: 1Tang, — C
with Z(x) = a.

If we categorify C' and obtain a braided monoidal 2-
category with duals, say C, any object a € C gives a
2-tangle invariant Z: 2Tang, — C.



In a braided monoidal category the braiding satisfies
the ‘Yang—Baxter equation’:

In a braided monoidal 2-category, this becomes a 2-
isomorphism, the ‘Yang—Baxterator’:



This in turn satisfies the ‘Zamolodchikov tetrahedron

equation’:
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More generally, in 1995 Dolan and I formulated:

The Tangle Hypothesis: nTang;, the n-category of framed
n-dimensional tangles in a (k + n)-dimensional cube, is
the free k-tuply monoidal n-category with duals on one
object x: the positively oriented point.

Taking the limit £ — oo and applying the Stabilization
Hypothesis, this gives:

The Cobordism Hypothesis: nCob, the n-category of
framed cobordisms, is the free stable n-category with
duals on one object x.



If the Cobordism Hypothesis is true, we can construct
an ‘n-dimensional extended TQFT"’, that is a stable n-
functor

Z: nCob — C,

simply by choosing any stable n-category with duals C
and any object a € C.

Z is determined by its value on the point:

Z(x) = a.
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Based on joint work with Mike Hopkins, Jacob Lurie
announced a proof of the Cobordism Hypothesis in
2008. He reformulated it using (oo, n)-categories.

Roughly, an ‘(oco, n)-category’ is an oo-category where
all 3-morphisms with 3 > n are invertible. nCob should
be such a thing, with:

e collections of oriented points as objects,

e framed 1d cobordisms between these as morphisms,

e framed 2d cobordisms between these as 2-morphisms,
°...

e framed nd cobordisms between these as n-morphisms,
e diffeomorphisms of these as (n + 1)-morphisms,

e smooth paths of diffeomorphisms as (n+2)-morphisms...



A bit more formally:

An (oo,0)-category is just an oo-groupoid. In the

simplicial approach these are ‘Kan complexes’. The
Homotopy Hypothesis has been proved in this frame-
work: the model category of Kan complexes is Quillen
equivalent to the model category of topological spaces.

There is also a simplicial approach to (oo, 1)-categories:
‘complete Segal spaces’. There is a version of the
Homotopy Hypothesis for these, too! The model cat-
egory of complete Segal spaces is Quillen equivalent
to the model category of ‘topological categories’: cat-
egories for which each set hom(x,y) is a topological
space, and composition is continuous.

In 2005, Clark Barwick generalized complete Segal spaces
to define (oo, n)-categories.



Lurie claims to prove:

The Cobordism Hypothesis: Let C be a stable (oo, n)-
category. Then there is a bijection between equivalence
classes of stable (oo, n)-functors

Z: nCob — C

and equivalence classes of fully dualizable objects a &€

C.

This bijection sends Z to
Z(x) =a

where x € nCob is the positively oriented point.



Lurie is also working on a version of the Tangle
Hypothesis.

So: the challenge for algebraists is to construct k-tuply
monotidal n-categories with duals, and get invariants
of manifolds and higher-dimensional knots!

What’s the real reason we can categorify quantum groups
and their representations, and — apparently — get
braided monoidal 2-categories with duals? Can we get
braided monoidal 3-categories?

More generally: what naturally arising algebraic
gadgets have representations forming k-tuply monoidal
n-categories with duals? What’s the pattern?



Two challenges for topologists: prove the Generalized
Tangle Hypothesis, and construct the ‘fundamental monoidal
n-category with duals’ of a stratified space.



