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The 2-Body Problem

Suppose we have a system of two particles interacting by a central force. Their positions are functions
of time, say q1, q2 : R → R3, satisfying Newton’s law:

m1q̈1 = f(|q1 − q2|)
q1 − q2

|q1 − q2|

m2q̈2 = f(|q2 − q1|)
q2 − q1

|q2 − q1|
.

Here m1,m2 are their masses, and the force is described by some smooth function f : (0,∞) → R.
Let’s write the force in terms of a potential as follows:

f(r) = −dV

dr
.

Using conservation of momentum and symmetry under translations and Galilei boosts we can
work in coordinates where

m1q1(t) + m2q2(t) = 0 (1)

for all times t. This coordinate system is called the center-of-mass frame.
We could use equation (1) to solve for q2 in terms of q1, or vice versa, but we can also use it to

express both q1 and q2 in terms of the relative position

q(t) = q1(t)− q2(t).

This is more symmetrical, so this is what we will do. Henceforth we only need to talk about q. Thus
we have reduced the problem to a 1-body problem!

1. Show that q(t) satisfies the equation

mq̈ = f(|q|) q

|q|
where m is the so-called reduced mass

m =
m1m2

m1 + m2
.

Using the expressions for miq̈i in terms of f given in the introduction, we have:

mq̈ =
m1m2

m1 + m2
(q̈1 − q̈2)

=
1

m1 + m2

(
m2f(|q|) q

|q|
+ m1f(|q|) q

|q|

)
= f(|q|) q

|q|
.

2. Show that

1



E =
1
2
m|q̇|2 + V (|q|).

Recall that the the kinetic energy of the i-th particle is given by

Ti =
1
2
mq̇2

i

and that the total kinetic energy for the system is T = T1 + T2. Bearing this in mind, we calculate:

1
2
mq̇2 =

1
2

m1m2

m1 + m2
(q̇1 − q̇2)2

=
1

m1 + m2
(m2T1 + m1T2 −m1m2q̇1q̇2). (2)

Note that (1) implies that

q̇i = −mj

mi
q̇j (3)

for qi equal to q1 or q2. Hence

1
2
m1m2q̇1q̇2 = −1

2
m2

i q̇
2
i = −miTi

for i = 1, 2. Thus (2) becomes

1
m1 + m2

(m2T1 + m1T2 −m1m2q̇1q̇2) =
1

m1 + m2
(m2T1 + m1T2 + (m1T1 + m2T2)) = T1 + T2.

Whence

1
2
mq̇2 = T1 + T2 = T,

and the energy of the system is given by

E = T + V (|q1 − q2|) =
1
2
mq̇2 + V (|q|).

3. Establish

J = mq × q̇

where J is the total angular momentum.
We work from the right hand side:
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mq × q̇ =
m1m2

m1 + m2
(q1 − q2)× (q̇1 − q̇2)

=
m1m2

m1 + m2
(q1 × q̇1 − q1 × q̇2 − q2 × q̇1 + q2 × q̇2)

=
m1m2

m1 + m2

(
q1 × q̇1 +

m1

m2
q1 × q̇1 +

m2

m1
q2 × q̇2 + q2 × q̇2

)
=

m1m2

m1 + m2

(
m1 + m2

m2
q1 × q̇1 +

m1 + m2

m1
q2 × q̇2

)
= m1q1 × q̇1 + m2q2 × q̇2

= J1 + J2

= J ;

where the third equality follows from (3).

Poisson brackets

Let R2n be the phase space of a particle in Rn, with coordinates qi, pi (1 ≤ i ≤ n). Let C∞(R2n)
be the set of smooth real-valued functions on R2n, which becomes an commutative algebra using
pointwise addition and multiplication of functions.

We define the Poisson bracket of functions F,G ∈ C∞(R2n) by:

{F,G} =
n∑

i=1

∂F

∂pi

∂G

∂qi
− ∂G

∂pi

∂F

∂qi
.

4. Show that Poisson brackets make the vector space C∞(R2n) into a Lie algebra. In other words,
check the antisymmetry of the bracket:

{F,G} = −{G, F}

the bilinearity of the bracket:

{F, αG + βH} = α{F,G}+ β{F,H}

{αF + βG,H} = α{F,H}+ β{G, H}
and Jacobi identity:

{F, {G, H}} = {{F,G},H}+ {G, {F,H}}
for all F,G,H ∈ C∞(R2n) and α, β ∈ R.

To make life a whole lot easier on ourselves we will impose the following conventions:

1. Lower indices indicate differentiation with respect to pi, for instance:

Fi =
∂F

∂pi
.

2. Upper indices indicate differentiation with respect to qi, that is:

Gi =
∂G

∂qi
.
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3. All indexed quantities are assumed to represent sums. For instance:

F i
jGi =

n∑
i=1

n∑
j=1

∂F

∂pj∂qi

∂G

∂i
.

Now then, let’s get down to business. First, we will show that {·, ·} anti-commutes. This is
simple, since

{F,G} = FiG
i −GiF

i = −(GiF
i − FiG

i) = −{G, F}.
Bilinearity is likewise trivial:

{F, aG+bH} = Fi(aG+bH)i−(aG+bH)iF
i = a(FiG

i−GiF
i)+b(FiH

i−HiF
i) = a{F,G}+b{F,H}

(and similarly for the right hand slot of {·, ·}).
Now for the rough part of establishing the Jacobi identity. We will see that our conventions

will reduce the problem to one of accounting—surely there is a more elegant way to establish the
identity, but sometimes it is nice to get our hands dirty with actual computation. We will write
down only the significant portions of the computation, leaving the reader to fill in the gaps. Here
we go:

{{F,G},H}+ {G, {F,H}} = {F,G}iH
i −Hi{F,G}i + Gi{F,H}i − {F,H}iG

i

= (FjG
j −GjF

j)iH
i −Hi(FjG

j −GjF
j)i + Gi(FjH

j −HjF
j)i

− (FjH
j −HjF

j)iG
i.

At this stage, we complete the differentiation and collect first and second partials of F (using the
fact that F is smooth—i.e.- the mixed second partials of F are equal) to obtain:

Fij(GjHi −GiHj) + F i
j [(GiH

j −GjH
i) + (GiHj −GjHi)] + F ij(HiGj −HjGi)

+Fj(G
j
iH

i −HiG
ij + GiH

ij −GiHj
i ) + F j(Gi

jHi −GiH
i
j + GiHij −GijH

i).

Now, the first three summands of the above vanish. To see this, note that if i = j then each term
is 0, and if i 6= j exchanging i with j makes the terms negative: hence, in the sum, each of these
three terms come in opposite pairs. Taking this cancellation into account, and noting that the last
two terms of the sum are actually

Fj(GiH
i −GiHi)j − (GiH

i −GiHi)jF
j = Fj{G, H}j − {G, H}jF

j ,

we see that

{{F,G},H}+ {G, {F,H}} = {F, {G, H}}.

5. Show that Poisson brackets and ordinary multiplication of functions make the vector space
C∞(R2n) into a Poisson algebra. This is a Lie algebra that is also a commutative algebra, with
the bracket {F,G} and the product FG related by the Leibniz identity:

{F,GH} = {F,G}H + G{F,H}.

Again, the conventions we established above will set us free:

{F,GH} = Fi(GH)i − (GH)iF
i = Fi(GiH + GHi)− (GiH + GHi)F i

= (FiG
i −GiF

i)H + G(FiH
i −HiF

i) = {F,G}H + G{F,H}.
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