
Classical Mechanics Homework
March 17, 2∞8

John Baez homework by C.Pro

Angular Momentum and Rotations

In this problem we will see that angular momentum generates rotations for a particle in Rn. We
begin by recalling a bit about rotations. Let O(n) be the orthogonal group: the group of all linear
transformations of Rn that preserve distances. We can describe an element R ∈ O(n) as a real n×n
matrix that is orthogonal, meaning

OO∗ = O∗O = I

where O∗ is the adjoint of the matrix O and I is the identity matrix.

We can define the exponential of any n× n real matrix A to be the matrix defined by

exp(A) =
∞∑

n=0

An

n!

(This series always converges.) Some easy calculations show that

exp((s+ t)A) = exp(sA) exp(tA)

for all s, t ∈ R. Also, the entries of the matrix exp(tA) are smooth functions of t ∈ R.

1. Suppose that A is skew-adjoint, meaning A∗ = −A, then exp(tA) ∈ O(n) for all t ∈ R.
Proof: Using the fact for any A,B ∈Mn(R) we have (A+B)∗ = A∗+B∗ and (tAB)∗ = t(B∗A∗),

it follows that (
k∑

n=0

An

n!

)∗
=

k∑
n=0

(A∗)n

n!
.

Since the exponential of a matrix converges for all A ∈ Mn(R), the above implies exp(tA)∗ =
exp(tA∗). Therefore, if A is skew-adjoint,

exp(tA) exp(tA)∗ = exp(t(A+A∗))
= exp(0)
= I,

The group O(n) includes both rotations and reflections. In particular, O(n) consists of two connected
components — the component where det(R) = 1 and the component where det(R) = −1. We define
the rotation group or special orthogonal group SO(n) to be the subgroup consisting of all
R ∈ O(n) with det(R) = 1. This subgroup only includes rotations. A continuous curve can never
go from one component to another. So, if A is skew-adjoint, exp(tA) must actually lie in SO(n) for
all t.

We define so(n) to be the set of all skew-adjoint real n×n matrices. This set so(n) is actually a Lie
algebra, since it is a vector space closed under the bracket operation [x, y] = xy − yx. It is called
the Lie algebra of the rotation group.
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Now, let R2n be the phase space for a particle in Rn. A point (q, p) ∈ R2n describes the particle’s
position q ∈ Rn and momentum p ∈ Rn. The algebra of smooth real-valued functions C∞(R2n)
becomes a Poisson algebra with

{F,G} =
n∑

i=1

∂F

∂pi

∂G

∂qi
− ∂G

∂pi

∂F

∂qi
.

2. Given A ∈ so(n), let
φ: R× R2n → R2n

be given by
φ(t, q, p) = (exp(tA)q, exp(tA)p),

then φ is a flow.
Proof: Note that

φ0(q, p) = (exp(0)q, exp(0)p)
= (Iq, Ip)
= (q, p)

and

φt(φs(q, p)) = φt(exp(sA)q, exp(sA)p)
= (exp(tA) exp(sA)q, exp(tA) exp(sA)p)
= (exp((t+ s)A)q, exp((t+ s)Ap)
= φt+s(q, p).

Since φ is clearly smooth, φ is a flow.

(For example, in 3 dimensions, this flow would rotate both the position and the momentum about
some axis.)

3. Given A ∈ so(n), define an observable F ∈ C∞(R2n by

F (q, p) =
1
2

n∑
i,j=1

Aij(qjpi − qipj),

then F generates the flow φ defined above.
Proof: For simplicity of notation let ∂/∂q and ∂/∂p) represent the tangent vectors (∂/∂q1, . . . , ∂/∂qn, 0, . . . , 0)

and (0, . . . , 0, ∂/∂p1, . . . , ∂/∂pn), respectively. It then follows from the definition that {q, ·} = −∂/∂p
and {p, ·} = ∂/∂q.

Note that Aij = −Aji, so

F (q, p) =
1
2

n∑
i,j=1

Aij(qjpi − qipj)

=
1
2

n∑
i,j=1

−Ajiqjpi −
n∑

i,j=1

Aijqipj)

= −
n∑

i,j=1

Aijqipj

= −q∗Ap.
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Therfore, by the Leibnitz rule we have

vF = {−q∗Ap, ·}
= −({p, ·}∗q∗)A−Ap{q, ·}

= −A∗q ∂
∂q

+Ap
∂

∂p

= Aq
∂

∂q
+Ap

∂

∂p
.

Let ψ be the flow gernerated by vF , and write ψt(q, p) = (q(t), p(t)). We must have

q̇(t) = Aq(t)
ṗ(t) = Ap(t)

and we see that ψ(q, p) = (exp(tA)q, exp(tA)p) is a solution. By uniquness, it follows that ψ = φ.
The moral: The observable that generates the flow φ is called angular momentum in the

A direction. But beware: A is not a vector in Rn! It’s a matrix in so(n)! For n = 3 we have an
isomorphism

so(n) ∼= Rn

so we can talk about angular momentum in some direction v ∈ Rn. But, this is not true in any
other dimension (except n = 0)!

4. When n = 3, the observable
F (q, p) = q1p2 − q2p1

is usually called angular momentum in the z direction and denoted Jz. What flow does this
observable generate?

Solution: With a fixed basis (∂/∂q1, . . . , ∂/∂p3) for the tangent space the vector field generated
by F is:

vF = {q1p2 − q2p1, ·}
= (−q2, q1, 0,−p2, p1, 0).

Let φt(q, p) = (q(t), p(t)) be the flow generated by vF . When viewing R3 as C× R, the above says:

d

dt
(q1(t) + iq2(t)) = i(q1(t) + iq2(t))

d

dt
(p1(t) + ip2(t)) = i(q1(t) + ip2(t))

d

dt
q3(t) = 0

d

dt
p3(t) = 0,

from which we can immediately conclude that

q1(t) + iq2(t) = eit(q1 + iq2)
p1(t) + ip2(t) = eit(p1 + ip2)

and q3(t) = a and p3(t) = b are constants. In otherwords,

φt(q1 + iq2, q3, p1 + ip2, p3) = (eit(q1 + iq2), a, eit(p1 + ip2), b).
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