1 How Observables Generate Symmetries

Hamilton’s equations are first-order differential equations. In the language of differential geometry, they are all about a certain vector field and the ‘flow’ it ‘generates’:

A vector field \(v \) on a manifold \(X \), we say a smooth function or curve

\[\gamma : \mathbb{R} \to X \]

is the integral curve of \(v \) through \(x \in X \) if:

1. \(\gamma(0) = x \)
2. \(\frac{d}{dt} \gamma(t) = v(\gamma(t)), \quad \forall t \in \mathbb{R} \)

We say a vector field \(v \) is integrable if \(\forall x \in X \) there exists an integral curve of \(v \) through \(x \).

Example - \(X = (0, 1) \) and the vector field: \(\frac{\partial}{\partial x} \). If we try to get the integral curve through \(x \in (0, 1) \) we get

\[\gamma(t) = x + t \]

but this is not in \((0, 1) \) for \(t \) large! So, this vector field is not integrable.

Example - \(X = \mathbb{R} \). This is secretly the same, but anyway: let

\[v = x^2 \frac{\partial}{\partial x} \]

Here our integral curve would satisfy:

\[\frac{d}{dt} \gamma(t) = (\gamma(t))^2 \]

\[\frac{dy}{dt} = y^2 \]

\[\int \frac{dy}{y^2} = \int dt \]

\[-\frac{1}{y} = t + C \]

\[y = \frac{1}{t + C} \]

i.e.,

\[\gamma(t) = \frac{1}{t + C} \]

The problem is that this solution is not defined for all \(t \) — it blows up at \(t = -C \). So, this vector field is also not integrable.

Suppose \(v \) is an integrable vector field on a manifold \(X \). Then:
Theorem 1 for every \(x \in X \) the integral curve of \(v \) through \(x \) is unique.

This lets us define a function:

\[\phi: \mathbb{R} \times X \to X \]

by

\[(t, x) \mapsto \phi(t, x) = \phi_t(x) \]

such that \(\phi_t(x) \) is the integral curve of \(v \) through \(x \).

Theorem 2 \(\phi: \mathbb{R} \times X \to X \) is smooth.

Note also:

\[\phi_0(x) = x \]

and

\[\phi_s(\phi_t(x)) = \phi_{s+t}(x) \]

Mathematicians summarize these equations by saying “\(\phi \) is an action of the group \((\mathbb{R}, +, 0)\) on \(X \);” note they imply:

\[\phi_{-t}(x) = (\phi_t)^{-1}(x) \]

since

\[\phi_t \circ \phi_{-t} = \phi_0 = 1_X \]

So: for any \(t \in \mathbb{R} \),

\[\phi_t: X \to X \]

is smooth (by Theorem) with a smooth inverse, \(\phi_{-t} \). A smooth map \(f: X \to Y \) with smooth inverse is called a **diffeomorphism**.

Definition 3 If \(\phi: \mathbb{R} \times X \to X \) is a smooth map such that

1. \(\phi_0(x) = x \)
2. \(\phi_s(\phi_t(x)) = \phi_{s+t}(x) \)

we call \(\phi \) a **flow**.

We’ve seen that any integrable vector field \(v \) gives a flow \(\phi \): we call \(\phi \) the **flow generated** by \(v \). Conversely, any flow \(\phi \) is generated by a unique (integrable) vector field \(v \):

\[v(x) = \frac{d}{dt} \phi_t(x)|_{t=0}, \quad x \in X \]

Now suppose \(X \) is a Poisson manifold. If \(H \in C^\infty(X) \) is any observable, thought of as the Hamiltonian, we get a vector field

\[\{H, \cdot\}: C^\infty(X) \to C^\infty(X) \]

also called \(v_H \), the **Hamiltonian vector field generated** by \(H \). If \(v_H \) is integrable, it generates a flow

\[\phi: \mathbb{R} \times X \to X \]

called **time evolution** or the **flow generated** by \(H \). If our system is in the state \(x \in X \) initially, then at time \(t \) it will be at \(\phi_t(x) \in X \).