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1 Symmetries and Observables

Now let’s dig deeper into the relation between symmetries and observables. We want to say exactly
when a group acting as symmetries of a classical system gives a bunch of observables. We will
call such such a group action a ‘Hamiltonian action’, because the simplest example is how the
Hamiltonian of any classical system is related to time translation symmetry.

The concept of Hamiltonian action involves a trio of Lie algebras and Lie algebra homomorphisms.
Let us introduce them one at a time! First, for any manifold X , the space of vector fields Vect(X)
is a Lie algebra. Second, if X is a Poisson manifold, the algebra of observables C∞(X) is also a Lie
algebra. Third, we we have a map

β:C∞(X)→ Vect(X)

f 7→ vf = {f, ·}
As we already hinted, this map is a ‘Lie algebra homomorphism’:

Definition 1 If g and h are Lie algebras, a map f : g→ h is a Lie algebra homomorphism if f
is linear and it preserves the Lie bracket, as follows:

α([x, y]) = [α(x), α(y)]

for all x, y ∈ h.

Indeed, β:C∞(X) → Vect(X) is linear since the Poisson bracket is bilinear, and we have seen
that it preserves the bracket:

v{f,g} = [vf , vg ]

Remember why: this is just the Jacobi identity for {·, ·}:

v{f,g} = {{f, g}, ·}
= {f, {g, ·}} − {g, {f, ·}}
= vfvg · −vgvf ·
= [vf , vg ]·

Next, it turns out that whenever we have a Lie group G acting on a manifold X , we get another
Lie algebra homomorphism, from the Lie algebra of G to Vect(X):

Theorem 2 Suppose G is a Lie group, X is a manifold, and

A:G×X → X

(g, x) 7→ A(g)x

is an action. Then we get a Lie algebra homomorphism

α: g→ Vect(X).
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Sketch of Proof: We will define α but not show α([x, y]) = [α(x), α(y)] or linearity of α. Given
x ∈ g we form exp(tx) ∈ G, which gives a flow on X :

φ:R×X → X

(t, x) 7→ A(exp(tv))x

Why is this a flow? Check:

1. A(exp(0v))x = A(1)x = x;

2. A(exp(t+ s)v)x = A(exp(tv) exp(sv))x = A(exp(tv))A(exp(sv))x.

Then to get α(v) ∈ Vect(X) we just differentiate this flow:

α(v)(x) =
d

dt
A(exp(tv))x |t=0 ∈ TxX, ∀x ∈ X

Let’s look at an example:
Example: SO(3) acts on R3 in an obvious way, so we get

α: so(3)→ Vect(R3).

For example, take

ez =




0 −1 0
1 0 0
0 0 0




This is called the “generator of rotations around the z-axis” since

exp(tez) =




cos t − sin t 0
sin t cos t 0

0 0 1




which describes rotation around z axis, which as t varies gives a flow φ:R× R3 → R3 with

φt




x
y
z


 =




cos t − sin t 0
sin t cos t 0

0 0 1






x
y
z




Differentiating this we get a vector field:

picture of flow around z-axis

In equations this vector field is

d

dt
φt




x
y
z



∣∣∣∣∣∣
t=0

=



−y
x
0




Now, suppose X is a Poisson manifold and we have an action A:G×X → X . Then we get two
Lie algebra homomorphisms:

g α //

γ
""E

E
E

E
E Vect(X)

C∞(X)

β

99ssssssssss
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We have Lie algebra homomorphisms α and β, where

β(f) := vf := {f, ·}

and we say the action A is Hamiltonian if we can find a Lie algebra homomorphism γ such that
α = βγ. Such a γ gives an observable γ(v) ∈ C∞(X) for any infinitesimal symmetry v ∈ g, such
that

α(v) = β(γ(v))

i.e.
d

dt
A(exp(tv))x|t=0 = {γ(v), ·}

i.e. the observable γ(v) generates the flow (t, x) 7→ A(exp(tv))x. In this case we have a nice map
from (infinitesimal) symmetries to observables!

Example: G = SO(3) acts on R3, the configuration space of a particle in R3, and thus it acts on
the phase space

X = T ∗R3 ∼= R3 × R3 3 (q, p)

In detail: we have
A:G×X → X

(g, q, p) 7→ (gq, gp)

Is this action Hamiltonian? Yes. What is

γ: so(3)→ C∞(X)?

In 3-dimensions, we have so(3) ∼= R3 where the standard basis of R3 corresponds to

ex =




0 0 0
0 0 −1
0 1 0




ey =




0 0 1
0 0 0
−1 0 0




ez =




0 −1 0
1 0 0
0 0 0




Check:
[ex, ey] = ez

and cyclic permutations - so [·, ·] in so(3) corresponds to × in R3.
Identify so(3) with R3 using this isomorphism. Then

γ(v) = v · J

where
J = q × p ∈ R3

is the angular momentum. Let’s check that this works:

α = βγ
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Let’s just check
α(ez) = β(γ(ez))

Left side:

α(ez)(q, p) =
d

dt
(exp(tez)q, exp(tez)p)

∣∣∣∣
t=0

= (−q2, q1, 0,−p2, p1, 0) ∈ R3 × R3

Right side:

γ(ez) = ez · J
= ez · (q × p)
= q1p2 − q2p1

so

β(ez) = {q1p2 − q2p1, ·}

=
3∑

i=1

∂

∂pi
(q1p2 − q2p1)

∂

∂qi
− ∂

∂qi
(q1p2 − q2p1)

∂

∂pi

= −q2
∂

∂q1
+ q1

∂

∂q2
+ 0

∂

∂q3
− p2

∂

∂p1
+ p1

∂

∂p2
+ 0

∂

∂p3

which is the same vector field in modern notation.

Example: The Euclidean group E(n) acts on Rn and thus on X = T ∗Rn, and this action is
Hamiltonian.

Example: The Galilei group G(n+ 1) acts on X = T ∗Rn, and this action is not Hamiltonian!

There is an obvious candidate for

γ: g(n+ 1)→ C∞(T ∗Rn)

which sends :

1. standard basis vectors of so(n) to components of angular momentum Jij = qipj − qjpi
2. standard basis vectors of the spatial translation Lie algebra Rn to components of momentum
pi

3. standard basis vector of the time translation Lie algebra R to the Hamiltonian H

4. standard basis vectors of the Galilei boost Lie algebra Rn to components of mass times position,
mqi.

We indeed have
α = βγ

in this case, but γ is not a Lie algebra homomorphism! Let r, s ∈ g(n+ 1) be as follows:

r generates spatial translations in the first coordinate direction

i.e.
r = (0, (1, 0, . . . , 0), 0, 0) = so(n)⊕ Rn ⊕ R⊕ Rn = (g)(n+ 1)
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and
s generates boosts in the first coordinate direction

i.e.
s = (0, 0, 0, (1, 0, 0, . . .))

I claim:
γ([r, s]) 6= {γ(r), γ(s)}

First, let’s see that [r, s] = 0. To do this, we ask: in G(n + 1) do spatial translations commute
with boosts? Say n = 1:

(t, x)
� translate by a //

_

boost byv

��

(t, x + a)
_

boost by v

��
(t, x+ tv)

�
translate bya

// (t, x+ tv + a) = (t, x+ a+ tv)

These commute, so [r, s] = 0, since whenever Lie algebra elements generate commuting group el-
ements exp(ar), exp(vs) for all a, v ∈ R we have [r, s] = 0. But: {γ(r), γ(s)} 6= 0, as we will
see.
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