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1 Symmetries and Observables

Now let’s dig deeper into the relation between symmetries and observables. We want to say exactly
when a group acting as symmetries of a classical system gives a bunch of observables. We will
call such such a group action a ‘Hamiltonian action’, because the simplest example is how the
Hamiltonian of any classical system is related to time translation symmetry.

The concept of Hamiltonian action involves a trio of Lie algebras and Lie algebra homomorphisms.
Let us introduce them one at a time! First, for any manifold X, the space of vector fields Vect(X)
is a Lie algebra. Second, if X is a Poisson manifold, the algebra of observables C°°(X) is also a Lie
algebra. Third, we we have a map

B: C*°(X) — Vect(X)

fHUf:{ff}

As we already hinted, this map is a ‘Lie algebra homomorphism’:

Definition 1 If g and b are Lie algebras, a map f:g — b is a Lie algebra homomorphism if f
is linear and it preserves the Lie bracket, as follows:

a([z,y]) = [a(z), a(y)]
forall z,y €h.

Indeed, B: C*°(X) — Vect(X) is linear since the Poisson bracket is bilinear, and we have seen
that it preserves the bracket:

V{s.9y = [v5,0g]
Remember why: this is just the Jacobi identity for {-,-}:

Y{fgt = {{fug}7'}
= {fdo 3 Ao Af 1}

= UfUg - —UgUf -
= [va U!]]'

Next, it turns out that whenever we have a Lie group G acting on a manifold X, we get another
Lie algebra homomorphism, from the Lie algebra of G to Vect(X):

Theorem 2 Suppose G is a Lie group, X is a manifold, and
AGx X - X

(9,7) — A(g)z

is an action. Then we get a Lie algebra homomorphism

a: g — Vect(X).



Sketch of Proof: We will define o but not show «([z,y]) = [a(z), a(y)] or linearity of a. Given
x € g we form exp(tx) € G, which gives a flow on X:

HRX X — X
(t,z) — A(exp(tv))x
Why is this a flow? Check:
1. A(exp(0v))z = A(1)x = x;
2. A(exp(t + s)v)x = A(exp(tv) exp(sv))z = A(exp(tv))A(exp(sv))z.
Then to get a(v) € Vect(X) we just differentiate this flow:

d
a(v)(z) = EA(eXp(tv))x li=o € Tx X, VzeX

Let’s look at an example:
Example: SO(3) acts on R? in an obvious way, so we get

:50(3) — Vect(R?).

For example, take

0 -1 0
e:=| 1 0 0
0 0 O

This is called the “generator of rotations around the z-axis” since

cost —sint 0
exp(te,) = | sint cost O
0 0 1

which describes rotation around z axis, which as ¢ varies gives a flow ¢: R x R? — R? with

T cost —sint 0 T
¢ | y | = sint cost O Y
z 0 0 1 z

Differentiating this we get a vector field:
picture of flow around z-axis

In equations this vector field is

d z Y
d—éf’t Yy = €T
t 0
t=0

Now, suppose X is a Poisson manifold and we have an action A:G x X — X. Then we get two
Lie algebra homomorphisms:

g Vect(X)



We have Lie algebra homomorphisms « and (3, where

B(f) = Uf = {fv}

and we say the action A is Hamiltonian if we can find a Lie algebra homomorphism v such that
a = (7. Such a v gives an observable y(v) € C*(X) for any infinitesimal symmetry v € g, such
that

%A(exp(tv))l’\tzo ={v(v), }

i.e. the observable v(v) generates the flow (t,z) — A(exp(tv))x. In this case we have a nice map
from (infinitesimal) symmetries to observables!

Example: G = SO(3) acts on R3, the configuration space of a particle in R3, and thus it acts on
the phase space
X =T"R*=R3 xR* 5 (¢,p)

In detail: we have
AGx X — X

(9,9,p) — (99, 9p)

Is this action Hamiltonian? Yes. What is
v:50(3) — C(X)?

In 3-dimensions, we have s0(3) = R? where the standard basis of R? corresponds to

00 0
e, = 0 0 -1
01 0O
0 01
ey = 0 0 0
-1 0 0
0 -1 0
e.=1 1 0 0
0 0 O
Check:

[617 ey] = €z
and cyclic permutations - so [, -] in s0(3) corresponds to x in R3.
Identify s0(3) with R3 using this isomorphism. Then

V() =v-J
where

J=qgxpeR?

is the angular momentum. Let’s check that this works:

a= By



Let’s just check

Left side:
d
ale:)(g,p) = - (exp(te:)q, exp(te:)p)
t=0
= (_CIZ7Q1707 _p27p170) GRS XRg
Right side:
FY(SZ) = €z J
= e.-(gxp)
= q1p2 —q2p1
SO
Blez:) = {qp2 — qp1,-}
= 23: ——(q1p2 — qul)i - i(q1p2 — q2p1)
i=1 Ipi dq;  0qi Op;
) ) ) P o 9
= ot i+ 0o —pra— P +0

oq 0qa 0q3 Op1 Op2 aps

which is the same vector field in modern notation.

Example: The Euclidean group F(n) acts on R™ and thus on X = T*R", and this action is
Hamiltonian.

Example: The Galilei group G(n + 1) acts on X = T*R", and this action is not Hamiltonian!

There is an obvious candidate for
v:g(n+1) — C®(T*R"™)
which sends :
1. standard basis vectors of so(n) to components of angular momentum J;; = ¢;p; — ¢;p;

2. standard basis vectors of the spatial translation Lie algebra R™ to components of momentum
b

3. standard basis vector of the time translation Lie algebra R to the Hamiltonian H

4. standard basis vectors of the Galilei boost Lie algebra R™ to components of mass times position,
mgq;.

We indeed have
a =y

in this case, but « is not a Lie algebra homomorphism! Let r, s € g(n + 1) be as follows:
r generates spatial translations in the first coordinate direction

i.e.

r=(0,(1,0,...,0),0,0) =so(n) ®R"®ROR" = (g)(n + 1)



and
s generates boosts in the first coordinate direction

ie.
s=(0,0,0,(1,0,0,...)
I claim:
V([ ) # (1) v(s)}
First, let’s see that [r,s] = 0. To do this, we ask: in G(n + 1) do spatial translations commute
with boosts? Say n = 1:

translate by a
(t,); Y (tx+a)

boost byw boost by v

(t,x+to)——> (L,x+tv+a) = (t,z+a+tv)
translate bya

These commute, so [r,s] = 0, since whenever Lie algebra elements generate commuting group el-
ements exp(ar), exp(vs) for all a,v € R we have [r,s] = 0. But: {y(r),7(s)} # 0, as we will
see.



