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1 Conservation of Energy

Today we will talk about what conservation of energy is good for — how it can help us solve problems
in classical mechanics. If we have a particle ¢: R — R"™ satisfying F' = ma where F is conservative:

F(t) = - VV(q(t))

where V:R"™ — R is called the potential, then energy is conserved. Let

B() = gmi(t) + V(b))

Then
%E@ = mg(t) - §(t) + VV(q(t)) - 4(t)
= F(q(t) - 4(t) + VV(g(t)) - (1)
=0

What good is this? It helps understand the motion of the particle: for any solution of Newton’s
second law

Smi(t) + Vi) + E

2 (B~ V()
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so we know the particle’s speed given its position. This is especially powerful for a particle on the
line (n=1).

Example: A particle on a line. In this case, suppose the force depends only on position:

for f:R — R. Then automatically F' is conservative:

fo= -vVv
av

dzr

where

V() = L:f@m&

Note: we can add any constant to V. Also: the fact that any f is —VV for some V is special to 1
dimension.
So we have:

d() | = 2 (B~ Via(®)
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For example:
graph of some function V(zx) on plane with chosen energy value V. =F
The particle’s position, say x, must have
V(z) < E.

This is called the classically allowed region - in our example, [xg,z1]. The set of x € R where
V(z) > E is the classically forbidden.

A particle at a local maximum can go one of the two possible directions. If the potential increases
all the way up to V = E, the particle stops for moment and then Newton’s second law demands
that the particle goes back down the graph. In our example the particle must oscillate between xg
and x1, moving faster where V' is smaller.

Example: A particle in R? in a central force.

picture of a central force field

A central force depends only on position, so it’s given by f:R?® — {0} — R3, but where f is
spherically symmetric:

x
f@) = ol @ [)) 77—
[l
where ¢:[0,00) — R. (We'll worry about the origin in R? when necessary.) We’ll write

g@) Il = ()

so Newton’s 2nd law says
mi(t) = o(r(t))7(t).

Kepler started thinking about planetary motion - this is motion in a central force

o) = -

r2
He noted that planets sweep out equal area in equal time:

picture of planet going around sun with area from tg to tg + At and from ty to t1 + At

This is secretly “conservation of angular momentum”. This will let us understand motion in any
central force.
First, a central force is automatically conservative: if

f(x) = ol =)z, (& = T ”)

then
@) = ~VV()

where
Viz) = v(|[z]])



for some v: (0,00) — R, namely any v with v/ = —¢, e.g.:

-/ B(s)ds
1

E(t) = gmq(tﬁ = v(r(?))

So we have conservation of energy

(where r(t) =|| ¢q(t) ||) is constant. But we also have conservation of angular momentum
J:R — R? given by

J(t) = q(t) x p(t).
Why is this conserved?

57 @) = d(t) xp(t) +q(t) x p(t)
= () x mq(t) +q(t) x F(t)
= 0+q(t) x fqt))
= q(t) x o(r(t))q(t)
= 0.
In general: angular momentum is constant when the force points directly towards or away from the

origin.

For a particle in a central force, J(t) = mq(t) x ¢(t) is constant so ¢(¢) and ¢(t) must lie in some
fixed plane, independent of ¢t. So, choose coordinates so that it’s the xy plane. So now we have a
particle in R2. Let’s describe its position using polar coordinates 7(t),6(¢). In these coordinates:

E(t) = %m(i’(t)2+r29(t)2) + v(r(t))

and J(t) is pointing in the z-direction and proportional to
) = mr(t)*0(1)
E(t) and j(t) are both consntant - E and j. So:

j = mr?
; J
9 = —
mr?
So
E = 1m(?‘2 + 7 ) + v(r(t))
T2 m2r2 '

This is isomorphic to a particle on (0, 00) with position r(¢) and velocity 7(t) and energy
1.
E = gmi®t)?® + Vers(r(t))

where the effective potential is

Vors(r) = o) + 2
wrr(r) = vo(r - .
rf 2 mr2

picture of typical potential and ef fective potential

So the “effective” force is the force due to V plus a centrifugal force due to nf;z



