Classical Mechanics, Lecture 4 January 22, 2008 lecture by John Baez notes by Alex Hoffnung

1 Many particles in \mathbb{R}^n

Today we are going to talk about **conservation of momentum**. This is a modern name for Newton's 3^{rd} law. We haven't discussed this law yet. It says:

All forces occur in pairs and these two forces are equal in magnitude and opposite in direction.

picture of Earth and apple with forces acting on eachother

To understand this idea, we must consider systems with more than one particle — say n particles in \mathbb{R}^3 with positions $q_i: \mathbb{R} \to \mathbb{R}^3$, (i = 1, ..., n). Suppose the j^{th} particle exerts some force on the i^{th} particle $(i \neq j)$, $F_{ij}(t)$. Newton's 3^{rd} law says

$$F_{ij}(t) = -F_{ji}(t).$$

We will go further and assume our forces are central:

picture of arrows pointing along same line notalong distinct lines

(to get conservation of angular momentum). More precisely:

$$F_{ij}(t) = f_{ij}(|q_i(t) - q_j(t)|) \frac{q_i(t) - q_j(t)}{||q_i(t) - q_j(t)||}$$

where $f_{ij}: (0, \infty) \to \mathbb{R}$. (Note the force is undefined when the particles collide!) Then Newton's 3^{rd} law says

$$f_{ji} = f_{ji}, \qquad (i \neq j)$$

As for a single particle, we can define potentials $V_{ij}: (0, \infty) \to \mathbb{R}$ with

$$V_{ij}' = -f_{ij}$$

For example:

$$V_{ij}(r) = -\int_c^r f_{ij}(s)ds$$

for some fixed c. Note:

$$V_{ij} = V_{ji}$$

so "the potential energy of the i^{th} particle due to the j^{th} particle equals the potential energy of the j^{th} particle due to the i^{th} particle." We define the **total potential energy of the** i^{th} **particle**:

$$V_i(t) = \sum_{j \neq i} V_{ij}(|q_i(t) - q_j(t)|)$$

and the total potential energy

$$V(t) = \sum_{i=1}^{n} V_i(t)$$

Similarly, we have the total kinetic energy

$$T(t) = \sum_{i=1}^{n} \frac{1}{2} m_i \dot{q}_i(t)^2$$

These add up to give the **total energy**

$$E(t) = T(t) + V(t)$$

This will be conserved if the particles move according to Newton's 2^{nd} law:

$$F_i(t) = m_i \ddot{q}_i(t), \qquad (i = 1, \cdot, n)$$

where m > 0 is the **mass** of the *i*th particle and the **force** on the *i*th particle is

$$F_i(t) = \sum_{j \neq i} F_{ij}(t)$$

where F_{ij} is given as before.

Homework 1: Show that if Newton's 2^{nd} law $(F_i(t) = m_i \ddot{q}_i(t))$ holds then energy is conserved:

$$\frac{d}{dt}E(t) = 0.$$

More interestingly, Newton's 3^{rd} law $(F_{ij} = F_{ji})$ gives conservation of momentum. The **momentum** of the i^{th} particle is:

$$p_i(t) = m_i \dot{q}_i(t)$$

and the **total momentum** is:

$$p(t) = \sum_{i=1}^{n} p_i(t)$$

This is conserved:

$$\frac{d}{dt}p(t) = \sum_{i=1}^{n} \frac{d}{dt}p_i(t)$$
(1)

$$= \sum_{i=1}^{n} m_i \ddot{q}_i(t) \tag{2}$$

$$= \sum_{i=1}^{n} F_i(t) \tag{3}$$

$$= \sum_{i=1}^{n} \sum_{j \neq i} F_{ij}(t) \tag{4}$$

$$= 0$$
 (5)

since $F_{ij}(t) = -F_{ji}(t)$. We also have a third conservation law: conservation of angular momentum. The **angular momentum** of the i^{th} particle is

$$J_i(t) = m_i q_i(t) \times \dot{q}_i(t).$$

(If the particle and its velocity are in the xy plane then $J_i(t)$ points along the z direction and its z component is $mr(t)^2\dot{\theta}(t)$.) The **total angular momentum** is:

$$J(t) = \sum_{i=1}^{n} J_i(t)$$

Homework 2: Show that $\frac{d}{dt}J(t) = 0$ using Newton's 2^{nd} law and

$$F_{ij}(t) = f_{ij}(|q_i(t) - q_j(t)|) \frac{q_i(t) - q_j(t)}{|q_i(t) - q_j(t)|}$$

where $f_{ij} = f_{ji}$. Eventually we will use all these conserved quantities to solve the "2-body problem" - two particles interacting via a central force. When we get to the 3-body problem, things get more complicated.

Question: consider the gravitational n-body problem:

$$V_{ij}(r) = -\frac{Gm_im_j}{r}$$

where G is Newton's constant, so

$$f_{ij}(r) = \frac{Gm_im_j}{r^2}.$$

Given initial data $q_i(0), \dot{q}_i(0)$ does there exist a solution of Newton's 2^{nd} law:

$$m\ddot{q}_{i}(t) = \sum_{j \neq i} -\frac{Gm_{i}m_{j}}{|| q_{i}(t) - q_{j}(t) ||^{2}} \frac{q_{i}(t) - q_{j}(t)}{|| q_{i}(t) - q_{j}(t) ||}$$

for all values of $t \in \mathbb{R}$? Depending on initial data, we may have **collision singularities** where $q_i(t) = q_j(t), (i \neq j)$, and then we can worry if we can continue the solution beyond the singularities. But: no, it is not true that we have a solution for all $q_i(0), \dot{q}_i(0)$. So:

- 1. Is there a solution for almost everywhere choice of initial data? Answer is yes for n = 2, 3, 4, ... but open for large n.
- 2. If there is no collision singularity, then is there a solution for al t? Not always! There is a counterexample for n = 5:

picture of 5-body counterexample

Nobody knows of these non-collision singularities arise from a set of initial data of measure zero (if $n \ge 5$).