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1 Galilean Symmetry and its Conserved Quantity

Last time we discovered there was a symmetry called Galilean symmetry, but we did not know a
corresponding conserved quantity. Given n particles in R3 interacting via central forces, if ¢;: R — R?
is a solution of Newton’s 2" law, we get a new solution

Gi(t) = qi(t) +tv

where v € R3. This is called Galilean symmetry; Galilean symmetries form a group, R?. What
are the conserved quantities?
Our system of particles has a total mass:

n
i=1

and a center of mass
q(t) = =———

We have also discussed the total momentum

) miQi(t)‘

p(t) = Z pi(t)

which is also conserved. Note:
p(t) = mq(t)
so the center of mass moves at a constant velocity, so:

q(t) + q(0) +tv

for some v € R3. So
q(t) —tv € R3

is a conserved quantity! This is “center of mass at time zero” - this is the conserved quantity
corresponding to Galilean symmetry.

q(t) —tv =

2 migit) £ maidi(t)

m
Compare this to total momentum:
p(t) = Z mqu(t)

Note: the center of mass at time zero has “explicit time dependence” - not just a function of ¢;(t)
and q',» (t)



2 Hamilton’s Equations

Let’s just consider a single particle in R™, with position

¢:R—R"
satisfying newton’s 2"% law:
mi(t) = ¥ (g(t)
qi = 9q; q

for some potential V: R™ — R. This equation is 2"%-order, so you an rewrite it as a pair of 1%¢-order

equations:
1

(0 = L) ()
Blt) = Go(alt)

describing the rate of position and momentum - these are “equal partners” in the Hamiltonian
approach. The right-hand side is related to energy

1
E = §mq2+V(Q)

2
_p
= 5t V(g)

The Hamiltonian H:R™ x R™ — R is the energy as a function of p € R, ¢ € R™:

2

- P
H(g,p) = 5~ +V(qg)
Note:
87H( ) = D
67H( ) = oV
9qi “r= 9q;
So, (**) are equivalent to Hamilton’s equations:
d OH
4t = o; (q(t),p(t))
d OH
i) = - o (q(t),p(t))

This pattern reminds of us rotating by 90 degrees in the plane or multiplying by 4. This is the secret
expanation of what is going on!

3 Poisson Brackets
We call R™ the phase space of a particle in n-dimensions - a point in it specifies the particles

position and momentum
(g,p) € R" x R™.



We call any smooth function F:R"™ x R" — R an observable. We can ask how an observable
“evolves in time” to give a new observable F, (t € R) - F measured after you wait a certain amount
of time. Mathematically, F;: R™ x R™ — R is the observable:

Fi(qp) = F(q(t),p(t))

where ¢(t), p(t) are the solution of Hamilton’s equations with ¢(0) = ¢, p(0) = p.
How does F; change as time passes:

Calculate

d d
(57)@n = Zra0.0)
B Z oF dql OF dp;

_ yorom_oron
B 0q; Op;  Op; 0q;

For this reason we invent Poisson brackets: given any pair of observables F, G:R?" — R, we let

OoF 0G  OF 0G
F —
{ G} Z Op; O0q; 5'111' Op;

In this notation Hamilton’s equations say:

é%lg(q p) = {H,F}q),p(t))
= {H,F}t((LP)
or: d
%Ft = {H,F}.

We'll say “the Hamiltonian generates time evolution”. In fact, other interesting observables gen-
erate other interesting symmetries.
Consider spatial translation:

q— q+sk, keR"

p—p, s€ER
We could look at how an observable changes under spatial translation, define:
Fy(q,p) = F(q+ sk,p)

and compute

dF, d
s - °F k
I (g,p) I (q+ sk,p)
oF
_ 7]{1
Z 0¢;

where p - k is “momentum in the k direction”. So: “translations in the k direction are generated by
momentum in the k direction.”



