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1 Galilean Symmetry and its Conserved Quantity

Last time we discovered there was a symmetry called Galilean symmetry, but we did not know a
corresponding conserved quantity. Given n particles in R3 interacting via central forces, if qi:R→ R3

is a solution of Newton’s 2nd law, we get a new solution

q̃i(t) = qi(t) + tv

where v ∈ R3. This is called Galilean symmetry; Galilean symmetries form a group, R3. What
are the conserved quantities?
Our system of particles has a total mass:

m =
n∑

i=1

mi

and a center of mass

q(t) =
∑

miqi(t)
m

.

We have also discussed the total momentum

p(t) =
n∑

i=1

pi(t)

which is also conserved. Note:
p(t) = mq̇(t)

so the center of mass moves at a constant velocity, so:

q(t) + q(0) + tv

for some v ∈ R3. So
q(t)− tv ∈ R3

is a conserved quantity! This is “center of mass at time zero” - this is the conserved quantity
corresponding to Galilean symmetry.

q(t)− tv =
∑

miqi(t)
m

− t
∑

miq̇i(t)
m

.

Compare this to total momentum:
p(t) =

∑
miq̇i(t).

Note: the center of mass at time zero has “explicit time dependence” - not just a function of qi(t)
and q̇i(t).
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2 Hamilton’s Equations

Let’s just consider a single particle in Rn, with position

q:R→ Rn

satisfying newton’s 2nd law:

mq̈i(t) =
∂V

∂qi
(q(t))

for some potential V :Rn → R. This equation is 2nd-order, so you an rewrite it as a pair of 1st-order
equations:

q̇i(t) =
1
m

pi(t) (∗∗)

ṗi(t) =
∂V

∂qi
(q(t))

describing the rate of position and momentum - these are “equal partners” in the Hamiltonian
approach. The right-hand side is related to energy

E =
1
2
mq̇2 + V (q)

=
p2

2m
+ V (q)

The Hamiltonian H:Rn × Rn → R is the energy as a function of p ∈ Rn, q ∈ Rn:

H(q, p) =
p2

2m
+ V (q)

Note:
∂H

∂pi
(q, p) =

pi

m

∂H

∂qi
(q, p) =

∂V

∂qi

So, (**) are equivalent to Hamilton’s equations:

d

dt
qi(t) =

∂H

∂pi
(q(t), p(t))

d

dt
pi(t) = − ∂H

∂qi
(q(t), p(t))

This pattern reminds of us rotating by 90 degrees in the plane or multiplying by i. This is the secret
expanation of what is going on!

3 Poisson Brackets

We call Rn the phase space of a particle in n-dimensions - a point in it specifies the particles
position and momentum

(q, p) ∈ Rn × Rn.
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We call any smooth function F :Rn × Rn → R an observable. We can ask how an observable
“evolves in time” to give a new observable Ft, (t ∈ R) - F measured after you wait a certain amount
of time. Mathematically, Ft:Rn × Rn → R is the observable:

Ft(qp) = F (q(t), p(t))

where q(t), p(t) are the solution of Hamilton’s equations with q(0) = q, p(0) = p.
How does Ft change as time passes:

d

dt
Ft = ?

Calculate (
d

dt
Ft

)
(q, p) =

d

dt
F (q(t), p(t))

=
∑

i

∂F

∂qi

dqi

dt
+

∂F

∂pi

dpi

dt

=
∑

i

∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

For this reason we invent Poisson brackets: given any pair of observables F, G:R2n → R, we let

{F, G} =
n∑

i=1

∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

In this notation Hamilton’s equations say:

d

dt
Ft(q, p) = {H, F}(q(t), p(t))

= {H, F}t(q, p)

or:
d

dt
Ft = {H,F}t.

We’ll say “the Hamiltonian generates time evolution”. In fact, other interesting observables gen-
erate other interesting symmetries.
Consider spatial translation:

q 7→ q + sk, k ∈ Rn

p 7→ p, s ∈ R
We could look at how an observable changes under spatial translation, define:

Fs(q, p) = F (q + sk, p)

and compute

dFs

ds
(q, p) =

d

ds
F (q + sk, p)

=
∑

i

∂F

∂qi
ki

= {p · k, F}

where p · k is “momentum in the k direction”. So: “translations in the k direction are generated by
momentum in the k direction.”
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