Classical Mechanics, Lecture 7
January 31, 2008
lecture by John Baez
notes by Alex Hoffnung

1 The Poisson Bracket

If we have one particle in R", we call R” the configuration space - the space of possible positions
of the whole system. If we have n particles in R? the configuration space is R3", since a point in
here is an n-tuple (q1,...,q,) where ¢; € R? is the position of the i*" particle.

picture of a pendulum swinging around a pivot
For a pendulum that can swing all the way around in a plane, the configuration space is S! - the
circle. For 42 pendula, the configuration space is
St xoox 8t =142

(the 42-dimensional torus). The configuration space of a rigid body in R? with center of mass at
0€R3is

SO(3) = {3 x 3 rotation matrices}

= {R:R?® — R? such that RRT = 1,detR = 1}

a 3-dim manifold. The configuration space of a rigid body in R? is SO(3) x R3, where a point in R3
specifies the center of mass.

But Hamiltonian mechanics focuses not on the configuration space but on the phase space or
state space, where a point specifies the position and momentum of the system. For a single particle
in R™, the phase space is:

R?*™ = R™ x R™ € (q,p)

where g € R” is the position and p € R™ is the momentum. For n particles in R?, the phase space is
RGn o~ ]R?;n % ]R?;n

For a rigid body in R® with center of mass at the origin, the phase space is SO(3) x R? where
q € SO(3) is the position and p € R3 is actually the angular momentum, usually called .J.
Actually a better description is T*SO(3) - the cotangent bundle of SO(3).

In our example of a particle in R", we said an observable is a smooth function

FR"xR" =R

by
(¢,p) — F(q,p)

from the phase space to R, sending each point of phase space (or state of our system) to the value
of the observables.
If X is any manifold, thought of as a phase space, let

C*°(X) = {smooth functions F: X — R}

be the set of observables. This is a commutative algebra.



Definition 1 A commutative algebra is a (real) vector space A equipped with a product satisfying:
1. bilinearity:
(oF + BG)H = oFH + fGH, VYa,8€R
F(aG+pBH)=aFG+pFH, F,GHeA
2. commutativity:
FG=GF
3. associativity:
(FG)H = F(GH)

C>(X) becomes a commutative algebra with the “obvious” addition, scalar multiplication, and

multiplication:
(aF)(z) =aF(z), z€X

(F+ G)(z) = F(z) + G(z)
(FG)(z) = F(2)G(z)

But, in our example X = R?", there’s another operation, the Poisson bracket:

" OF 0G  OF 0G
F.G) = -
the) ; Op; 0q;  0q; Op;
This makes C*°(X) into a ‘Lie algebra’:
Definition 2 A Lie algebra is a (real) vector space A equipped with a “Lie bracket” {-,-}
1. bilinearity:
{aF +pG,H} =o{F,H} + 8{G,H}
{F,aG + BH} = o F,G} + p{G, H}
2. antisymmetry:
3. Jacobi identity:
{FAG H}} ={{F.G},H} + {G,{F H}}
(Rule 3 looks like the product rule: dGH = (dG)H + g(dH).)

In fact for all classical mechanics problems, the algebra of observables C*°(X) is always both a
commutative algebra and a Lie algebra, but even better, they fit together to form a Poisson alge-
bra.

Definition 3 A Poisson algebra is a vector space A with a product making it into a commutative
algebra and a bracket {-,-} making it into a Lie algebra such that

(F,GH} = {F,G}H + G{F, H}



We saw that for a particle in R™, with energy given by:

2 v

H(q,p) = o

where V:R"™ — R, Newton’s 2" law can be rewritten as Hamilton’s equations:

Sas(0) = 5 a(0) p(0)
d OH

Spilt) = —a—qi(q(t),p(t))

If H € C*°(R?") is nice, these have a unique smooth solution for any choice of initial ¢(0) = ¢ and
p(0) = p. Then we get a function
¢:R x R*" — R*"

by
(t,q,p) = (q(t),p(t))

which describes time evolution. Often we write

(b(t? (Lp) = ¢t (qvp)

where
¢ R?" — R,

Then we can say how any observable changes with time: given F' € C°(R?") we get

Ft(qvp) = F¢t(Qap)

and Hamilton’s equations say:

d Z oF dql OF dp;
B dq; dt 8pi dt

B Z OH OF  OH OF
B dpi q;  Dq; Opi

= {HaF}t

This is why the Poisson algebra is important.



