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1 The Poisson Bracket

If we have one particle in Rn, we call Rn the configuration space - the space of possible positions
of the whole system. If we have n particles in R3 the configuration space is R3n, since a point in
here is an n-tuple (q1, . . . , qn) where qi ∈ R3 is the position of the ith particle.

picture of a pendulum swinging around a pivot

For a pendulum that can swing all the way around in a plane, the configuration space is S1 - the
circle. For 42 pendula, the configuration space is

S1 × · · · × S1 = T 42

(the 42-dimensional torus). The configuration space of a rigid body in R3 with center of mass at
0 ∈ R3 is

SO(3) = {3× 3 rotation matrices}
= {R:R3 → R3 such that RRT = 1, detR = 1}

a 3-dim manifold. The configuration space of a rigid body in R3 is SO(3)×R3, where a point in R3

specifies the center of mass.

But Hamiltonian mechanics focuses not on the configuration space but on the phase space or
state space, where a point specifies the position and momentum of the system. For a single particle
in Rn, the phase space is:

R2n ∼= Rn × Rn ∈ (q, p)

where q ∈ Rn is the position and p ∈ Rn is the momentum. For n particles in R3, the phase space is

R6n ∼= R3n × R3n.

For a rigid body in R3 with center of mass at the origin, the phase space is SO(3) × R3 where
q ∈ SO(3) is the position and p ∈ R3 is actually the angular momentum, usually called J .
Actually a better description is T ∗SO(3) - the cotangent bundle of SO(3).
In our example of a particle in Rn, we said an observable is a smooth function

F :Rn × Rn → R

by
(q, p) 7→ F (q, p)

from the phase space to R, sending each point of phase space (or state of our system) to the value
of the observables.
If X is any manifold, thought of as a phase space, let

C∞(X) = {smooth functions F :X → R}

be the set of observables. This is a commutative algebra.
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Definition 1 A commutative algebra is a (real) vector space A equipped with a product satisfying:

1. bilinearity:

(αF + βG)H = αFH + βGH, ∀α, β ∈ R
F (αG+ βH) = αFG+ βFH, F,G,H ∈ A

2. commutativity:

FG = GF

3. associativity:

(FG)H = F (GH)

C∞(X) becomes a commutative algebra with the “obvious” addition, scalar multiplication, and
multiplication:

(αF )(x) = αF (x), x ∈ X
(F +G)(x) = F (x) +G(x)

(FG)(x) = F (x)G(x)

But, in our example X = R2n, there’s another operation, the Poisson bracket:

{F,G} =
n∑

i=1

∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

This makes C∞(X) into a ‘Lie algebra’:

Definition 2 A Lie algebra is a (real) vector space A equipped with a “Lie bracket” {·, ·}
1. bilinearity:

{αF + βG,H} = α{F,H}+ β{G,H}
{F, αG+ βH} = α{F,G}+ β{G,H}

2. antisymmetry:

{F,G} = −{G,F}

3. Jacobi identity:

{F, {G,H}} = {{F,G}, H}+ {G, {F,H}}

(Rule 3 looks like the product rule: dGH = (dG)H + g(dH).)

In fact for all classical mechanics problems, the algebra of observables C∞(X) is always both a
commutative algebra and a Lie algebra, but even better, they fit together to form a Poisson alge-
bra.

Definition 3 A Poisson algebra is a vector space A with a product making it into a commutative
algebra and a bracket {·, ·} making it into a Lie algebra such that

{F,GH} = {F,G}H +G{F,H}
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We saw that for a particle in Rn, with energy given by:

H(q, p) =
p2

2m
+ V (q)

where V :Rn → R, Newton’s 2nd law can be rewritten as Hamilton’s equations:

d

dt
qi(t) =

∂H

∂pi
(q(t), p(t))

d

dt
pi(t) = −∂H

∂qi
(q(t), p(t))

If H ∈ C∞(R2n) is nice, these have a unique smooth solution for any choice of initial q(0) = q and
p(0) = p. Then we get a function

φ:R× R2n → R2n

by
(t, q, p) 7→ (q(t), p(t))

which describes time evolution. Often we write

φ(t, q, p) = φt(q, p)

where
φt:R2n → R2n.

Then we can say how any observable changes with time: given F ∈ C∞(R2n) we get

Ft(q, p) = Fφt(q, p)

and Hamilton’s equations say:

d

dt
Ft =

n∑

i=1

∂F

∂qi

dqi
dt

+
∂F

∂pi

dpi
dt

=

n∑

i=1

∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

= {H,F}t

This is why the Poisson algebra is important.
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