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1 Poisson Manifolds

We have described Poisson brackets for functions on R2n - the phase space for a system whose config-
uration space is Rn. Now let’s generalize this to systems whose configuration space is any manifold,
M . Here we will see that the phase space is the “cotangent bundle” T ∗M and this is a “Poisson
manifold” - a manifold such that the commutative algebra of smooth real-valued functions on it,
C∞(T ∗M) is equipped with Poisson bracket {·, ·} making it into a Poisson algebra - the Poisson
algebra of “observables” for our system.

Example: a particle on a sphere S2.
(picture of a sphere M = S2 with point q ∈M)
The position and momentum of this particle give a point in T ∗S2 : q ∈ S2, p ∈ T ∗qM , so (q, p) ∈ T ∗S2.
Recall that a manifold M is a topological space such that every point q ∈ M has a “neighborhood
that looks like Rn.” In other words, there is an open set U ⊂M with q ∈ U and a bijection

φ:U → Rn.

Indeed we have a collection of these (Ui, φi:Ui → Rn) and they are compatible:
(picture of charts overlapping)
that is, φj ◦ φ−1

i is smooth (infinitely differentiable) where defined. A collection of this sort is an
atlas, and the functions φi:Ui → Rn are called charts. We will usually use a maximal atlas, i.e.
one containing all charts that are compatible with all charts in the atlas. So - a manifold is a
topological space with a maximal atlas.

If the manifold M is the configuration space of some physical system, the a point q ∈ M de-
scribes the position of the system and a “tangent vector” v ∈ TqM describes its velocity, where TqM
is the tangent space of M at q:
(picture of tangent space to S2 at q)
which can be defined in various ways:

1. A tangent vector v at the point q is an equivalence class of (smooth) curves

γ:R→M

such that γ(0) = q, where γ1 ∼ γ2 if and only if for every smooth function f ∈ C∞(M)
(smooth real-valued functions on M) we have

d

dt
f(γ1(t))|t=0 =

d

dt
f(γ2(t))|t=0.

You can show the set of such equivalence classes is an n-dimensional vector space, the tangent
space TqM . Given v = [γ] ∈ TqM , we can define the derivative vf ∈ R for any f ∈ C∞(M)
by

vf =
d

dt
f(γ(t))|t=0

2. A tangent vector v at q ∈M is a derivation

v:C∞(M)→ R

i.e., a map that is:
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• v(αf + βg) = αv(f) + βv(g) - linearity

• v(fg) = v(f)g(q) + f(q)v(g) - product rule

These clearly form a vector space, the tangent space TqM .

The set of all position-velocity pairs is a manifold, the tangent bundle of M :

TM = {(q, v) : q ∈M, v ∈ TqM}
Naively, we might define momentum by p = mv, in which case it would be a tangent vector. It is
better to think of it is a “cotangent vector”. Every vector space V has a dual V ∗:

V ∗ = {l:V → R : l linear}
The cotangent space of M at q ∈M is:

T ∗qM = (TqM)∗

and the cotangent bundle of M is:

T ∗M = {(q, p) : q ∈M,p ∈ T ∗qM}
So T ∗M will be the system’s “phase space” - space of position-momentum pairs.

What good are cotangent vectors, though?
The “gradient” or “differential” of a function f ∈ C∞(M) at q ∈ M is a cotangent vector,
(df)q ∈ T ∗qM :

(df)q(v) = v(f), v ∈ TqM
(or in low-brow notation: (∇f)(q) · v = vf).
The potential energy for our system (e.g. a particle on M) is some fucntion of its position: V ∈
C∞(M). We have seen already that “∇V = −F” - but this really means

(dV )q = −F (q)

where F (q), the force at q ∈M , is a cotangent vector: F (q) ∈ T ∗qM .
A tangent vector looks like a little arrow:
(picture of a tangent vector)
A cotangent vector looks like a “stack of hyperplanes” - its level surfaces:
(picture of level surfaces)
Together they give a number l(v) ∈ R:
(picture of tangent vector crossing level curves)

In physics, the velocity v ∈ TpM is a tangent vector and the force F ∈ T ∗qM is a cotangent
vector, so F (v) ∈ R. We have seen this before in the formula:

∫ t2

t1

F · q̇(t)dt = work

Now we would say, given a particle’s path q:R→M , that work from t1 to t2 is equal to
∫ t2

t1

F (q(t))(q̇(t))dt

Since force is a cotangent vector, so is momentum, since:

dp

dt
= F

So: a position-momentum pair (q, p) is really a point in T ∗M :

q ∈M,p ∈ T ∗qM.
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