
Classical Mechanics Homework
January 17, 2008

John Baez homework by John Huerta

Homework 1

Solve Newton’s second law F = ma for q(t) ∈ R3 for

F (t) = (0, 0,−mg),

the force felt by a particle near the Earth’s surface only under the influence of gravity. Find q(t) in
terms of the initial position q(0) and q̇(0).

Solution

In this case, Newton’s second law F = ma = mq̈ just says that

q̈ =
F

m
= (0, 0,−g).

In other words, acceleration q̈ is a constant. Since there’s no increase in difficulty, we’ll just solve
all constant acceleration problems in any dimension, i.e. differential equations of the form

q̈ = a

where a ∈ Rn is a constant. Then we’ll set n = 3 and a = (0, 0,−g) to solve this special case.
It’s straightforward to integrate

q̈ = a

once and get
q̇ = v + ta

where our constant of integration v ∈ Rn is seen, upon setting t = 0, to be the initial velocity

q̇(0) = v

so we have
q̇ = q̇(0) + ta

thus far, and we integrate again to get

q = x+ tq̇(0) +
1

2
t2a

where, just as before, our constant of integration x ∈ Rn is seen, upon setting t = 0, to be the initial
positon

q(0) = x

So our full solution is thus

q = q(0) + tq̇(0) +
1

2
t2a

Now back to our original problem, where n = 3 and a = (0, 0,−g). Taking the initial position
and velocity to be

q(0) = (x0, y0, z0)

and
q̇(0) = (vx, vy, vz)
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we get that our position at time t is

q(t) = (xo + vxt, yo + vyt, zo + vzt−
1

2
gt2)

in terms of its components. In particular, if we take the z-axis to point in the vertical direction, we
have that the particle’s height at time t is

qz(t) = zo + vzt−
1

2
gt2,

the familiar formula from any freshman physics text.

Homework 2

Solve Newton’s second law for q(t) ∈ R when the force is given by Hooke’s law

F (t) = −kq(t)

in terms of m, k, q(0), and q̇(0), and then find the period P of the oscillation and the frequency ω,

where ω =
2π

P

Solution

Plugging this force into Newton’s second law, we get

q̈ = − k
m
q

or

q̈ +
k

m
q = 0

a slightly more difficult differential equation than the one in the first problem.
To solve it, we turn to the arcane techniques of the theory of ordinary differential equations: we

find the characteristic polynomial of this equation,

λ2 +
k

m
,

which is the polynomial that looks like the differential equation, if we replace each nth derivative of
q with the nth power of λ. Now we find the roots of this polynomial,

λ = ±i
√
k

m
= ±iω

where we’ve defined ω =
√

k
m . Since the characteristic polynomial has no repeated roots, the most

general complex-valued solution to our differential equation is of the form

q̃(t) = Aeiωt +Be−iωt

where A and B are complex constants to be determined by initial conditions. But we don’t want a
complex-valued solution; we want a real solution. This is easy to obtain, because the real part of q̃,

q(t) = Re(q̃(t) = A′ cos(ωt) +B′ sin(ωt)
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where A′ and B′ are real constants, satisfies the same differential equation as q̃, the reason being that
Re is a real linear operator from complex-valued funtions to real-valued functions that commutes
with differentiation!

So now that we’ve found the most general solution,

q(t) = A cosωt+B sinωt,

it only remains to determine A and B. We have

q(0) = A cos 0 +B sin 0 = A

and
q̇(0) = −ωA sin 0 + ωB cos 0 = ωB.

Our solution is thus

q(t) = q(0) cosωt+
q̇(0)

ω
sinωt.

Both of the trig functions in our solution have period

P =
2π

ω
= 2π

√
m

k

so q also has this period. q therefore oscillates with frequency

ω =

√
k

m
.
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