Classical Mechanics Homework
January 17, 2008

John Baez homework by John Huerta

Homework 1
Solve Newton’s second law F' = ma for ¢(t) € R3 for
F(t) = (0,0, —mg),
the force felt by a particle near the Earth’s surface only under the influence of gravity. Find ¢(t) in
terms of the initial position ¢(0) and ¢(0).
Solution

In this case, Newton’s second law F' = ma = mg just says that

F
j=—=(0,0,—g).
i= (0,0,-9)

In other words, acceleration § is a constant. Since there’s no increase in difficulty, we’ll just solve
all constant acceleration problems in any dimension, i.e. differential equations of the form

i=a

where a € R™ is a constant. Then we’ll set n =3 and a = (0,0, —g) to solve this special case.
It’s straightforward to integrate

i=a
once and get
¢g=v+ta

where our constant of integration v € R™ is seen, upon setting t = 0, to be the initial velocity

so we have

thus far, and we integrate again to get
. 1o
qg=2x+1t¢(0) + §t a

where, just as before, our constant of integration x € R™ is seen, upon setting ¢t = 0, to be the initial
positon

q(0) ==z
So our full solution is thus .
4= 9(0) +13(0) + 5%

Now back to our original problem, where n = 3 and a = (0,0, —g). Taking the initial position
and velocity to be

q(0) = (0,0, 20)
and
Q(O) = (Uﬂﬁvvy’vz)



we get that our position at time ¢ is
= (To + —+ 1 2
q(t) ( o+ Uz, Yo vyt, Zo + vt — =gt )

in terms of its components. In particular, if we take the z-axis to point in the vertical direction, we
have that the particle’s height at time ¢ is

1
q:(t) = 2o + vt — §gt2,

the familiar formula from any freshman physics text.

Homework 2
Solve Newton’s second law for ¢(t) € R when the force is given by Hooke’s law
F(t) = —kq(t)

in terms of m, k, ¢(0), and ¢(0), and then find the period P of the oscillation and the frequency w,
27

here w = —
v P
Solution
Plugging this force into Newton’s second law, we get

; k
q=-——q
m

or k
¢+—q=0
m

a slightly more difficult differential equation than the one in the first problem.
To solve it, we turn to the arcane techniques of the theory of ordinary differential equations: we
find the characteristic polynomial of this equation,

k
A+ =,
m

which is the polynomial that looks like the differential equation, if we replace each nth derivative of
q with the nth power of A. Now we find the roots of this polynomial,

[k
A=+ — = tiw
m

where we’ve defined w = @/%. Since the characteristic polynomial has no repeated roots, the most
general complex-valued solution to our differential equation is of the form

Cj(t) _ Aeiwt +B€7th

where A and B are complex constants to be determined by initial conditions. But we don’t want a
complex-valued solution; we want a real solution. This is easy to obtain, because the real part of g,

q(t) = Re(g(t) = A cos(wt) + B’ sin(wt)



where A’ and B’ are real constants, satisfies the same differential equation as ¢, the reason being that
Re is a real linear operator from complex-valued funtions to real-valued functions that commutes
with differentiation!

So now that we’'ve found the most general solution,

q(t) = Acoswt + Bsinwt,
it only remains to determine A and B. We have
q(0) = Acos0+ Bsin0= A

and
4(0) = —wAsin0+ wBcos0 = wB.
Our solution is thus )
q(0)

q(t) = q(0) coswt + —= sin wt.
w

Both of the trig functions in our solution have period

2T m
P=—=2m/—
w T k

so ¢ also has this period. ¢ therefore oscillates with frequency

[ k
w=4/—.
m



